2am9 Citations

Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity.

Protein Sci 15 987-99 (2006)
Related entries: 2ama, 2amb

Cited: 150 times
EuropePMC logo PMID: 16641486

Abstract

Androgens exert their effects by binding to the highly specific androgen receptor (AR). In addition to natural potent androgens, AR binds a variety of synthetic agonist or antagonist molecules with different affinities. To identify molecular determinants responsible for this selectivity, we have determined the crystal structure of the human androgen receptor ligand-binding domain (hARLBD) in complex with two natural androgens, testosterone (Testo) and dihydrotestosterone (DHT), and with an androgenic steroid used in sport doping, tetrahydrogestrinone (THG), at 1.64, 1.90, and 1.75 A resolution, respectively. Comparison of these structures first highlights the flexibility of several residues buried in the ligand-binding pocket that can accommodate a variety of ligand structures. As expected, the ligand structure itself (dimension, presence, and position of unsaturated bonds that influence the geometry of the steroidal nucleus or the electronic properties of the neighboring atoms, etc.) determines the number of interactions it can make with the hARLBD. Indeed, THG--which possesses the highest affinity--establishes more van der Waals contacts with the receptor than the other steroids, whereas the geometry of the atoms forming electrostatic interactions at both extremities of the steroid nucleus seems mainly responsible for the higher affinity measured experimentally for DHT over Testo. Moreover, estimation of the ligand-receptor interaction energy through modeling confirms that even minor modifications in ligand structure have a great impact on the strength of these interactions. Our crystallographic data combined with those obtained by modeling will be helpful in the design of novel molecules with stronger affinity for the AR.

Reviews - 2am9 mentioned but not cited (4)

  1. Androgen receptor: structure, role in prostate cancer and drug discovery. Tan MH, Li J, Xu HE, Melcher K, Yong EL. Acta Pharmacol Sin 36 3-23 (2015)
  2. Bioinformatics and variability in drug response: a protein structural perspective. Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. J R Soc Interface 9 1409-1437 (2012)
  3. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Lallous N, Dalal K, Cherkasov A, Rennie PS. Int J Mol Sci 14 12496-12519 (2013)
  4. Chemical modulation of transcription factors. Wiedemann B, Weisner J, Rauh D. Medchemcomm 9 1249-1272 (2018)

Articles - 2am9 mentioned but not cited (60)

  1. Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity. Pereira de Jésus-Tran K, Côté PL, Cantin L, Blanchet J, Labrie F, Breton R. Protein Sci 15 987-999 (2006)
  2. Targeting the binding function 3 (BF3) site of the human androgen receptor through virtual screening. Lack NA, Axerio-Cilies P, Tavassoli P, Han FQ, Chan KH, Feau C, LeBlanc E, Guns ET, Guy RK, Rennie PS, Cherkasov A. J Med Chem 54 8563-8573 (2011)
  3. Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems. Ghanakota P, Carlson HA. J Phys Chem B 120 8685-8695 (2016)
  4. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, Zhu WL, Jiang HL. Acta Pharmacol Sin 30 1694-1708 (2009)
  5. Predicting the accuracy of protein-ligand docking on homology models. Bordogna A, Pandini A, Bonati L. J Comput Chem 32 81-98 (2011)
  6. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors. Lakkaraju SK, Yu W, Raman EP, Hershfeld AV, Fang L, Deshpande DA, MacKerell AD. J Chem Inf Model 55 700-708 (2015)
  7. Evidence for DNA-binding domain--ligand-binding domain communications in the androgen receptor. Helsen C, Dubois V, Verfaillie A, Young J, Trekels M, Vancraenenbroeck R, De Maeyer M, Claessens F. Mol Cell Biol 32 3033-3043 (2012)
  8. Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. Park SJ, Kufareva I, Abagyan R. J Comput Aided Mol Des 24 459-471 (2010)
