2ahj Citations

Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms.

Nat Struct Biol 5 347-51 (1998)
Cited: 125 times
EuropePMC logo PMID: 9586994

Abstract

The iron-containing nitrile hydratase (NHase) is a photoreactive enzyme that is inactivated in the dark because of persistent association with NO and activated by photo-dissociation of NO. The crystal structure at 1.7 A resolution and mass spectrometry revealed the structure of the non-heme iron catalytic center in the nitrosylated state. Two Cys residues coordinated to the iron were post-translationally modified to Cys-sulfenic and -sulfinic acids. Together with another oxygen atom of the Ser ligand, these modifications induced a claw setting of oxygen atoms capturing an NO molecule. This unprecedented structure is likely to enable the photo-regulation of NHase and will provide an excellent model for designing photo-controllable chelate complexes and, ultimately, proteins.

Articles - 2ahj mentioned but not cited (7)

  1. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids. Kristensen DM, Ward RM, Lisewski AM, Erdin S, Chen BY, Fofanov VY, Kimmel M, Kavraki LE, Lichtarge O. BMC Bioinformatics 9 17 (2008)
  2. How does single oxygen atom addition affect the properties of an Fe-nitrile hydratase analogue? The compensatory role of the unmodified thiolate. Lugo-Mas P, Dey A, Xu L, Davin SD, Benedict J, Kaminsky W, Hodgson KO, Hedman B, Solomon EI, Kovacs JA. J Am Chem Soc 128 11211-11221 (2006)
  3. Catalytic mechanism of nitrile hydratase proposed by time-resolved X-ray crystallography using a novel substrate, tert-butylisonitrile. Hashimoto K, Suzuki H, Taniguchi K, Noguchi T, Yohda M, Odaka M. J Biol Chem 283 36617-36623 (2008)
  4. Spectroscopy of non-heme iron thiolate complexes: insight into the electronic structure of the low-spin active site of nitrile hydratase. Kennepohl P, Neese F, Schweitzer D, Jackson HL, Kovacs JA, Solomon EI. Inorg Chem 44 1826-1836 (2005)
  5. Homemade cofactors: self-processing in galactose oxidase. Xie L, van der Donk WA. Proc Natl Acad Sci U S A 98 12863-12865 (2001)
  6. Multiple States of Nitrile Hydratase from Rhodococcus equi TG328-2: Structural and Mechanistic Insights from Electron Paramagnetic Resonance and Density Functional Theory Studies. Stein N, Gumataotao N, Hajnas N, Wu R, Lankathilaka KPW, Bornscheuer UT, Liu D, Fiedler AT, Holz RC, Bennett B. Biochemistry 56 3068-3077 (2017)
  7. Prediction of hydrophilic and hydrophobic hydration structure of protein by neural network optimized using experimental data. Sato K, Oide M, Nakasako M. Sci Rep 13 2183 (2023)


Reviews citing this publication (18)

  1. Expanding the functional diversity of proteins through cysteine oxidation. Reddie KG, Carroll KS. Curr Opin Chem Biol 12 746-754 (2008)
  2. Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Kobayashi M, Shimizu S. Nat Biotechnol 16 733-736 (1998)
  3. Heme Synthesis and Acquisition in Bacterial Pathogens. Choby JE, Skaar EP. J Mol Biol 428 3408-3428 (2016)
  4. Synthetic analogues of cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes. Kovacs JA. Chem Rev 104 825-848 (2004)
  5. Nitrile hydrolases. Kobayashi M, Shimizu S. Curr Opin Chem Biol 4 95-102 (2000)
  6. Cysteine dioxygenase: structure and mechanism. Joseph CA, Maroney MJ. Chem Commun (Camb) 3338-3349 (2007)
