2bak Citations

Prevention of MKK6-dependent activation by binding to p38alpha MAP kinase.

Abstract

Inhibition of p38alpha MAP kinase is a potential approach for the treatment of inflammatory disorders. MKK6-dependent phosphorylation on the activation loop of p38alpha increases its catalytic activity and affinity for ATP. An inhibitor, BIRB796, binds at a site used by the purine moiety of ATP and extends into a "selectivity pocket", which is not used by ATP. It displaces the Asp168-Phe169-Gly170 motif at the start of the activation loop, promoting a "DFG-out" conformation. Some other inhibitors bind only in the purine site, with p38alpha remaining in a "DFG-in" conformation. We now demonstrate that selectivity pocket compounds prevent MKK6-dependent activation of p38alpha in addition to inhibiting catalysis by activated p38alpha. Inhibitors using only the purine site do not prevent MKK6-dependent activation. We present kinetic analyses of seven inhibitors, whose crystal structures as complexes with p38alpha have been determined. This work includes four new crystal structures and a novel assay to measure K(d) for nonactivated p38alpha. Selectivity pocket compounds associate with p38alpha over 30-fold more slowly than purine site compounds, apparently due to low abundance of the DFG-out conformation. At concentrations that inhibit cellular production of an inflammatory cytokine, TNFalpha, selectivity pocket compounds decrease levels of phosphorylated p38alpha and beta. Stabilization of a DFG-out conformation appears to interfere with recognition of p38alpha as a substrate by MKK6. ATP competes less effectively for prevention of activation than for inhibition of catalysis. By binding to a different conformation of the enzyme, compounds that prevent activation offer an alternative approach to modulation of p38alpha.

Articles - 2bak mentioned but not cited (9)

  1. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Bikadi Z, Hazai E. J Cheminform 1 15 (2009)
  2. Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. Kufareva I, Abagyan R. J Med Chem 51 7921-7932 (2008)
  3. KLIFS: a structural kinase-ligand interaction database. Kooistra AJ, Kanev GK, van Linden OP, Leurs R, de Esch IJ, de Graaf C. Nucleic Acids Res 44 D365-71 (2016)
  4. A molecular mechanics approach to modeling protein-ligand interactions: relative binding affinities in congeneric series. Rapp C, Kalyanaraman C, Schiffmiller A, Schoenbrun EL, Jacobson MP. J Chem Inf Model 51 2082-2089 (2011)
  5. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors. Xu M, Yu L, Wan B, Yu L, Huang Q. PLoS One 6 e22644 (2011)
  6. p38α Mitogen-Activated Protein Kinase Is a Druggable Target in Pancreatic Adenocarcinoma. Yang L, Sun X, Ye Y, Lu Y, Zuo J, Liu W, Elcock A, Zhu S. Front Oncol 9 1294 (2019)
  7. Identification of Druggable Kinase Target Conformations Using Markov Model Metastable States Analysis of apo-Abl. Paul F, Meng Y, Roux B. J Chem Theory Comput 16 1896-1912 (2020)
  8. Towards good correlation between fragment molecular orbital interaction energies and experimental IC50 for ligand binding: A case study of p38 MAP kinase. Sheng Y, Watanabe H, Maruyama K, Watanabe C, Okiyama Y, Honma T, Fukuzawa K, Tanaka S. Comput Struct Biotechnol J 16 421-434 (2018)
  9. Label transfer reagents to probe p38 MAPK binding partners. Andrews SS, Hill ZB, Perera BG, Maly DJ. Chembiochem 14 209-216 (2013)


Reviews citing this publication (6)

  1. p38 pathway kinases as anti-inflammatory drug targets. Schindler JF, Monahan JB, Smith WG. J Dent Res 86 800-811 (2007)
  2. Survey of the year 2005 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 19 478-534 (2006)
  3. Trk kinase inhibitors as new treatments for cancer and pain. Wang T, Yu D, Lamb ML. Expert Opin Ther Pat 19 305-319 (2009)
  4. New approaches to the treatment of inflammatory disease : focus on small-molecule inhibitors of signal transduction pathways. Ivanenkov YA, Balakin KV, Tkachenko SE. Drugs R D 9 397-434 (2008)
  5. Use of p38 MAPK Inhibitors for the Treatment of Werner Syndrome. Bagley MC, Davis T, Murziani PG, Widdowson CS, Kipling D. Pharmaceuticals (Basel) 3 1842-1872 (2010)
  6. A Comprehensive Structural Overview of p38α MAPK in Complex with Type I Inhibitors. Astolfi A, Iraci N, Manfroni G, Barreca ML, Cecchetti V. ChemMedChem 10 957-969 (2015)

Articles citing this publication (41)