  9. Modeling disordered protein interactions from biophysical principles. Peterson LX, Roy A, Christoffer C, Terashi G, Kihara D. PLoS Comput Biol 13 e1005485 (2017)
  10. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening. Nagamine N, Shirakawa T, Minato Y, Torii K, Kobayashi H, Imoto M, Sakakibara Y. PLoS Comput Biol 5 e1000397 (2009)
  11. Selectively targeting prostate cancer with antiandrogen equipped histone deacetylase inhibitors. Gryder BE, Akbashev MJ, Rood MK, Raftery ED, Meyers WM, Dillard P, Khan S, Oyelere AK. ACS Chem Biol 8 2550-2560 (2013)
  12. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). MacKerell AD, Jo S, Lakkaraju SK, Lind C, Yu W. Biochim Biophys Acta Gen Subj 1864 129519 (2020)
  13. Ecdysteroids: A novel class of anabolic agents? Parr MK, Botrè F, Naß A, Hengevoss J, Diel P, Wolber G. Biol Sport 32 169-173 (2015)
  14. Updates to Binding MOAD (Mother of All Databases): Polypharmacology Tools and Their Utility in Drug Repurposing. Smith RD, Clark JJ, Ahmed A, Orban ZJ, Dunbar JB, Carlson HA. J Mol Biol 431 2423-2433 (2019)
  15. Androgen and Progesterone Receptors Are Targets for Bisphenol A (BPA), 4-Methyl-2,4-bis-(P-Hydroxyphenyl)Pent-1-Ene--A Potent Metabolite of BPA, and 4-Tert-Octylphenol: A Computational Insight. Rehan M, Ahmad E, Sheikh IA, Abuzenadah AM, Damanhouri GA, Bajouh OS, AlBasri SF, Assiri MM, Beg MA. PLoS One 10 e0138438 (2015)
  16. A computational approach to evaluate the androgenic affinity of iprodione, procymidone, vinclozolin and their metabolites. Galli CL, Sensi C, Fumagalli A, Parravicini C, Marinovich M, Eberini I. PLoS One 9 e104822 (2014)
  17. How good are AlphaFold models for docking-based virtual screening? Scardino V, Di Filippo JI, Cavasotto CN. iScience 26 105920 (2023)
  18. Identification of Cryptic Binding Sites Using MixMD with Standard and Accelerated Molecular Dynamics. Smith RD, Carlson HA. J Chem Inf Model 61 1287-1299 (2021)
  19. Identification of novel caspase/autophagy-related gene switch to cell fate decisions in breast cancers. Fu LL, Yang Y, Xu HL, Cheng Y, Wen X, Ouyang L, Bao JK, Wei YQ, Liu B. Cell Prolif 46 67-75 (2013)
  20. In silico discovery of androgen receptor antagonists with activity in castration resistant prostate cancer. Shen HC, Shanmugasundaram K, Simon NI, Cai C, Wang H, Chen S, Balk SP, Rigby AC. Mol Endocrinol 26 1836-1846 (2012)
  21. MixMD Probeview: Robust Binding Site Prediction from Cosolvent Simulations. Graham SE, Leja N, Carlson HA. J Chem Inf Model 58 1426-1433 (2018)
  22. Genotype-phenotype relations of the von Hippel-Lindau tumor suppressor inferred from a large-scale analysis of disease mutations and interactors. Minervini G, Quaglia F, Tabaro F, Tosatto SCE. PLoS Comput Biol 15 e1006478 (2019)
  23. Molecular Architect: A User-Friendly Workflow for Virtual Screening. Maia EHB, Medaglia LR, da Silva AM, Taranto AG. ACS Omega 5 6628-6640 (2020)
  24. Proteomic-coupled-network analysis of T877A-androgen receptor interactomes can predict clinical prostate cancer outcomes between White (non-Hispanic) and African-American groups. Zaman N, Giannopoulos PN, Chowdhury S, Bonneil E, Thibault P, Wang E, Trifiro M, Paliouras M. PLoS One 9 e113190 (2014)
  25. Fragment-based Shape Signatures: a new tool for virtual screening and drug discovery. Zauhar RJ, Gianti E, Welsh WJ. J Comput Aided Mol Des 27 1009-1036 (2013)
  26. Free Energies and Entropies of Binding Sites Identified by MixMD Cosolvent Simulations. Ghanakota P, DasGupta D, Carlson HA. J Chem Inf Model 59 2035-2045 (2019)
  27. Improving Docking Performance Using Negative Image-Based Rescoring. Kurkinen ST, Niinivehmas S, Ahinko M, Lätti S, Pentikäinen OT, Postila PA. Front Pharmacol 9 260 (2018)
  28. Knowledge-Based Methods To Train and Optimize Virtual Screening Ensembles. Swift RV, Jusoh SA, Offutt TL, Li ES, Amaro RE. J Chem Inf Model 56 830-842 (2016)