  7. Metal-thiolate bonds in bioinorganic chemistry. Solomon EI, Gorelsky SI, Dey A. J Comput Chem 27 1415-1428 (2006)
  8. Oxidation of zinc-binding cysteine residues in transcription factor proteins. Wilcox DE, Schenk AD, Feldman BM, Xu Y. Antioxid Redox Signal 3 549-564 (2001)
  9. Novel cofactors via post-translational modifications of enzyme active sites. Okeley NM, van der Donk WA. Chem Biol 7 R159-71 (2000)
  10. The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures. Drennan CL, Doukov TI, Ragsdale SW. J Biol Inorg Chem 9 511-515 (2004)
  11. Hydratases involved in nitrile conversion: screening, characterization and application. Yamada H, Shimizu S, Kobayashi M. Chem Rec 1 152-161 (2001)
  12. Nitrosyl iron complexes--synthesis, structure and biology. Lewandowska H, Kalinowska M, Brzóska K, Wójciuk K, Wójciuk G, Kruszewski M. Dalton Trans 40 8273-8289 (2011)
  13. Emergence of metal selectivity and promiscuity in metalloenzymes. Eom H, Song WJ. J Biol Inorg Chem 24 517-531 (2019)
  14. Synthetic chemistry and chemical precedents for understanding the structure and function of acetyl coenzyme A synthase. Riordan CG. J Biol Inorg Chem 9 542-549 (2004)
  15. Light-triggered nitric oxide delivery to malignant sites and infection. Heilman B, Mascharak PK. Philos Trans A Math Phys Eng Sci 371 20120368 (2013)
  16. Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. Rong F, Tang Y, Wang T, Feng T, Song J, Li P, Huang W. Antioxidants (Basel) 8 E556 (2019)
  17. Recent Advances and Promises in Nitrile Hydratase: From Mechanism to Industrial Applications. Cheng Z, Xia Y, Zhou Z. Front Bioeng Biotechnol 8 352 (2020)
  18. Formation and functions of protein sulfenic acids. Poole LB. Curr Protoc Toxicol Chapter 17 Unit17.1 (2004)

Articles citing this publication (100)

  1. Metal ions in biological catalysis: from enzyme databases to general principles. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM. J Biol Inorg Chem 13 1205-1218 (2008)
  2. Ascaris haemoglobin is a nitric oxide-activated 'deoxygenase'. Minning DM, Gow AJ, Bonaventura J, Braun R, Dewhirst M, Goldberg DE, Stamler JS. Nature 401 497-502 (1999)
  3. Structure and mechanism of mouse cysteine dioxygenase. McCoy JG, Bailey LJ, Bitto E, Bingman CA, Aceti DJ, Fox BG, Phillips GN. Proc Natl Acad Sci U S A 103 3084-3089 (2006)
  4. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Salsbury FR, Knutson ST, Poole LB, Fetrow JS. Protein Sci 17 299-312 (2008)
  5. Photoactive Ruthenium Nitrosyls: Effects of Light and Potential Application as NO Donors. Rose MJ, Mascharak PK. Coord Chem Rev 252 2093-2114 (2008)
  6. Crystal structure of cobalt-containing nitrile hydratase. Miyanaga A, Fushinobu S, Ito K, Wakagi T. Biochem Biophys Res Commun 288 1169-1174 (2001)
  7. Post-translational modification is essential for catalytic activity of nitrile hydratase. Murakami T, Nojiri M, Nakayama H, Odaka M, Yohda M, Dohmae N, Takio K, Nagamune T, Endo I. Protein Sci 9 1024-1030 (2000)
  8. Water-protein interactions from high-resolution protein crystallography. Nakasako M. Philos Trans R Soc Lond B Biol Sci 359 1191-204; discussion 1204-6 (2004)
  9. Deciphering deazapurine biosynthesis: pathway for pyrrolopyrimidine nucleosides toyocamycin and sangivamycin. McCarty RM, Bandarian V. Chem Biol 15 790-798 (2008)
