2ahi Citations

Structural basis of DNA recognition by p53 tetramers.

Mol Cell 22 741-753 (2006)
Related entries: 2ac0, 2ady, 2ata

Cited: 251 times
EuropePMC logo PMID: 16793544

Abstract

The tumor-suppressor protein p53 is among the most effective of the cell's natural defenses against cancer. In response to cellular stress, p53 binds as a tetramer to diverse DNA targets containing two decameric half-sites, thereby activating the expression of genes involved in cell-cycle arrest or apoptosis. Here we present high-resolution crystal structures of sequence-specific complexes between the core domain of human p53 and different DNA half-sites. In all structures, four p53 molecules self-assemble on two DNA half-sites to form a tetramer that is a dimer of dimers, stabilized by protein-protein and base-stacking interactions. The protein-DNA interface varies as a function of the specific base sequence in correlation with the measured binding affinities of the complexes. The new data establish a structural framework for understanding the mechanisms of specificity, affinity, and cooperativity of DNA binding by p53 and suggest a model for its regulation by regions outside the sequence-specific DNA binding domain.

Reviews - 2ahi mentioned but not cited (3)

  1. The tumor suppressor p53: from structures to drug discovery. Joerger AC, Fersht AR. Cold Spring Harb Perspect Biol 2 a000919 (2010)
  2. Structural and Drug Targeting Insights on Mutant p53. Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Cancers (Basel) 13 3344 (2021)
  3. Rely on Each Other: DNA Binding Cooperativity Shapes p53 Functions in Tumor Suppression and Cancer Therapy. Timofeev O, Stiewe T. Cancers (Basel) 13 2422 (2021)

Articles - 2ahi mentioned but not cited (17)