  29. Autism-Related Transcription Factors Underlying the Sex-Specific Effects of Prenatal Bisphenol A Exposure on Transcriptome-Interactome Profiles in the Offspring Prefrontal Cortex. Kanlayaprasit S, Thongkorn S, Panjabud P, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Int J Mol Sci 22 13201 (2021)
  30. Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals. Trisciuzzi D, Alberga D, Mansouri K, Judson R, Novellino E, Mangiatordi GF, Nicolotti O. J Chem Inf Model 57 2874-2884 (2017)
  31. Using a Consensus Docking Approach to Predict Adverse Drug Reactions in Combination Drug Therapies for Gulf War Illness. Jaundoo R, Bohmann J, Gutierrez GE, Klimas N, Broderick G, Craddock TJA. Int J Mol Sci 19 E3355 (2018)
  32. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta. Li H, Lu L, Chen R, Quan L, Xia X, Lü Q. PLoS One 9 e94769 (2014)
  33. Endocrine Disruption: Structural Interactions of Androgen Receptor against Di(2-ethylhexyl) Phthalate and Its Metabolites. Beg MA, Sheikh IA. Toxics 8 E115 (2020)
  34. FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures. Egbert M, Jones G, Collins MR, Kozakov D, Vajda S. J Mol Biol 434 167587 (2022)
  35. Severe forms of partial androgen insensitivity syndrome due to p.L830F novel mutation in androgen receptor gene in a Brazilian family. Petroli RJ, Maciel-Guerra AT, Soardi FC, de Calais FL, Guerra-Junior G, de Mello MP. BMC Res Notes 4 173 (2011)
  36. Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census. Malhotra S, Alsulami AF, Heiyun Y, Ochoa BM, Jubb H, Forbes S, Blundell TL. PLoS One 14 e0219935 (2019)
  37. Application of Site-Identification by Ligand Competitive Saturation in Computer-Aided Drug Design. Goel H, Hazel A, Yu W, Jo S, MacKerell AD. New J Chem 46 919-932 (2022)
  38. Organotin Antifouling Compounds and Sex-Steroid Nuclear Receptor Perturbation: Some Structural Insights. Beg MA, Beg MA, Zargar UR, Sheikh IA, Bajouh OS, Abuzenadah AM, Rehan M. Toxics 11 25 (2022)
  39. wSDTNBI: a novel network-based inference method for virtual screening. Wu Z, Ma H, Liu Z, Zheng L, Yu Z, Cao S, Fang W, Wu L, Li W, Liu G, Huang J, Tang Y. Chem Sci 13 1060-1079 (2022)
  40. Comparative Genomic Characterization of Buffalo Fibronectin Type III Domain Proteins: Exploring the Novel Role of FNDC5/Irisin as a Ligand of Gonadal Receptors. Wu S, Hassan FU, Luo Y, Fatima I, Ahmed I, Ihsan A, Safdar W, Liu Q, Rehman SU. Biology (Basel) 10 1207 (2021)
  41. Machine intelligence-driven framework for optimized hit selection in virtual screening. Kumar N, Acharya V. J Cheminform 14 48 (2022)
  42. CHARMM-GUI Ligand Designer for Template-Based Virtual Ligand Design in a Binding Site. Guterres H, Park SJ, Cao Y, Im W. J Chem Inf Model 61 5336-5342 (2021)
  43. Combined Naïve Bayesian, Chemical Fingerprints and Molecular Docking Classifiers to Model and Predict Androgen Receptor Binding Data for Environmentally- and Health-Sensitive Substances. García-Sosa AT, Maran U. Int J Mol Sci 22 6695 (2021)
  44. Exploring anti-liver cancer targets and mechanisms of oxyresveratrol: in silico and verified findings. Zhao F, Qin J, Liang Y, Zhou R. Bioengineered 12 9939-9948 (2021)
  45. Androgen receptor signaling and pyrethroids: Potential male infertility consequences. Sheikh IA, Beg MA, Hamoda TA, Mandourah HMS, Memili E. Front Cell Dev Biol 11 1173575 (2023)
  46. How Do Modulators Affect the Orthosteric and Allosteric Binding Pockets? Chen CJ, Jiang C, Yuan J, Chen M, Cuyler J, Xie XQ, Feng Z. ACS Chem Neurosci 13 959-977 (2022)
  47. Optimization of Cavity-Based Negative Images to Boost Docking Enrichment in Virtual Screening. Kurkinen ST, Lehtonen JV, Pentikäinen OT, Postila PA. J Chem Inf Model 62 1100-1112 (2022)
  48. SHH-N non-canonically sustains androgen receptor activity in androgen-independent prostate cancer cells. Trnski D, Sabol M, Tomić S, Štefanac I, Mrčela M, Musani V, Rinčić N, Kurtović M, Petrić T, Levanat S, Ozretić P. Sci Rep 11 14880 (2021)
  49. Structural Aspects of Potential Endocrine-Disrupting Activity of Stereoisomers for a Common Pesticide Permethrin against Androgen Receptor. Sheikh IA, Beg MA. Biology (Basel) 10 143 (2021)