  10. Discovery of posttranslational maturation by self-subunit swapping. Zhou Z, Hashimoto Y, Shiraki K, Kobayashi M. Proc Natl Acad Sci U S A 105 14849-14854 (2008)
  11. Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding. Miyanaga A, Fushinobu S, Ito K, Shoun H, Wakagi T. Eur J Biochem 271 429-438 (2004)
  12. Sulfur K-edge XAS and DFT calculations on nitrile hydratase: geometric and electronic structure of the non-heme iron active site. Dey A, Chow M, Taniguchi K, Lugo-Mas P, Davin S, Maeda M, Kovacs JA, Odaka M, Hodgson KO, Hedman B, Solomon EI. J Am Chem Soc 128 533-541 (2006)
  13. Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt(III) center. Arakawa T, Kawano Y, Kataoka S, Katayama Y, Kamiya N, Yohda M, Odaka M. J Mol Biol 366 1497-1509 (2007)
  14. Motif CXCC in nitrile hydratase activator is critical for NHase biogenesis in vivo. Lu J, Zheng Y, Yamagishi H, Odaka M, Tsujimura M, Maeda M, Endo I. FEBS Lett 553 391-396 (2003)
  15. Studies on the reaction of nitric oxide with the hypoxia-inducible factor prolyl hydroxylase domain 2 (EGLN1). Chowdhury R, Flashman E, Mecinović J, Kramer HB, Kessler BM, Frapart YM, Boucher JL, Clifton IJ, McDonough MA, Schofield CJ. J Mol Biol 410 268-279 (2011)
  16. An enzyme controlled by light: the molecular mechanism of photoreactivity in nitrile hydratase. Endo I, Odaka M, Yohda M. Trends Biotechnol 17 244-248 (1999)
  17. Structural analysis of metal sites in proteins: non-heme iron sites as a case study. Andreini C, Bertini I, Cavallaro G, Najmanovich RJ, Thornton JM. J Mol Biol 388 356-380 (2009)
  18. Crystal structure of nitrile hydratase from a thermophilic Bacillus smithii. Hourai S, Miki M, Takashima Y, Mitsuda S, Yanagi K. Biochem Biophys Res Commun 312 340-345 (2003)
  19. Self-subunit swapping chaperone needed for the maturation of multimeric metalloenzyme nitrile hydratase by a subunit exchange mechanism also carries out the oxidation of the metal ligand cysteine residues and insertion of cobalt. Zhou Z, Hashimoto Y, Kobayashi M. J Biol Chem 284 14930-14938 (2009)
  20. Evidence of the participation of remote residues in the catalytic activity of Co-type nitrile hydratase from Pseudomonas putida. Brodkin HR, Novak WR, Milne AC, D'Aquino JA, Karabacak NM, Goldberg IG, Agar JN, Payne MS, Petsko GA, Ondrechen MJ, Ringe D. Biochemistry 50 4923-4935 (2011)
  21. The active site sulfenic acid ligand in nitrile hydratases can function as a nucleophile. Martinez S, Wu R, Sanishvili R, Liu D, Holz R. J Am Chem Soc 136 1186-1189 (2014)
  22. Structure analysis of peptide deformylases from Streptococcus pneumoniae, Staphylococcus aureus, Thermotoga maritima and Pseudomonas aeruginosa: snapshots of the oxygen sensitivity of peptide deformylase. Kreusch A, Spraggon G, Lee CC, Klock H, McMullan D, Ng K, Shin T, Vincent J, Warner I, Ericson C, Lesley SA. J Mol Biol 330 309-321 (2003)
  23. Why is there an "inert" metal center in the active site of nitrile hydratase? Reactivity and ligand dissociation from a five-coordinate Co(III) nitrile hydratase model. Shearer J, Kung IY, Lovell S, Kaminsky W, Kovacs JA. J Am Chem Soc 123 463-468 (2001)