  1. A Src-like inactive conformation in the abl tyrosine kinase domain. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J. PLoS Biol 4 e144 (2006)
  2. Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Green TP, Fennell M, Whittaker R, Curwen J, Jacobs V, Allen J, Logie A, Hargreaves J, Hickinson DM, Wilkinson RW, Elvin P, Boyer B, Carragher N, Plé PA, Bermingham A, Holdgate GA, Ward WH, Hennequin LF, Davies BR, Costello GF. Mol Oncol 3 248-261 (2009)
  3. Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function. Du Y, Tang J, Li G, Berti-Mattera L, Lee CA, Bartkowski D, Gale D, Monahan J, Niesman MR, Alton G, Kern TS. Invest Ophthalmol Vis Sci 51 2158-2164 (2010)
  4. The design, synthesis, and evaluation of 8 hybrid DFG-out allosteric kinase inhibitors: a structural analysis of the binding interactions of Gleevec, Nexavar, and BIRB-796. Dietrich J, Hulme C, Hurley LH. Bioorg Med Chem 18 5738-5748 (2010)
  5. Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. Wodicka LM, Ciceri P, Davis MI, Hunt JP, Floyd M, Salerno S, Hua XH, Ford JM, Armstrong RC, Zarrinkar PP, Treiber DK. Chem Biol 17 1241-1249 (2010)
  6. Sequence determinants of a specific inactive protein kinase conformation. Hari SB, Merritt EA, Maly DJ. Chem Biol 20 806-815 (2013)
  7. Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes. Angell RM, Angell TD, Bamborough P, Bamford MJ, Chung CW, Cockerill SG, Flack SS, Jones KL, Laine DI, Longstaff T, Ludbrook S, Pearson R, Smith KJ, Smee PA, Somers DO, Walker AL. Bioorg Med Chem Lett 18 4433-4437 (2008)
  8. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Backes A, Zech B, Felber B, Klebl B, Müller G. Expert Opin Drug Discov 3 1427-1449 (2008)
  9. Conformation-Selective Analogues of Dasatinib Reveal Insight into Kinase Inhibitor Binding and Selectivity. Kwarcinski FE, Brandvold KR, Phadke S, Beleh OM, Johnson TK, Meagher JL, Seeliger MA, Stuckey JA, Soellner MB. ACS Chem Biol 11 1296-1304 (2016)
  10. Affinity-based, biophysical methods to detect and analyze ligand binding to recombinant proteins: matching high information content with high throughput. Holdgate GA, Anderson M, Edfeldt F, Geschwindner S. J Struct Biol 172 142-157 (2010)
  11. Microwave-assisted synthesis of N-pyrazole ureas and the p38alpha inhibitor BIRB 796 for study into accelerated cell ageing. Bagley MC, Davis T, Dix MC, Widdowson CS, Kipling D. Org Biomol Chem 4 4158-4164 (2006)
  12. Affinity-based probes based on type II kinase inhibitors. Ranjitkar P, Perera BG, Swaney DL, Hari SB, Larson ET, Krishnamurty R, Merritt EA, Villén J, Maly DJ. J Am Chem Soc 134 19017-19025 (2012)
  13. Small-molecule inhibitors binding to protein kinases. Part I: exceptions from the traditional pharmacophore approach of type I inhibition. Backes A, Zech B, Felber B, Klebl B, Müller G. Expert Opin Drug Discov 3 1409-1425 (2008)
  14. Affinity reagents that target a specific inactive form of protein kinases. Ranjitkar P, Brock AM, Maly DJ. Chem Biol 17 195-206 (2010)
  15. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase. Klein T, Vajpai N, Phillips JJ, Davies G, Holdgate GA, Phillips C, Tucker JA, Norman RA, Scott AD, Higazi DR, Lowe D, Thompson GS, Breeze AL. Nat Commun 6 7877 (2015)
  16. Inhibition of pro-inflammatory cytokine production by the dual p38/JNK2 inhibitor BIRB796 correlates with the inhibition of p38 signaling. Gruenbaum LM, Schwartz R, Woska JR, DeLeon RP, Peet GW, Warren TC, Capolino A, Mara L, Morelock MM, Shrutkowski A, Jones JW, Pargellis CA. Biochem Pharmacol 77 422-432 (2009)
  17. Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src. Hari SB, Perera BG, Ranjitkar P, Seeliger MA, Maly DJ. ACS Chem Biol 8 2734-2743 (2013)
  18. Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalytic functions of mitogen-activated protein kinases. Hari SB, Merritt EA, Maly DJ. Chem Biol 21 628-635 (2014)
  19. Insights into MAPK p38alpha DFG flip mechanism by accelerated molecular dynamics. Filomia F, De Rienzo F, Menziani MC. Bioorg Med Chem 18 6805-6812 (2010)
  20. Biochemical characterization of a novel type-II VEGFR2 kinase inhibitor: comparison of binding to non-phosphorylated and phosphorylated VEGFR2. Iwata H, Imamura S, Hori A, Hixon MS, Kimura H, Miki H. Bioorg Med Chem 19 5342-5351 (2011)
