2apr Citations

Structure and refinement at 1.8 A resolution of the aspartic proteinase from Rhizopus chinensis.

J Mol Biol 196 877-900 (1987)
Cited: 93 times
EuropePMC logo PMID: 3316666

Abstract

The structure of rhizopuspepsin (EC 3.4.23.6), the aspartic proteinase from Rhizopus chinensis, has been refined to a crystallographic R-factor of 0.143 at 1.8 A resolution. The positions of 2417 protein atoms have been determined with a root-mean-square (r.m.s.) error of 0.12 A. In the final model, the r.m.s. deviation from ideality for bond distances is 0.010 A, and for angle distances it is 0.034 A. During the course of the refinement, a calcium ion and 373 water molecules, of which 17 are internal, have been located. The active aspartate residues, Asp35 and Asp218, are involved in similar hydrogen-bonding interactions with neighboring residues and with several water molecules. One water molecule is located between the two carboxyl groups of the catalytic aspartate residues in a tightly hydrogen-bonded position. The refinement resulted in an unambiguous interpretation of the highly mobile "flap", a beta-hairpin loop region that projects over the binding pocket. Large solvent channels are formed when the molecules pack in the crystal, exposing the binding pocket and making it easily accessible. Intermolecular contacts involve mainly solvent molecules and a few protein atoms. The three-dimensional structure of rhizopuspepsin closely resembles other aspartic proteinase structures. A detailed comparison with the structure of penicillopepsin showed striking similarities as well as subtle differences in the active site geometry and molecular packing.

Reviews - 2apr mentioned but not cited (1)

Articles - 2apr mentioned but not cited (13)

  1. Side-chain flexibility in protein-ligand binding: the minimal rotation hypothesis. Zavodszky MI, Kuhn LA. Protein Sci 14 1104-1114 (2005)
  2. CODA: a combined algorithm for predicting the structurally variable regions of protein models. Deane CM, Blundell TL. Protein Sci 10 599-612 (2001)
  3. Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Andreeva NS, Rumsh LD. Protein Sci. 10 2439-2450 (2001)
  4. Incorporating dipolar solvents with variable density in Poisson-Boltzmann electrostatics. Azuara C, Orland H, Bon M, Koehl P, Delarue M. Biophys. J. 95 5587-5605 (2008)
  5. Exploring protein dynamics space: the dynasome as the missing link between protein structure and function. Hensen U, Meyer T, Haas J, Rex R, Vriend G, Grubmüller H. PLoS ONE 7 e33931 (2012)
  6. StoneHinge: hinge prediction by network analysis of individual protein structures. Keating KS, Flores SC, Gerstein MB, Kuhn LA. Protein Sci. 18 359-371 (2009)
  7. Beyond the Poisson-Boltzmann model: modeling biomolecule-water and water-water interactions. Koehl P, Orland H, Delarue M. Phys. Rev. Lett. 102 087801 (2009)
  8. Prediction of protein loop structures using a local move Monte Carlo approach and a grid-based force field. Cui M, Mezei M, Osman R. Protein Eng Des Sel 21 729-735 (2008)
  9. Disulfide conformation and design at helix N-termini. Indu S, Kumar ST, Thakurela S, Gupta M, Bhaskara RM, Ramakrishnan C, Varadarajan R. Proteins 78 1228-1242 (2010)
  10. Defining topological equivalences in protein structures by means of a dynamic programming algorithm. Luo Y, Lai L, Xu X, Tang Y. Protein Eng 6 373-376 (1993)
  11. Quantitative Assessment of Chirality of Protein Secondary Structures and Phenylalanine Peptide Nanotubes. Sidorova A, Bystrov V, Lutsenko A, Shpigun D, Belova E, Likhachev I. Nanomaterials (Basel) 11 3299 (2021)
  12. Influence of motivation and a new digitized training program on undergraduate dental students during preclinical scaling training. Seidel M, Sutor S, Conrad J, Engel AS, Geiken A, Sälzer S, Graetz C. BMC Oral Health 20 346 (2020)
  13. Towards accurate modeling of noncovalent interactions for protein rigidity analysis. Fox N, Streinu I. BMC Bioinformatics 14 Suppl 18 S3 (2013)