  50. An Assay on the Possible Effect of Essential Oil Constituents on Receptors Involved in Women's Hormonal Health and Reproductive System Diseases. Sakhteman A, Pasdaran A, Afifi M, Hamedi A. J Evid Based Integr Med 25 2515690X20932527 (2020)
  51. Functional Effects In Silico Prediction for Androgen Receptor Ligand-Binding Domain Novel I836S Mutation. Rayevsky A, Sirokha D, Samofalova D, Lozhko D, Gorodna O, Prokopenko I, Livshits L. Life (Basel) 11 659 (2021)
  52. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome. Wang S, Xu H, An W, Zhu D, Li D. Exp Ther Med 11 2277-2283 (2016)
  53. Structure-Based Study to Overcome Cross-Reactivity of Novel Androgen Receptor Inhibitors. Radaeva M, Li H, LeBlanc E, Dalal K, Ban F, Ciesielski F, Chow B, Morin H, Awrey S, Singh K, Rennie PS, Lallous N, Cherkasov A. Cells 11 2785 (2022)
  54. Towards an Enrichment Optimization Algorithm (EOA)-based Target Specific Docking Functions for Virtual Screening. Spiegel J, Senderowitz H. Mol Inform 41 e2200034 (2022)
  55. A novel in silico scaffold-hopping method for drug repositioning in rare and intractable diseases. Tanabe M, Sakate R, Nakabayashi J, Tsumura K, Ohira S, Iwato K, Kimura T. Sci Rep 13 19358 (2023)
  56. An in silico approach to study the interaction of BHA with selected steroid hormone receptors and investigating it's agonistic and antagonistic properties. Balachandran S, Binitha RN. In Silico Pharmacol 9 16 (2021)
  57. Metabolomics- and systems toxicology-based hepatotoxicity mechanism of Sophorae Tonkinensis Radix et Rhizoma in rats. Yu D, Shao Z, Fu Y, Tang X, Chen Q, Deng Z. Front Pharmacol 13 1015008 (2022)
  58. Phytoecdysteroids and Anabolic Effect of Atriplex dimorphostegia: UPLC-PDA-MS/MS Profiling, In Silico and In Vivo Models. Zaghloul E, Handousa H, Singab ANB, Elmazar MM, Ayoub IM, Swilam N. Plants (Basel) 12 206 (2023)
  59. Pre-puberty cannabichromene exposure modulates reproductive function via alteration of spermatogenesis, steroidogenesis, and eNOS pathway metabolites. Taiwo OA, Dosumu OA, James AS, Ugwor EI, Ojo OA, Dedeke GA, Ademuyiwa O. Toxicol Rep 10 690-705 (2023)
  60. Structure based docking and biological evaluation towards exploring potential anti-cancerous and apoptotic activity of 6-Gingerol against human prostate carcinoma cells. Khan H, Azad I, Arif Z, Parveen S, Kumar S, Rais J, Ansari JA, Nasibullah M, Kumar S, Arshad M. BMC Complement Med Ther 24 8 (2024)


Reviews citing this publication (24)

  1. Looking at nuclear receptors from a new angle. Helsen C, Claessens F. Mol Cell Endocrinol 382 97-106 (2014)
  2. Androgens in pregnancy: roles in parturition. Makieva S, Saunders PT, Norman JE. Hum Reprod Update 20 542-559 (2014)
  3. Androgen receptor antagonists for prostate cancer therapy. Helsen C, Van den Broeck T, Voet A, Prekovic S, Van Poppel H, Joniau S, Claessens F. Endocr Relat Cancer 21 T105-18 (2014)
  4. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure. Fragkaki AG, Angelis YS, Koupparis M, Tsantili-Kakoulidou A, Kokotos G, Georgakopoulos C. Steroids 74 172-197 (2009)
  5. Constitutive activity of the androgen receptor. Chan SC, Dehm SM. Adv Pharmacol 70 327-366 (2014)
  6. Androgen receptor-related diseases: what do we know? Shukla GC, Plaga AR, Shankar E, Gupta S. Andrology 4 366-381 (2016)
  7. Recent developments in antiandrogens and selective androgen receptor modulators. Haendler B, Cleve A. Mol Cell Endocrinol 352 79-91 (2012)
  8. Different Clinical Presentations and Management in Complete Androgen Insensitivity Syndrome (CAIS). Lanciotti L, Cofini M, Leonardi A, Bertozzi M, Penta L, Esposito S. Int J Environ Res Public Health 16 E1268 (2019)
  9. Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Estébanez-Perpiñá E, Bevan CL, McEwan IJ. Cancers (Basel) 13 509 (2021)
  10. Androgen receptor gene rearrangements: new perspectives on prostate cancer progression. Brand LJ, Dehm SM. Curr Drug Targets 14 441-449 (2013)