  24. High resolution X-ray molecular structure of the nitrile hydratase from Rhodococcus erythropolis AJ270 reveals posttranslational oxidation of two cysteines into sulfinic acids and a novel biocatalytic nitrile hydration mechanism. Song L, Wang M, Shi J, Xue Z, Wang MX, Qian S. Biochem Biophys Res Commun 362 319-324 (2007)
  25. Nitrile hydratase involved in aldoxime metabolism from Rhodococcus sp. strain YH3-3 purification and characterization. Kato Y, Tsuda T, Asano Y. Eur J Biochem 263 662-670 (1999)
  26. Probing the influence of local coordination environment on the properties of Fe-type nitrile hydratase model complexes. Jackson HL, Shoner SC, Rittenberg D, Cowen JA, Lovell S, Barnhart D, Kovacs JA. Inorg Chem 40 1646-1653 (2001)
  27. Sulfur oxygenation in biomimetic non-heme iron-thiolate complexes. McQuilken AC, Goldberg DP. Dalton Trans 41 10883-10899 (2012)
  28. Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Brandão PF, Clapp JP, Bull AT. Appl Environ Microbiol 69 5754-5766 (2003)
  29. An improved purification procedure for the soluble [NiFe]-hydrogenase of Ralstonia eutropha: new insights into its (in)stability and spectroscopic properties. van der Linden E, Burgdorf T, de Lacey AL, Buhrke T, Scholte M, Fernandez VM, Friedrich B, Albracht SP. J Biol Inorg Chem 11 247-260 (2006)
  30. Cobalt-substituted Fe-type nitrile hydratase of Rhodococcus sp. N-771. Nojiri M, Nakayama H, Odaka M, Yohda M, Takio K, Endo I. FEBS Lett 465 173-177 (2000)
  31. Sulfur versus iron oxidation in an iron-thiolate model complex. McDonald AR, Bukowski MR, Farquhar ER, Jackson TA, Koehntop KD, Seo MS, De Hont RF, Stubna A, Halfen JA, Münck E, Nam W, Que L. J Am Chem Soc 132 17118-17129 (2010)
  32. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Klema VJ, Wilmot CM. Int J Mol Sci 13 5375-5405 (2012)
  33. Nitrile hydration by thiolate- and alkoxide-ligated Co-NHase analogues. Isolation of Co(III)-amidate and Co(III)-iminol intermediates. Swartz RD, Coggins MK, Kaminsky W, Kovacs JA. J Am Chem Soc 133 3954-3963 (2011)
  34. The first non-heme iron(III) complex with a ligated carboxamido group that exhibits photolability of a bound NO ligand. Patra AK, Afshar R, Olmstead MM, Mascharak PK. Angew Chem Int Ed Engl 41 2512-2515 (2002)
  35. Iron nitrosyl complexes as models for biological nitric oxide transfer reagents. Chiang CY, Darensbourg MY. J Biol Inorg Chem 11 359-370 (2006)
  36. Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase. Yamanaka Y, Hashimoto K, Ohtaki A, Noguchi K, Yohda M, Odaka M. J Biol Inorg Chem 15 655-665 (2010)
  37. NO binding to naphthalene dioxygenase. Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S. J Biol Inorg Chem 10 483-489 (2005)
  38. Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase. Liu Y, Cui W, Xia Y, Cui Y, Kobayashi M, Zhou Z. PLoS One 7 e50829 (2012)
  39. Chaperone-assisted expression, purification, and characterization of recombinant nitrile hydratase NI1 from Comamonas testosteroni. Stevens JM, Rao Saroja N, Jaouen M, Belghazi M, Schmitter JM, Mansuy D, Artaud I, Sari MA. Protein Expr Purif 29 70-76 (2003)
  40. Enhancing reactivity via structural distortion. Schweitzer D, Shearer J, Rittenberg DK, Shoner SC, Ellison JJ, Loloee R, Lovell S, Barnhart D, Kovacs JA. Inorg Chem 41 3128-3136 (2002)