  1. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Merkle FT, Ghosh S, Kamitaki N, Mitchell J, Avior Y, Mello C, Kashin S, Mekhoubad S, Ilic D, Charlton M, Saphier G, Handsaker RE, Genovese G, Bar S, Benvenisty N, McCarroll SA, Eggan K. Nature 545 229-233 (2017)
  2. Structures of p63 DNA binding domain in complexes with half-site and with spacer-containing full response elements. Chen C, Gorlatova N, Kelman Z, Herzberg O. Proc Natl Acad Sci U S A 108 6456-6461 (2011)
  3. Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics. Lukman S, Lane DP, Verma CS. PLoS One 8 e80221 (2013)
  4. A yeast two-hybrid system for the screening and characterization of small-molecule inhibitors of protein-protein interactions identifies a novel putative Mdm2-binding site in p53. Wong JH, Alfatah M, Sin MF, Sim HM, Verma CS, Lane DP, Arumugam P. BMC Biol 15 108 (2017)
  5. Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements. Ma B, Levine AJ. Nucleic Acids Res 35 7733-7747 (2007)
  6. Simulations of mutant p53 DNA binding domains reveal a novel druggable pocket. Pradhan MR, Siau JW, Kannan S, Nguyen MN, Ouaray Z, Kwoh CK, Lane DP, Ghadessy F, Verma CS. Nucleic Acids Res 47 1637-1652 (2019)
  7. Interactions of p53 with poly(ADP-ribose) and DNA induce distinct changes in protein structure as revealed by ATR-FTIR spectroscopy. Krüger A, Stier A, Fischbach A, Bürkle A, Hauser K, Mangerich A. Nucleic Acids Res 47 4843-4858 (2019)
  8. A novel p53 phosphorylation site within the MDM2 ubiquitination signal: II. a model in which phosphorylation at SER269 induces a mutant conformation to p53. Fraser JA, Madhumalar A, Blackburn E, Bramham J, Walkinshaw MD, Verma C, Hupp TR. J Biol Chem 285 37773-37786 (2010)
  9. Regulation of transcriptional activators by DNA-binding domain ubiquitination. Landré V, Revi B, Mir MG, Verma C, Hupp TR, Gilbert N, Ball KL. Cell Death Differ 24 903-916 (2017)
  10. Stability of the core domain of p53: insights from computer simulations. Madhumalar A, Smith DJ, Verma C. BMC Bioinformatics 9 Suppl 1 S17 (2008)
  11. Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation. Kong LR, Ong RW, Tan TZ, Mohamed Salleh NAB, Thangavelu M, Chan JV, Koh LYJ, Periyasamy G, Lau JA, Le TBU, Wang L, Lee M, Kannan S, Verma CS, Lim CM, Chng WJ, Lane DP, Venkitaraman A, Hung HT, Cheok CF, Goh BC. Nat Commun 11 2086 (2020)
  12. Impact of low-frequency hotspot mutation R282Q on the structure of p53 DNA-binding domain as revealed by crystallography at 1.54 angstroms resolution. Tu C, Tan YH, Shaw G, Zhou Z, Bai Y, Luo R, Ji X. Acta Crystallogr D Biol Crystallogr 64 471-477 (2008)
  13. An in silico approach in predicting the possible mechanism involving restoration of wild-type p53 functions by small molecular weight compounds in tumor cells expressing R273H mutant p53. Malami I, Muhammad A, Muhammad A, Etti IC, Waziri PM, Alhassan AM. EXCLI J 16 1276-1287 (2017)
  14. FOXO4 interacts with p53 TAD and CRD and inhibits its binding to DNA. Mandal R, Kohoutova K, Petrvalska O, Horvath M, Srb P, Veverka V, Obsilova V, Obsil T. Protein Sci 31 e4287 (2022)
  15. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  16. Can Glycosylation Mask the Detection of MHC Expressing p53 Peptides by T Cell Receptors? Nguyen TB, Lane DP, Verma CS. Biomolecules 11 1056 (2021)
  17. Domain-specific p53 mutants activate EGFR by distinct mechanisms exposing tissue-independent therapeutic vulnerabilities. Ho TLF, Lee MY, Goh HC, Ng GYN, Lee JJH, Kannan S, Lim YT, Zhao T, Lim EKH, Phua CZJ, Lee YF, Lim RYX, Ng PJH, Yuan J, Chan DKH, Lieske B, Chong CS, Lee KC, Lum J, Cheong WK, Yeoh KG, Tan KK, Sobota RM, Verma CS, Lane DP, Tam WL, Venkitaraman AR. Nat Commun 14 1726 (2023)


Reviews citing this publication (50)