  11. Hormones and endometrial carcinogenesis. Kamal A, Tempest N, Parkes C, Alnafakh R, Makrydima S, Adishesh M, Hapangama DK. Horm Mol Biol Clin Investig 25 129-148 (2016)
  12. Saponins as modulators of nuclear receptors. Zhang T, Zhong S, Li T, Zhang J. Crit Rev Food Sci Nutr 60 94-107 (2020)
  13. Androgen receptor as a therapeutic target. Gao W. Adv Drug Deliv Rev 62 1277-1284 (2010)
  14. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers. Roshan-Moniri M, Hsing M, Butler MS, Cherkasov A, Rennie PS. Cancer Treat Rev 40 1137-1152 (2014)
  15. Studies of metabolite-protein interactions: a review. Matsuda R, Bi C, Anguizola J, Sobansky M, Rodriguez E, Vargas Badilla J, Zheng X, Hage B, Hage DS. J Chromatogr B Analyt Technol Biomed Life Sci 966 48-58 (2014)
  16. Structures of androgen receptor bound with ligands: advancing understanding of biological functions and drug discovery. Sakkiah S, Ng HW, Tong W, Hong H. Expert Opin Ther Targets 20 1267-1282 (2016)
  17. Advances in the detection of designer steroids in anti-doping. Abushareeda W, Fragkaki A, Vonaparti A, Angelis Y, Tsivou M, Saad K, Kraiem S, Lyris E, Alsayrafi M, Georgakopoulos C. Bioanalysis 6 881-896 (2014)
  18. Androgen Receptor Dependence. Chaturvedi AP, Dehm SM. Adv Exp Med Biol 1210 333-350 (2019)
  19. Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. Asangani I, Blair IA, Van Duyne G, Hilser VJ, Moiseenkova-Bell V, Plymate S, Sprenger C, Wand AJ, Penning TM. J Biol Chem 296 100240 (2021)
  20. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus. Sakkiah S, Wang T, Zou W, Wang Y, Pan B, Tong W, Hong H. Int J Environ Res Public Health 15 E25 (2017)
  21. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Alemany M. Int J Mol Sci 23 11952 (2022)
  22. Splice variants in the proteome: a promising and challenging field to targeted drug discovery. Tavares R, Scherer NM, Ferreira CG, Costa FF, Passetti F. Drug Discov Today 20 353-360 (2015)
  23. The androgen receptor and its use in biological assays: looking toward effect-based testing and its applications. Cadwallader AB, Lim CS, Rollins DE, Botrè F. J Anal Toxicol 35 594-607 (2011)
  24. [Academic Detailing from the Viewpoint of Chemical Structural Formulas]. Wada T. Yakugaku Zasshi 139 1101-1105 (2019)

Articles citing this publication (62)

  1. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. DeVore NM, Scott EE. Nature 482 116-119 (2012)
  2. Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone. Askew EB, Gampe RT, Stanley TB, Faggart JL, Wilson EM. J Biol Chem 282 25801-25816 (2007)
  3. Systematic structure modifications of multitarget prostate cancer drug candidate galeterone to produce novel androgen receptor down-regulating agents as an approach to treatment of advanced prostate cancer. Purushottamachar P, Godbole AM, Gediya LK, Martin MS, Vasaitis TS, Kwegyir-Afful AK, Ramalingam S, Ates-Alagoz Z, Njar VC. J Med Chem 56 4880-4898 (2013)
  4. Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors. Carroll SM, Bridgham JT, Thornton JW. Mol Biol Evol 25 2643-2652 (2008)
  5. Emerging drugs: mechanism of action, mass spectrometry and doping control analysis. Thevis M, Thomas A, Kohler M, Beuck S, Schänzer W. J Mass Spectrom 44 442-460 (2009)
  6. A comparative study of the androgenic properties of progesterone and the progestins, medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A). Africander DJ, Storbeck KH, Hapgood JP. J Steroid Biochem Mol Biol 143 404-415 (2014)
  7. Nuclear hormone receptor signaling in amphioxus. Schubert M, Brunet F, Paris M, Bertrand S, Benoit G, Laudet V. Dev Genes Evol 218 651-665 (2008)
  8. Xeno-oestrogens and phyto-oestrogens are alternative ligands for the androgen receptor. Wang H, Li J, Gao Y, Xu Y, Pan Y, Tsuji I, Sun ZJ, Li XM. Asian J Androl 12 535-547 (2010)
  9. Ultrafast protein structure-based virtual screening with Panther. Niinivehmas SP, Salokas K, Lätti S, Raunio H, Pentikäinen OT. J Comput Aided Mol Des 29 989-1006 (2015)