  41. Properties of square-pyramidal alkyl-thiolate Fe(III) complexes, including an analogue of the unmodified form of nitrile hydratase. Lugo-Mas P, Taylor W, Schweitzer D, Theisen RM, Xu L, Shearer J, Swartz RD, Gleaves MC, Dipasquale A, Kaminsky W, Kovacs JA. Inorg Chem 47 11228-11236 (2008)
  42. Strategy for successful expression of the Pseudomonas putida nitrile hydratase activator P14K in Escherichia coli. Liu Y, Cui W, Fang Y, Yu Y, Cui Y, Xia Y, Kobayashi M, Zhou Z. BMC Biotechnol 13 48 (2013)
  43. Post-translational modification of Rhodococcus R312 and Comamonas NI1 nitrile hydratases. Stevens JM, Belghazi M, Jaouen M, Bonnet D, Schmitter JM, Mansuy D, Sari MA, Artaud I. J Mass Spectrom 38 955-961 (2003)
  44. Spin-state-dependent oxygen sensitivity of iron dithiolates: sulfur oxygenation or disulfide formation. O'Toole MG, Kreso M, Kozlowski PM, Mashuta MS, Grapperhaus CA. J Biol Inorg Chem 13 1219-1230 (2008)
  45. Sulfur K-edge XAS and DFT studies on NiII complexes with oxidized thiolate ligands: implications for the roles of oxidized thiolates in the active sites of Fe and Co nitrile hydratase. Dey A, Jeffrey SP, Darensbourg M, Hodgson KO, Hedman B, Solomon EI. Inorg Chem 46 4989-4996 (2007)
  46. The Cys-Xaa-His metal-binding motif: [N] versus [S] coordination and nickel-mediated formation of cysteinyl sulfinic acid. Van Horn JD, Bulaj G, Goldenberg DP, Burrows CJ. J Biol Inorg Chem 8 601-610 (2003)
  47. The alpha subunit of nitrile hydratase is sufficient for catalytic activity and post-translational modification. Nelp MT, Astashkin AV, Breci LA, McCarty RM, Bandarian V. Biochemistry 53 3990-3994 (2014)
  48. A Mononuclear Iron-Dependent Methyltransferase Catalyzes Initial Steps in Assembly of the Apratoxin A Polyketide Starter Unit. Skiba MA, Sikkema AP, Moss NA, Tran CL, Sturgis RM, Gerwick L, Gerwick WH, Sherman DH, Smith JL. ACS Chem Biol 12 3039-3048 (2017)
  49. N2S2Ni metallothiolates as a class of ligands that support organometallic and bioorganometallic reactivity. Rampersad MV, Jeffery SP, Reibenspies JH, Ortiz CG, Darensbourg DJ, Darensbourg MY. Angew Chem Int Ed Engl 44 1217-1220 (2005)
  50. Characterization of the signaling domain of the NO-responsive regulator NorR from Ralstonia eutropha H16 by site-directed mutagenesis. Klink A, Elsner B, Strube K, Cramm R. J Bacteriol 189 2743-2749 (2007)
  51. Functional expression of thiocyanate hydrolase is promoted by its activator protein, P15K. Kataoka S, Arakawa T, Hori S, Katayama Y, Hara Y, Matsushita Y, Nakayama H, Yohda M, Nyunoya H, Dohmae N, Maeda M, Odaka M. FEBS Lett 580 4667-4672 (2006)
  52. Photolability of NO in designed metal nitrosyls with carboxamido-N donors: a theoretical attempt to unravel the mechanism. Fry NL, Mascharak PK. Dalton Trans 41 4726-4735 (2012)
  53. Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus sp. AJ270. Song L, Wang M, Yang X, Qian S. Biotechnol J 2 717-724 (2007)
  54. The crystal structure of XC1258 from Xanthomonas campestris: a putative procaryotic Nit protein with an arsenic adduct in the active site. Chin KH, Tsai YD, Chan NL, Huang KF, Wang AH, Chou SH. Proteins 69 665-671 (2007)
  55. A Co(III) complex in a mixed sulfur/nitrogen ligand environment: modeling the substrate- and product-bound forms of the metalloenzyme thiocyanate hydrolase. Shearer J, Kung IY, Lovell S, Kovacs JA. Inorg Chem 39 4998-4999 (2000)