  21. Divergent modulation of Src-family kinase regulatory interactions with ATP-competitive inhibitors. Leonard SE, Register AC, Krishnamurty R, Brighty GJ, Maly DJ. ACS Chem Biol 9 1894-1905 (2014)
  22. Targeting diverse signaling interaction sites allows the rapid generation of bivalent kinase inhibitors. Hill ZB, Perera BG, Andrews SS, Maly DJ. ACS Chem Biol 7 487-495 (2012)
  23. Targeting the unactivated conformations of protein kinases for small molecule drug discovery. Alton GR, Lunney EA. Expert Opin Drug Discov 3 595-605 (2008)
  24. Computational generation inhibitor-bound conformers of p38 MAP kinase and comparison with experiments. Bakan A, Bahar I. Pac Symp Biocomput 181-192 (2011)
  25. Fluorescence polarization binding assay to develop inhibitors of inactive p38alpha mitogen-activated protein kinase. Munoz L, Selig R, Yeung YT, Peifer C, Hauser D, Laufer S. Anal Biochem 401 125-133 (2010)
  26. Virtual screening using a conformationally flexible target protein: models for ligand binding to p38α MAPK. Vinh NB, Simpson JS, Scammells PJ, Chalmers DK. J Comput Aided Mol Des 26 409-423 (2012)
  27. Outliers in SAR and QSAR: 2. Is a flexible binding site a possible source of outliers? Kim KH. J Comput Aided Mol Des 21 421-435 (2007)
  28. The design and synthesis of novel alpha-ketoamide-based p38 MAP kinase inhibitors. Montalban AG, Boman E, Chang CD, Ceide SC, Dahl R, Dalesandro D, Delaet NG, Erb E, Ernst JT, Gibbs A, Kahl J, Kessler L, Lundström J, Miller S, Nakanishi H, Roberts E, Saiah E, Sullivan R, Wang Z, Larson CJ. Bioorg Med Chem Lett 18 1772-1777 (2008)
  29. Effects of p38α/β inhibition on acute lymphoblastic leukemia proliferation and survival in vivo. Alsadeq A, Strube S, Krause S, Carlet M, Jeremias I, Vokuhl C, Loges S, Aguirre-Ghiso JA, Trauzold A, Cario G, Stanulla M, Schrappe M, Schewe DM. Leukemia 29 2307-2316 (2015)
  30. A screening system for the identification of refolding conditions for a model protein kinase, p38alpha. Cowan RH, Davies RA, Pinheiro TT. Anal Biochem 376 25-38 (2008)
  31. BIRB796, an Inhibitor of p38 Mitogen-Activated Protein Kinase, Inhibits Proliferation and Invasion in Glioblastoma Cells. Zhao L, Wang Y, Xu Y, Sun Q, Liu H, Chen Q, Liu B. ACS Omega 6 11466-11473 (2021)
  32. Design, synthesis and characterization of "clickable" 4-anilinoquinazoline kinase inhibitors. Perera BG, Maly DJ. Mol Biosyst 4 542-550 (2008)
  33. SHOP: a method for structure-based fragment and scaffold hopping. Fontaine F, Cross S, Plasencia G, Pastor M, Zamora I. ChemMedChem 4 427-439 (2009)
  34. A Dynamic Switch in Inactive p38γ Leads to an Excited State on the Pathway to an Active Kinase. Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. Biochemistry 58 5160-5172 (2019)
  35. Synthesis and biological evaluation of halogenated phenoxychalcones and their corresponding pyrazolines as cytotoxic agents in human breast cancer. Halim PA, Hassan RA, Mohamed KO, Hassanin SO, Khalil MG, Abdou AM, Osman EO. J Enzyme Inhib Med Chem 37 189-201 (2022)
  36. Modulating noncatalytic function with kinase inhibitors. Agius MP, Soellner MB. Chem Biol 21 569-571 (2014)
  37. Prediction of the binding affinity of compounds with diverse scaffolds by MP-CAFEE. Okada O, Yamashita H, Takedomi K, Ono S, Sunada S, Kubodera H. Biophys Chem 180-181 119-126 (2013)
  38. The discovery of N-cyclopropyl-4-methyl-3-[6-(4-methylpiperazin-1-yl)-4-oxoquinazolin-3(4H)-yl]benzamide (AZD6703), a clinical p38α MAP kinase inhibitor for the treatment of inflammatory diseases. Brown DS, Cumming JG, Bethel P, Finlayson J, Gerhardt S, Nash I, Pauptit RA, Pike KG, Reid A, Snelson W, Swallow S, Thompson C. Bioorg Med Chem Lett 22 3879-3883 (2012)
  39. 'Reverse' alpha-ketoamide-based p38 MAP kinase inhibitors. Montalban AG, Boman E, Chang CD, Ceide SC, Dahl R, Dalesandro D, Delaet NG, Erb E, Gibbs A, Kahl J, Kessler L, Lundström J, Miller S, Nakanishi H, Roberts E, Saiah E, Sullivan R, Wang Z, Larson CJ. Bioorg Med Chem Lett 18 5456-5459 (2008)
  40. Alternative assay formats to identify diverse inhibitors of protein kinases. Singh P, Ward WH. Expert Opin Drug Discov 3 819-831 (2008)
  41. Isoform-specific optical activation of kinase function reveals p38-ERK signaling crosstalk. Zhou W, Ryan A, Janosko CP, Shoger KE, Haugh JM, Gottschalk RA, Deiters A. RSC Chem Biol 4 765-773 (2023)