Reviews citing this publication (9)

  1. Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications. Meyer E. Protein Sci. 1 1543-1562 (1992)
  2. Recent developments for the efficient crystallographic refinement of macromolecular structures. Brünger AT, Adams PD, Rice LM. Curr. Opin. Struct. Biol. 8 606-611 (1998)
  3. Renin inhibitors. Greenlee WJ. Med Res Rev 10 173-236 (1990)
  4. Inhibitors of aspartyl proteinases. Abdel-Meguid SS. Med Res Rev 13 731-778 (1993)
  5. Comparative modeling of proteins in the design of novel renin inhibitors. Hutchins C, Greer J. Crit. Rev. Biochem. Mol. Biol. 26 77-127 (1991)
  6. Structural studies of vacuolar plasmepsins. Bhaumik P, Gustchina A, Wlodawer A. Biochim. Biophys. Acta 1824 207-223 (2012)
  7. Modification of milk-clotting aspartic proteinases by recombinant DNA techniques. Beppu T. Ann. N. Y. Acad. Sci. 613 14-25 (1990)
  8. Chirality and Handedness of Protein Structures. Efimov AV. Biochemistry Mosc. 83 S103-S110 (2018)
  9. Structures closed into cycles in globular proteins. Efimov AV. Biochemistry Mosc. 76 1385-1390 (2011)

Articles citing this publication (70)