  56. Insights into catalytic activity of industrial enzyme Co-nitrile hydratase. Docking studies of nitriles and amides. Peplowski L, Kubiak K, Nowak W. J Mol Model 13 725-730 (2007)
  57. Capture of Ni(II), Cu(I) and Z(II) by thiolate sulfurs of an N2S2Ni complex: a role for a metallothiolate ligand in the acetyl-coenzyme A synthase active site. Golden ML, Rampersad MV, Reibenspies JH, Darensbourg MY. Chem Commun (Camb) 1824-1825 (2003)
  58. Chaperones-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. Pei X, Wang Q, Meng L, Li J, Yang Z, Yin X, Yang L, Chen S, Wu J. J Biotechnol 203 9-16 (2015)
  59. Cloning and expression of a gene encoding a novel thermostable thiocyanate-degrading enzyme from a mesophilic alphaproteobacteria strain THI201. Hussain A, Ogawa T, Saito M, Sekine T, Nameki M, Matsushita Y, Hayashi T, Katayama Y. Microbiology (Reading) 159 2294-2302 (2013)
  60. Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate. Villar-Acevedo G, Lugo-Mas P, Blakely MN, Rees JA, Ganas AS, Hanada EM, Kaminsky W, Kovacs JA. J Am Chem Soc 139 119-129 (2017)
  61. Nitrosative cytosine deamination. An exploration of the chemistry emanating from deamination with pyrimidine ring-opening. Rayat S, Qian M, Glaser R. Chem Res Toxicol 18 1211-1218 (2005)
  62. Time-Resolved Crystallography of the Reaction Intermediate of Nitrile Hydratase: Revealing a Role for the Cysteinesulfenic Acid Ligand as a Catalytic Nucleophile. Yamanaka Y, Kato Y, Hashimoto K, Iida K, Nagasawa K, Nakayama H, Dohmae N, Noguchi K, Noguchi T, Yohda M, Odaka M. Angew Chem Int Ed Engl 54 10763-10767 (2015)
  63. Use of metallopeptide based mimics demonstrates that the metalloprotein nitrile hydratase requires two oxidized cysteinates for catalytic activity. Shearer J, Callan PE, Amie J. Inorg Chem 49 9064-9077 (2010)
  64. A Protein-derived Oxygen Is the Source of the Amide Oxygen of Nitrile Hydratases. Nelp MT, Song Y, Wysocki VH, Bandarian V. J Biol Chem 291 7822-7829 (2016)
  65. Direct synthesis of a thiolato-S and sulfinato-S Co(III) complex related to the active site of nitrile hydratase: a pathway to the post-translational oxidation of the protein. Bourles E, Alves de Sousa R, Galardon E, Giorgi M, Artaud I. Angew Chem Int Ed Engl 44 6162-6165 (2005)
  66. Molecular dynamics simulations of the photoactive protein nitrile hydratase. Kubiak K, Nowak W. Biophys J 94 3824-3838 (2008)
  67. Recent Advances in Multinuclear Metal Nitrosyl Complexes. Li L, Li L. Coord Chem Rev 306 678-700 (2016)
  68. A new approach to possible substrate binding mechanisms for nitrile hydratase. Taştan Bishop AO, Sewell T. Biochem Biophys Res Commun 343 319-325 (2006)
  69. Bio-inspired nitrile hydration by peptidic ligands based on L-cysteine, L-methionine or L-penicillamine and pyridine-2,6-dicarboxylic acid. Byrne C, Houlihan KM, Devi P, Jensen P, Rutledge PJ. Molecules 19 20751-20767 (2014)
  70. Controlled formation and topologies of thiophenolate-based macrocycles: rings, cylinders and bowls. Christensen A, Mayer C, Jensen F, Bond AD, McKenzie CJ. Dalton Trans 108-120 (2006)
  71. Identification of key residues modulating the stereoselectivity of nitrile hydratase toward rac-mandelonitrile by semi-rational engineering. Cheng Z, Peplowski L, Cui W, Xia Y, Liu Z, Zhang J, Kobayashi M, Zhou Z. Biotechnol Bioeng 115 524-535 (2018)