  10. Nestorone® as a Novel Progestin for Nonoral Contraception: Structure-Activity Relationships and Brain Metabolism Studies. Kumar N, Fagart J, Liere P, Mitchell SJ, Knibb AR, Petit-Topin I, Rame M, El-Etr M, Schumacher M, Lambert JJ, Rafestin-Oblin ME, Sitruk-Ware R. Endocrinology 158 170-182 (2017)
  11. High-Affinity Nucleic-Acid-Based Receptors for Steroids. Yang KA, Chun H, Zhang Y, Pecic S, Nakatsuka N, Andrews AM, Worgall TS, Stojanovic MN. ACS Chem Biol 12 3103-3112 (2017)
  12. Computational Assessment of Pharmacokinetics and Biological Effects of Some Anabolic and Androgen Steroids. Roman M, Roman DL, Ostafe V, Ciorsac A, Isvoran A. Pharm Res 35 41 (2018)
  13. Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage. Ogino Y, Kuraku S, Ishibashi H, Miyakawa H, Sumiya E, Miyagawa S, Matsubara H, Yamada G, Baker ME, Iguchi T. Mol Biol Evol 33 228-244 (2016)
  14. Screening of bisphenol A, triclosan and paraben analogues as modulators of the glucocorticoid and androgen receptor activities. Kolšek K, Gobec M, Mlinarič Raščan I, Sollner Dolenc M. Toxicol In Vitro 29 8-15 (2015)
  15. Deep Learning-Based Structure-Activity Relationship Modeling for Multi-Category Toxicity Classification: A Case Study of 10K Tox21 Chemicals With High-Throughput Cell-Based Androgen Receptor Bioassay Data. Idakwo G, Thangapandian S, Luttrell J, Zhou Z, Zhang C, Gong P. Front Physiol 10 1044 (2019)
  16. Met909 plays a key role in the activation of the progesterone receptor and also in the high potency of 13-ethyl progestins. Petit-Topin I, Turque N, Fagart J, Fay M, Ulmann A, Gainer E, Rafestin-Oblin ME. Mol Pharmacol 75 1317-1324 (2009)
  17. Design and synthesis of novel bicalutamide and enzalutamide derivatives as antiproliferative agents for the treatment of prostate cancer. Bassetto M, Ferla S, Pertusati F, Kandil S, Westwell AD, Brancale A, McGuigan C. Eur J Med Chem 118 230-243 (2016)
  18. In vitro and in silico hormonal activity studies of di-(2-ethylhexyl)terephthalate, a di-(2-ethylhexyl)phthalate substitute used in medical devices, and its metabolites. Kambia NK, Séverin I, Farce A, Moreau E, Dahbi L, Duval C, Dine T, Sautou V, Chagnon MC. J Appl Toxicol 39 1043-1056 (2019)
  19. X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11β-substituted steroids. Lusher SJ, Raaijmakers HC, Vu-Pham D, Kazemier B, Bosch R, McGuire R, Azevedo R, Hamersma H, Dechering K, Oubrie A, van Duin M, de Vlieg J. J Biol Chem 287 20333-20343 (2012)
  20. A new highly androgen specific yeast biosensor, enabling optimisation of (Q)SAR model approaches. Bovee TF, Lommerse JP, Peijnenburg AA, Fernandes EA, Nielen MW. J Steroid Biochem Mol Biol 108 121-131 (2008)
  21. Antiandrogenic and growth inhibitory effects of ring-substituted analogs of 3,3'-diindolylmethane (ring-DIMs) in hormone-responsive LNCaP human prostate cancer cells. Abdelbaqi K, Lack N, Guns ET, Kotha L, Safe S, Sanderson JT. Prostate 71 1401-1412 (2011)
  22. Design and synthesis of carborane-containing androgen receptor (AR) antagonist bearing a pyridine ring. Ohta K, Goto T, Fijii S, Suzuki T, Ohta S, Endo Y. Bioorg Med Chem 16 8022-8028 (2008)
  23. Gartanin, an isoprenylated xanthone from the mangosteen fruit (Garcinia mangostana), is an androgen receptor degradation enhancer. Li G, Petiwala SM, Yan M, Won JH, Petukhov PA, Johnson JJ. Mol Nutr Food Res 60 1458-1469 (2016)
  24. 17(E)-picolinylidene androstane derivatives as potential inhibitors of prostate cancer cell growth: antiproliferative activity and molecular docking studies. Ajduković JJ, Djurendić EA, Petri ET, Klisurić OR, Celić AS, Sakač MN, Jakimov DS, Gaši KM. Bioorg Med Chem 21 7257-7266 (2013)
  25. A polyaromatic receptor with high androgen affinity. Yamashina M, Tsutsui T, Sei Y, Akita M, Yoshizawa M. Sci Adv 5 eaav3179 (2019)
  26. Mouse 17alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding. Faucher F, Cantin L, Pereira de Jésus-Tran K, Lemieux M, Luu-The V, Labrie F, Breton R. J Mol Biol 369 525-540 (2007)