  1. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA. Proc. Natl. Acad. Sci. U.S.A. 89 2195-2199 (1992)
  2. Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Navia MA, Fitzgerald PM, McKeever BM, Leu CT, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP. Nature 337 615-620 (1989)
  3. Improvements in protein secondary structure prediction by an enhanced neural network. Kneller DG, Cohen FE, Langridge R. J. Mol. Biol. 214 171-182 (1990)
  4. Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. Sali A, Blundell TL. J. Mol. Biol. 212 403-428 (1990)
  5. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. Sibanda BL, Blundell TL, Thornton JM. J. Mol. Biol. 206 759-777 (1989)
  6. Suggestions for "safe" residue substitutions in site-directed mutagenesis. Bordo D, Argos P. J. Mol. Biol. 217 721-729 (1991)
  7. Crystal structure of a retroviral protease proves relationship to aspartic protease family. Miller M, Jaskólski M, Rao JK, Leis J, Wlodawer A. Nature 337 576-579 (1989)
  8. Hydrogen bond stereochemistry in protein structure and function. Ippolito JA, Alexander RS, Christianson DW. J. Mol. Biol. 215 457-471 (1990)
  9. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. Argos P. J. Mol. Biol. 211 943-958 (1990)
  10. Hydrophobic docking: a proposed enhancement to molecular recognition techniques. Vakser IA, Aflalo C. Proteins 20 320-329 (1994)
  11. X-ray analyses of aspartic proteinases. II. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution. Cooper JB, Khan G, Taylor G, Tickle IJ, Blundell TL. J. Mol. Biol. 214 199-222 (1990)
  12. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. Sielecki AR, Fedorov AA, Boodhoo A, Andreeva NS, James MN. J. Mol. Biol. 214 143-170 (1990)
  13. Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. Volbeda A, Lahm A, Sakiyama F, Suck D. EMBO J. 10 1607-1618 (1991)
  14. Taxonomy and conformational analysis of loops in proteins. Ring CS, Kneller DG, Langridge R, Cohen FE. J. Mol. Biol. 224 685-699 (1992)
  15. Apo and inhibitor complex structures of BACE (beta-secretase). Patel S, Vuillard L, Cleasby A, Murray CW, Yon J. J. Mol. Biol. 343 407-416 (2004)
  16. A six-stranded double-psi beta barrel is shared by several protein superfamilies. Castillo RM, Mizuguchi K, Dhanaraj V, Albert A, Blundell TL, Murzin AG. Structure 7 227-236 (1999)
  17. Low-resolution docking: prediction of complexes for underdetermined structures. Vakser IA. Biopolymers 39 455-464 (1996)
  18. Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori. Berka RM, Ward M, Wilson LJ, Hayenga KJ, Kodama KH, Carlomagno LP, Thompson SA. Gene 86 153-162 (1990)
  19. Sequence, expression and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum. Dame JB, Reddy GR, Yowell CA, Dunn BM, Kay J, Berry C. Mol. Biochem. Parasitol. 64 177-190 (1994)
  20. HERA--a program to draw schematic diagrams of protein secondary structures. Hutchinson EG, Thornton JM. Proteins 8 203-212 (1990)
  21. Structure of scorpion toxin variant-3 at 1.2 A resolution. Zhao B, Carson M, Ealick SE, Bugg CE. J. Mol. Biol. 227 239-252 (1992)
  22. Construction of side-chains in homology modelling. Application to the C-terminal lobe of rhizopuspepsin. Summers NL, Karplus M. J. Mol. Biol. 210 785-811 (1989)
  23. X-ray analyses of aspartic proteinases. The three-dimensional structure at 2.1 A resolution of endothiapepsin. Blundell TL, Jenkins JA, Sewell BT, Pearl LH, Cooper JB, Tickle IJ, Veerapandian B, Wood SP. J. Mol. Biol. 211 919-941 (1990)
  24. Differences in the amino acid distributions of 3(10)-helices and alpha-helices. Karpen ME, de Haseth PL, Neet KE. Protein Sci. 1 1333-1342 (1992)
  25. High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme. Sali A, Veerapandian B, Cooper JB, Foundling SI, Hoover DJ, Blundell TL. EMBO J. 8 2179-2188 (1989)
  26. The high-resolution crystal structure of porcine pepsinogen. Hartsuck JA, Koelsch G, Remington SJ. Proteins 13 1-25 (1992)
  27. Direct observation by X-ray analysis of the tetrahedral "intermediate" of aspartic proteinases. Veerapandian B, Cooper JB, Sali A, Blundell TL, Rosati RL, Dominy BW, Damon DB, Hoover DJ. Protein Sci. 1 322-328 (1992)