  72. Modeling catalytic mechanism of nitrile hydratase by semi-empirical quantum mechanical calculation. Yu H, Liu J, Shen Z. J Mol Graph Model 27 522-528 (2008)
  73. Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1. Martinez S, Wu R, Krzywda K, Opalka V, Chan H, Liu D, Holz RC. J Biol Inorg Chem 20 885-894 (2015)
  74. Bioinspired catalytic nitrile hydration by dithiolato, sulfinato/thiolato, and sulfenato/sulfinato ruthenium complexes. Kumar D, Masitas CA, Nguyen TN, Grapperhaus CA. Chem Commun (Camb) 49 294-296 (2013)
  75. Incorporation of thiolate donation using 2,2'-dithiodibenzaldehyde: complexes of a pentadentate N2S3 ligand with relevance to the active site of Co nitrile hydratase. Smucker BW, Vanstipdonk MJ, Eichhorn DM. J Inorg Biochem 101 1537-1542 (2007)
  76. Sequential oxidations of thiolates and the cobalt metallocenter in a synthetic metallopeptide: implications for the biosynthesis of nitrile hydratase. Dutta A, Flores M, Roy S, Schmitt JC, Hamilton GA, Hartnett HE, Shearer JM, Jones AK. Inorg Chem 52 5236-5245 (2013)
  77. Substrate binding preferences and pka determinations of a nitrile hydratase model complex: variable solvent coordination to [(bmmp-TASN)Fe]OTf. O'Toole MG, Bennett B, Mashuta MS, Grapperhaus CA. Inorg Chem 48 2300-2308 (2009)
  78. Chemical issues addressing the construction of the distal Ni[cysteine-glycine-cysteine]2- site of acetyl CoA synthase: why not copper? Green KN, Brothers SM, Lee B, Darensbourg MY, Rockcliffe DA. Inorg Chem 48 2780-2792 (2009)
  79. Computational Design of Nitrile Hydratase from Pseudonocardia thermophila JCM3095 for Improved Thermostability. Cheng Z, Lan Y, Guo J, Ma D, Jiang S, Lai Q, Zhou Z, Peplowski L. Molecules 25 E4806 (2020)
  80. EPR of Mononuclear Non-Heme Iron Proteins. Gaffney BJ. Biol Magn Reson 28 233-268 (2009)
  81. Efficient Overproduction of Active Nitrile Hydratase by Coupling Expression Induction and Enzyme Maturation via Programming a Controllable Cobalt-Responsive Gene Circuit. Han L, Cui W, Lin Q, Chen Q, Suo F, Ma K, Wang Y, Hao W, Cheng Z, Zhou Z. Front Bioeng Biotechnol 8 193 (2020)
  82. Identification and functional analysis of the activator gene involved in the biosynthesis of Co-type nitrile hydratase from Aurantimonas manganoxydans. Pei X, Yang Z, Wang A, Yang L, Wu J. J Biotechnol 251 38-46 (2017)
  83. Influence of cobalt substitution on the activity of iron-type nitrile hydratase: are cobalt type nitrile hydratases regulated by carbon monoxide? Sari MA, Jaouen M, Saroja NR, Artaud I. J Inorg Biochem 101 614-622 (2007)
  84. Successful expression of the Bordetella petrii nitrile hydratase activator P14K and the unnecessary role of Ser115. Sun W, Zhu L, Chen X, Chen P, Yang L, Ding W, Zhou Z, Liu Y. BMC Biotechnol 16 21 (2016)
  85. Thiol-copper(I) and disulfide-dicopper(I) complex O2-reactivity leading to sulfonate-copper(II) complex or the formation of a cross-linked thioether-phenol product with phenol addition. Lee Y, Lee DH, Sarjeant AA, Karlin KD. J Inorg Biochem 101 1845-1858 (2007)
  86. Two arginine residues in the substrate pocket predominantly control the substrate selectivity of thiocyanate hydrolase. Yamanaka Y, Arakawa T, Watanabe T, Namima S, Sato M, Hori S, Ohtaki A, Noguchi K, Katayama Y, Yohda M, Odaka M. J Biosci Bioeng 116 22-27 (2013)