  27. Correlated evolution of androgen receptor and aromatase revisited. Reitzel AM, Tarrant AM. Mol Biol Evol 27 2211-2215 (2010)
  28. Sex hormones and the development of sexual size dimorphism: 5α-dihydrotestosterone inhibits growth in a female-larger lizard (Sceloporus undulatus). Pollock NB, Feigin S, Drazenovic M, John-Alder HB. J Exp Biol 220 4068-4077 (2017)
  29. Structural Basis of Altered Potency and Efficacy Displayed by a Major in Vivo Metabolite of the Antidiabetic PPARγ Drug Pioglitazone. Mosure SA, Shang J, Eberhardt J, Brust R, Zheng J, Griffin PR, Forli S, Kojetin DJ. J Med Chem 62 2008-2023 (2019)
  30. Synthesis and structure-activity relationship studies of novel dihydropyridones as androgen receptor modulators. Pepe A, Pamment M, Kim YS, Lee S, Lee MJ, Beebe K, Filikov A, Neckers L, Trepel JB, Malhotra SV. J Med Chem 56 8280-8297 (2013)
  31. Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo. Petiwala SM, Li G, Bosland MC, Lantvit DD, Petukhov PA, Johnson JJ. Carcinogenesis 37 827-838 (2016)
  32. Effects of lactone derivatives on aromatase (CYP19) activity in H295R human adrenocortical and (anti)androgenicity in transfected LNCaP human prostate cancer cells. Sanderson T, Renaud M, Scholten D, Nijmeijer S, van den Berg M, Cowell S, Guns E, Nelson C, Mutarapat T, Ruchirawat S. Eur J Pharmacol 593 92-98 (2008)
  33. Synthesis and anticancer cell potential of steroidal 16,17-seco-16,17a-dinitriles: identification of a selective inhibitor of hormone-independent breast cancer cells. Nikolić AR, Petri ET, Klisurić OR, Ćelić AS, Jakimov DS, Djurendić EA, Penov Gaši KM, Sakač MN. Bioorg Med Chem 23 703-711 (2015)
  34. Targeting prostate cancer cells with enzalutamide-HDAC inhibitor hybrid drug 2-75. Hu WY, Xu L, Chen B, Ou S, Muzzarelli KM, Hu DP, Li Y, Yang Z, Vander Griend DJ, Prins GS, Qin Z. Prostate 79 1166-1179 (2019)
  35. Chaperones and the maturation of steroid hormone receptor complexes. Tao YJ, Zheng W. Oncotarget 2 104-106 (2011)
  36. Crystal structure, docking study and structure-activity relationship of carborane-containing androgen receptor antagonist 3-(12-hydroxymethyl-1,12-dicarba-closo-dodecaboran-1-yl)benzonitrile. Ohta K, Goto T, Fujii S, Kawahata M, Oda A, Ohta S, Yamaguchi K, Hirono S, Endo Y. Bioorg Med Chem 19 3540-3548 (2011)
  37. Biology and natural history of prostate cancer and the role of chemoprevention. Rosenberg MT, Froehner M, Albala D, Miner MM. Int J Clin Pract 64 1746-1753 (2010)
  38. Iminoenamine based novel androgen receptor antagonist exhibited anti-prostate cancer activity in androgen independent prostate cancer cells through inhibition of AKT pathway. Divakar S, Saravanan K, Karthikeyan P, Elancheran R, Kabilan S, Balasubramanian KK, Devi R, Kotoky J, Ramanathan M. Chem Biol Interact 275 22-34 (2017)
  39. Preliminary investigations into triazole derived androgen receptor antagonists. Altimari JM, Niranjan B, Risbridger GP, Schweiker SS, Lohning AE, Henderson LC. Bioorg Med Chem 22 2692-2706 (2014)
  40. Screening of synthetic and natural product databases: Identification of novel androgens and antiandrogens. Bobach C, Tennstedt S, Palberg K, Denkert A, Brandt W, de Meijere A, Seliger B, Wessjohann LA. Eur J Med Chem 90 267-279 (2015)
  41. X-ray crystal structure of the ancestral 3-ketosteroid receptor-progesterone-mifepristone complex shows mifepristone bound at the coactivator binding interface. Colucci JK, Ortlund EA. PLoS One 8 e80761 (2013)
  42. 20(S)-protopanaxadiol regio-selectively targets androgen receptor: anticancer effects in castration-resistant prostate tumors. Ben-Eltriki M, Deb S, Hassona M, Meckling G, Fazli L, Chin MY, Lallous N, Yamazaki T, Jia W, Rennie PS, Cherkasov A, Tomlinson Guns ES. Oncotarget 9 20965-20978 (2018)
  43. Chemical synthesis and biological activities of 16alpha-derivatives of 5alpha-androstane-3alpha,17beta-diol as antiandrogens. Roy J, Breton R, Martel C, Labrie F, Poirier D. Bioorg Med Chem 15 3003-3018 (2007)