  28. The three-dimensional structure of recombinant bovine chymosin at 2.3 A resolution. Gilliland GL, Winborne EL, Nachman J, Wlodawer A. Proteins 8 82-101 (1990)
  29. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain. Abad-Zapatero C, Rydel TJ, Erickson J. Proteins 8 62-81 (1990)
  30. The crystal structure of the "open" and the "closed" conformation of the flexible loop of trypanosomal triosephosphate isomerase. Wierenga RK, Noble ME, Postma JP, Groendijk H, Kalk KH, Hol WG, Opperdoes FR. Proteins 10 33-49 (1991)
  31. Copper inhibits the protease from human immunodeficiency virus 1 by both cysteine-dependent and cysteine-independent mechanisms. Karlström AR, Levine RL. Proc. Natl. Acad. Sci. U.S.A. 88 5552-5556 (1991)
  32. X-ray analyses of aspartic proteinases. IV. Structure and refinement at 2.2 A resolution of bovine chymosin. Newman M, Safro M, Frazao C, Khan G, Zdanov A, Tickle IJ, Blundell TL, Andreeva N. J. Mol. Biol. 221 1295-1309 (1991)
  33. Isolation and characterization of a cDNA from flowers of Cynara cardunculus encoding cyprosin (an aspartic proteinase) and its use to study the organ-specific expression of cyprosin. Cordeiro MC, Xue ZT, Pietrzak M, Pais MS, Brodelius PE. Plant Mol. Biol. 24 733-741 (1994)
  34. Modeling of globular proteins. A distance-based data search procedure for the construction of insertion/deletion regions and Pro----non-Pro mutations. Summers NL, Karplus M. J. Mol. Biol. 216 991-1016 (1990)
  35. A study into the effects of protein binding on nucleotide conformation. Moodie SL, Thornton JM. Nucleic Acids Res. 21 1369-1380 (1993)
  36. Domain flexibility in aspartic proteinases. Sali A, Veerapandian B, Cooper JB, Moss DS, Hofmann T, Blundell TL. Proteins 12 158-170 (1992)
  37. Conservation of polyproline II helices in homologous proteins: implications for structure prediction by model building. Adzhubei AA, Sternberg MJ. Protein Sci. 3 2395-2410 (1994)
  38. Crystal structure of plastocyanin from a green alga, Enteromorpha prolifera. Collyer CA, Guss JM, Sugimura Y, Yoshizaki F, Freeman HC. J. Mol. Biol. 211 617-632 (1990)
  39. Towards an understanding of drug resistance in malaria: three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology building. Lemcke T, Christensen IT, Jørgensen FS. Bioorg. Med. Chem. 7 1003-1011 (1999)
  40. Expression of soluble cloned porcine pepsinogen A in Escherichia coli. Tanaka T, Yada RY. Biochem. J. 315 ( Pt 2) 443-446 (1996)
  41. Human liver cathepsin D. Purification, crystallization and preliminary X-ray diffraction analysis of a lysosomal enzyme. Gulnik S, Baldwin ET, Tarasova N, Erickson J. J. Mol. Biol. 227 265-270 (1992)
  42. The three-dimensional structure at 2.4 A resolution of glycosylated proteinase A from the lysosome-like vacuole of Saccharomyces cerevisiae. Aguilar CF, Cronin NB, Badasso M, Dreyer T, Newman MP, Cooper JB, Hoover DJ, Wood SP, Johnson MS, Blundell TL. J. Mol. Biol. 267 899-915 (1997)
  43. Structures of complexes of rhizopuspepsin with pepstatin and other statine-containing inhibitors. Suguna K, Padlan EA, Bott R, Boger J, Parris KD, Davies DR. Proteins 13 195-205 (1992)
  44. Synthesis of novel cyclic protease inhibitors using Grubbs olefin metathesis. Ripka AS, Bohacek RS, Rich DH. Bioorg. Med. Chem. Lett. 8 357-360 (1998)
  45. Can enzymes adopt a self-inhibited form? Results of x-ray crystallographic studies of chymosin. Andreeva N, Dill J, Gilliland GL. Biochem. Biophys. Res. Commun. 184 1074-1081 (1992)
  46. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1. Lowther WT, Majer P, Dunn BM. Protein Sci. 4 689-702 (1995)
  47. Active-site mobility in human immunodeficiency virus, type 1, protease as demonstrated by crystal structure of A28S mutant. Hong L, Hartsuck JA, Foundling S, Ermolieff J, Tang J. Protein Sci. 7 300-305 (1998)
  48. Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin. Fujimoto Z, Fujii Y, Kaneko S, Kobayashi H, Mizuno H. J. Mol. Biol. 341 1227-1235 (2004)
  49. Restrained molecular dynamics study of the interaction between bovine kappa-casein peptide 98-111 and bovine chymosin and porcine pepsin. Plowman JE, Creamer LK. J Dairy Res 62 451-467 (1995)
  50. Aspartic proteinases--Fourier transform IR studies of the aspartic carboxylic groups in the active site of pepsin. Iliadis G, Zundel G, Brzezinski B. FEBS Lett. 352 315-317 (1994)