  87. Visible-light-induced release of CO by thiolate iron(iii) carbonyl complexes bearing N,C,S-pincer ligands. Nakae T, Hirotsu M, Aono S, Nakajima H. Dalton Trans 45 16153-16156 (2016)
  88. Cloning, crystallization and preliminary X-ray study of XC1258, a CN-hydrolase superfamily protein from Xanthomonas campestris. Tsai YD, Chin KH, Shr HL, Gao FP, Lyu PC, Wang AH, Chou SH. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 999-1002 (2006)
  89. Cloning, purification, crystallization and preliminary X-ray diffraction analysis of nitrile hydratase from the themophilic Bacillus smithii SC-J05-1. Hourai S, Ishii T, Miki M, Takashima Y, Mitsuda S, Yanagi K. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 974-977 (2005)
  90. Exhaustive oxidation of a nickel dithiolate complex: some mechanistic insights en route to sulfate formation. Hosler ER, Herbst RW, Maroney MJ, Chohan BS. Dalton Trans 41 804-816 (2012)
  91. Iron and Cobalt Complexes of 2,6-Diacetylpyridine-bis(R-thiosemicarbazone) (R=H, phenyl) Showing Unprecedented Ligand Deviation from Planarity. Panja A, Campana C, Leavitt C, Van Stipdonk MJ, Eichhorn DM. Inorganica Chim Acta 362 1348-1354 (2009)
  92. Moving metals: How microbes deliver metal cofactors to metalloproteins. Kunkle DE, Skaar EP. Mol Microbiol 120 547-554 (2023)
  93. Novel catalytic activity of nitrile hydratase from Rhodococcus sp. N771. Taniguchi K, Murata K, Murakami Y, Takahashi S, Nakamura T, Hashimoto K, Koshino H, Dohmae N, Yohda M, Hirose T, Maeda M, Odaka M. J Biosci Bioeng 106 174-179 (2008)
  94. Synthesis and characterization of an unsymmetrical cobalt(III) active site analogue of nitrile hydratase. Angelosante JK, Schopp LM, Lewis BJ, Vitalo AD, Titus DT, Swanson RA, Stanley AN, Abolins BP, Frome MJ, Cooper LE, Tierney DL, Moore C, Rheingold AL, Daley CJ. J Biol Inorg Chem 16 937-947 (2011)
  95. Biomimetic heterobimetallic architecture of Ni(ii) and Fe(ii) for CO2 hydrogenation in aqueous media. A DFT study. Shiekh BA. RSC Adv 9 33107-33116 (2019)
  96. Direct Reduction of NO to N2O by a Mononuclear Nonheme Thiolate Ligated Iron(II) Complex via Formation of a Metastable {FeNO}7 Complex. Dey A, Albert T, Kong RY, MacMillan SN, Moënne-Loccoz P, Lancaster KM, Goldberg DP. Inorg Chem 61 14909-14917 (2022)
  97. Magnetic coupling between Fe(NO) spin probe ligands through diamagnetic NiII, PdII and PtII tetrathiolate bridges. Quiroz M, Lockart MM, Xue S, Jones D, Guo Y, Pierce BS, Dunbar KR, Hall MB, Darensbourg MY. Chem Sci 14 9167-9174 (2023)
  98. Maturation Mechanism of Nitrile Hydratase From Streptomyces canus CGMCC 13662 and Its Structural Character. Guo L, Cheng X, Jiang HY, Dai YJ. Front Microbiol 11 1419 (2020)
  99. Merging enzymes with chemocatalysis for amide bond synthesis. Bering L, Craven EJ, Sowerby Thomas SA, Shepherd SA, Micklefield J. Nat Commun 13 380 (2022)
  100. Progress report on molecular biometallics (1996-2000), a project of the priority areas for research under the auspices of the Japanese Government. Kitagawa T. J Biol Inorg Chem 5 410-415 (2000)


Related citations provided by authors (1)

  1. Crystallization of a Photosensitive Nitrile Hydratase from Rhodococcus Sp. N-771. Nagamune T, Honda J, Cho WD, Kamiya N, Teratani Y, Hirata A, Sasabe H, Endo I J. Mol. Biol. 220 221- (1991)