  44. Perspectives on designs of antiandrogens for prostate cancer. Estébanez-Perpiñá E, Jouravel N, Fletterick RJ. Expert Opin Drug Discov 2 1341-1355 (2007)
  45. Specific interactions between androgen receptor and its ligand: ab initio molecular orbital calculations in water. Kobayashi I, Takeda R, Suzuki R, Shimamura K, Ishimura H, Kadoya R, Kawai K, Takimoto-Kamimura M, Kurita N. J Mol Graph Model 75 383-389 (2017)
  46. Biological activity and ligand binding mode to the progesterone receptor of A-homo analogues of progesterone. Alvarez LD, Dansey MV, Martí MA, Bertucci PY, Di Chenna PH, Pecci A, Burton G. Bioorg Med Chem 19 1683-1691 (2011)
  47. The T850D Phosphomimetic Mutation in the Androgen Receptor Ligand Binding Domain Enhances Recruitment at Activation Function 2. Helsen C, Nguyen T, Vercruysse T, Wouters S, Daelemans D, Voet A, Claessens F. Int J Mol Sci 23 1557 (2022)
  48. Functional characterisation of a natural androgen receptor missense mutation (N771H) causing human androgen insensitivity syndrome. Cai J, Cai LQ, Hong Y, Zhu YS. Andrologia 44 Suppl 1 523-529 (2012)
  49. Structural basis for computational screening of non-steroidal androgen receptor ligands. Nyrönen TH, Söderholm AA. Expert Opin Drug Discov 5 5-20 (2010)
  50. Systematic Investigation of Docking Failures in Large-Scale Structure-Based Virtual Screening. Xu M, Shen C, Yang J, Wang Q, Huang N. ACS Omega 7 39417-39428 (2022)
  51. Does the oestrogen receptor encourage oestrogenicity in environmental pollutants? The case of 4-nonylphenol. Graham LA, Shaw IC. SAR QSAR Environ Res 22 329-350 (2011)
  52. Identification and Characterization of the Androgen Receptor From the American Alligator, Alligator mississippiensis. Miyagawa S, Yatsu R, Kohno S, Doheny BM, Ogino Y, Ishibashi H, Katsu Y, Ohta Y, Guillette LJ, Iguchi T. Endocrinology 156 2795-2806 (2015)
  53. SARS-Cov2 S Protein Features Potential Estrogen Binding Site. Tomasović A, Stanzer D, Krešimir Svetec I, Svetec Miklenić M. Food Technol Biotechnol 59 24-30 (2021)
  54. A meta-analysis: Effect of androgens on reproduction in sows. Guo Z, Lv L, Liu D, Ma H, Radovic C. Front Endocrinol (Lausanne) 14 1094466 (2023)
  55. A partially open conformation of an androgen receptor ligand-binding domain with drug-resistance mutations. Doamekpor SK, Peng P, Xu R, Ma L, Tong Y, Tong L. Acta Crystallogr F Struct Biol Commun 79 95-104 (2023)
  56. Crystallization and preliminary X-ray analysis of the human androgen receptor ligand-binding domain with a coactivator-like peptide and selective androgen receptor modulators. Thauvin M, Robin-Jagerschmidt C, Nique F, Mollat P, Fleury D, Prangé T. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 1159-1162 (2008)
  57. Estrogens drive the endoplasmic reticulum-associated degradation and promote proto-oncogene c-Myc expression in prostate cancer cells by androgen receptor/estrogen receptor signaling. Erzurumlu Y, Dogan HK, Catakli D, Aydogdu E, Muhammed MT. J Cell Commun Signal 17 793-811 (2023)
  58. Evaluation of (Anti)androgenic Activities of Environmental Xenobiotics in Milk Using a Human Liver Cell Line and Androgen Receptor-Based Promoter-Reporter Assay. Agrawal H, Thakur K, Mitra S, Mitra D, Keswani C, Sircar D, Onteru S, Singh D, Singh SP, Tyagi RK, Roy P. ACS Omega 7 41531-41547 (2022)
  59. In silico and biological analysis of anti-androgen activity of the brominated flame retardants ATE, BATE and DPTE in zebrafish. Pradhan A, Asnake S, Kharlyngdoh JB, Modig C, Olsson PE. Chem Biol Interact 233 35-45 (2015)
  60. In-silico and in-vivo evaluation of sesamol and its derivatives for benign prostatic hypertrophy. Shah A, Shah AA, Nandakumar K, Kumar A, Pai A, Lobo R. 3 Biotech 11 411 (2021)
  61. Pinostilbene inhibits full-length and splice variant of androgen receptor in prostate cancer. Shin WS, Han SH, Jo KW, Cho Y, Kim KT. Sci Rep 13 16663 (2023)
  62. Yeast-based evolutionary modeling of androgen receptor mutations and natural selection. Zhang H, Zhang L, Chen S, Yao M, Ma Z, Yuan Y. PLoS Genet 18 e1010518 (2022)