  51. Protein chemical characterization of Mucor pusillus aspartic proteinase. Amino acid sequence homology with the other aspartic proteinases, disulfide bond arrangement and site of carbohydrate attachment. Baudys M, Foundling S, Pavlík M, Blundell T, Kostka V. FEBS Lett. 235 271-274 (1988)
  52. Structural aspects of the Mucor bacilliformis proteinase, a new member of the aspartyl-proteinase family. Machalinski C, Pirpignani ML, Marino C, Mantegazza A, de Jiménez Bonino MB. J. Biotechnol. 123 443-452 (2006)
  53. Chimeric aspartic proteinases and active site binding. Bhatt D, Dunn BM. Bioorg. Chem. 28 374-393 (2000)
  54. Purification and crystallization of rhizopuspepsin: the use of nickel chelation chromatography to select for catalytically active species. Flentke GR, Glinski J, Satyshur K, Rich DH. Protein Expr. Purif. 16 213-220 (1999)
  55. A quiet life with proteins. Davies D. Annu Rev Biophys Biomol Struct 34 1-20 (2005)
  56. Is the pseudo-dyad in retroviral proteinase monomers structural or evolutionary? Rao JK, Wlodawer A. FEBS Lett. 260 201-205 (1990)
  57. Structural studies of the retroviral proteinase from avian myeloblastosis associated virus. Ohlendorf DH, Foundling SI, Wendoloski JJ, Sedlacek J, Strop P, Salemme FR. Proteins 14 382-391 (1992)
  58. Structural trees for proteins containing phi-motifs. Efimov AV. Biochemistry Mosc. 73 23-28 (2008)
  59. A novel structural motif and structural trees for proteins containing it. Kargatov AM, Efimov AV. Biochemistry Mosc. 75 249-256 (2010)
  60. Novel photosystem involving protonation and deprotonation processes modelled on a PYP photocycle. Matsuhira T, Tsuchihashi K, Yamamoto H, Okamura TA, Ueyama N. Org. Biomol. Chem. 6 3118-3126 (2008)
  61. Synthesis and antiviral activity of P1' arylsulfonamide azacyclic urea HIV protease inhibitors. Huang PP, Randolph JT, Klein LL, Vasavanonda S, Dekhtyar T, Stoll VS, Kempf DJ. Bioorg. Med. Chem. Lett. 14 4075-4078 (2004)
  62. Feed-forward neural networks for secondary structure prediction. Barlow TW. J Mol Graph 13 175-183 (1995)
  63. Modulation of the affinity of aspartic proteases by the mutated residues in active site models. Goldblum A. FEBS Lett. 261 241-244 (1990)
  64. Molecular-dynamics investigation of molecular flexibility in ligand binding. Mao B. Biochem. J. 288 ( Pt 1) 109-116 (1992)
  65. Quantum mechanical modeling of aspartic proteinase interactions: difference in binding of diastereomeric statine models. Goldblum A. Biochem. Biophys. Res. Commun. 157 450-456 (1988)
  66. Switching of turn conformation in an aspartate anion peptide fragment by NH . . . O- hydrogen bonds. Onoda A, Yamamoto H, Yamada Y, Lee K, Adachi S, Okamura TA, Yoshizawa-Kumagaye K, Nakajima K, Kawakami T, Aimoto S, Ueyama N. Biopolymers 80 233-248 (2005)
  67. Aspartic proteinases: Fourier transform infrared spectroscopic studies of a model of the active side. Iliadis G, Brzezinski B, Zundel G. Biophys. J. 71 2840-2847 (1996)
  68. Kinetic study on the interaction of Rhizopus chinensis aspartic protease with Streptomyces pepsin inhibitor (acetylpepstatin). Nakatani H, Hiromi K, Kitagishi K. Arch. Biochem. Biophys. 263 311-314 (1988)
  69. Mechanism of action of aspartic proteinases: application of transition-state analogue theory. Ołdziej S, Ciarkowski J. J. Comput. Aided Mol. Des. 10 583-588 (1996)
  70. Structural motifs in which β-strands are clipped together with the П-like module. Efimov AV. Proteins 85 1925-1930 (2017)


Related citations provided by authors (3)

  1. Three-Dimensional Structure of the Complex of the Rhizopus Chinensis Carboxyl Proteinase and Pepstatin at 2.5 Angstroms Resolution. Bott RR, Subramanian E, Davies DR Biochemistry 21 6956- (1982)
  2. The Crystal Structure of an Acid Protease from Rhizopus Chinensis at 2.5 Angstroms Resolution. Subramanian E, Liu M, Swan IDA, Davies DR Adv. Exp. Med. Biol. 95 33- (1977)
  3. Homology Among Acid Proteases. Comparison of Crystal Structures at 3 Angstroms Resolution of Acid Proteases from Rhizopus Chinensis and Endothia Parasitica. Subramanian E, Swan IDA, Liu M, Davies DR, Jenkins JA, Tickle IJ, Blundell TL Proc. Natl. Acad. Sci. U.S.A. 74 556- (1977)