  1. Blinded by the Light: The Growing Complexity of p53. Vousden KH, Prives C. Cell 137 413-431 (2009)
  2. Origins of specificity in protein-DNA recognition. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Annu Rev Biochem 79 233-269 (2010)
  3. Census and evaluation of p53 target genes. Fischer M. Oncogene 36 3943-3956 (2017)
  4. Targeting mutant p53 for efficient cancer therapy. Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Nat Rev Cancer 18 89-102 (2018)
  5. The multiple mechanisms that regulate p53 activity and cell fate. Hafner A, Bulyk ML, Jambhekar A, Lahav G. Nat Rev Mol Cell Biol 20 199-210 (2019)
  6. The expanding universe of p53 targets. Menendez D, Inga A, Resnick MA. Nat Rev Cancer 9 724-737 (2009)
  7. Structural biology of the tumor suppressor p53. Joerger AC, Fersht AR. Annu Rev Biochem 77 557-582 (2008)
  8. Transcriptional regulation by p53. Beckerman R, Prives C. Cold Spring Harb Perspect Biol 2 a000935 (2010)
  9. Absence of a simple code: how transcription factors read the genome. Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R, Rohs R. Trends Biochem Sci 39 381-399 (2014)
  10. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Joerger AC, Fersht AR. Oncogene 26 2226-2242 (2007)
  11. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Joerger AC, Fersht AR. Annu Rev Biochem 85 375-404 (2016)
  12. The origins and evolution of the p53 family of genes. Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, Levine AJ. Cold Spring Harb Perspect Biol 2 a001198 (2010)
  13. Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Goldstein I, Marcel V, Olivier M, Oren M, Rotter V, Hainaut P. Cancer Gene Ther 18 2-11 (2011)
  14. Structural perspective of cooperative transcription factor binding. Morgunova E, Taipale J. Curr Opin Struct Biol 47 1-8 (2017)
  15. Nuance in the double-helix and its role in protein-DNA recognition. Rohs R, West SM, Liu P, Honig B. Curr Opin Struct Biol 19 171-177 (2009)
  16. The missing zinc: p53 misfolding and cancer. Loh SN. Metallomics 2 442-449 (2010)
  17. p53 Isoforms and Their Implications in Cancer. Vieler M, Sanyal S. Cancers (Basel) 10 E288 (2018)
  18. Zinc metalloproteins as medicinal targets. Anzellotti AI, Farrell NP. Chem Soc Rev 37 1629-1651 (2008)
  19. Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Quintal SM, dePaula QA, Farrell NP. Metallomics 3 121-139 (2011)
  20. Genome reading by the NF-κB transcription factors. Mulero MC, Wang VY, Huxford T, Ghosh G. Nucleic Acids Res 47 9967-9989 (2019)
  21. Structural biology of the p53 tumour suppressor. Okorokov AL, Orlova EV. Curr Opin Struct Biol 19 197-202 (2009)
  22. The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the p53 Tumor-Suppressor Protein. Laptenko O, Tong DR, Manfredi J, Prives C. Trends Biochem Sci 41 1022-1034 (2016)
  23. P53 transcriptional activities: a general overview and some thoughts. Millau JF, Bastien N, Drouin R. Mutat Res 681 118-133 (2009)
  24. Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Turton KL, Meier-Stephenson V, Badmalia MD, Coffin CS, Patel TR. Viruses 12 E160 (2020)
  25. Structural and sequential context of p53: A review of experimental and theoretical evidence. Saha T, Kar RK, Sa G. Prog Biophys Mol Biol 117 250-263 (2015)
  26. Classifying the Binding Modes of Disordered Proteins. Fuxreiter M. Int J Mol Sci 21 E8615 (2020)
  27. Reviving the guardian of the genome: Small molecule activators of p53. Nguyen D, Liao W, Zeng SX, Lu H. Pharmacol Ther 178 92-108 (2017)
  28. p53's Extended Reach: The Mutant p53 Secretome. Pavlakis E, Stiewe T. Biomolecules 10 E307 (2020)
  29. Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson. Menendez D, Inga A, Jordan JJ, Resnick MA. Oncogene 26 2191-2201 (2007)
  30. To die or not to die: a HAT trick. Tyteca S, Legube G, Trouche D. Mol Cell 24 807-808 (2006)
  31. Gene-specific transcription activation via long-range allosteric shape-shifting. Tsai CJ, Nussinov R. Biochem J 439 15-25 (2011)
  32. Structural Evolution and Dynamics of the p53 Proteins. Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dötsch V, Levine AJ, Melino G. Cold Spring Harb Perspect Med 7 a028308 (2017)
  33. New roles of flavoproteins in molecular cell biology: an unexpected role for quinone reductases as regulators of proteasomal degradation. Sollner S, Macheroux P. FEBS J 276 4313-4324 (2009)
  34. Redox control of protein-DNA interactions: from molecular mechanisms to significance in signal transduction, gene expression, and DNA replication. Shlomai J. Antioxid Redox Signal 13 1429-1476 (2010)
  35. Dynamics of P53 in response to DNA damage: Mathematical modeling and perspective. Sun T, Cui J. Prog Biophys Mol Biol 119 175-182 (2015)
  36. Roles of p53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Cai BH, Chao CF, Huang HC, Lee HY, Kannagi R, Chen JY. Int J Mol Sci 20 E3681 (2019)
  37. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L. Cancer Manag Res 13 3081-3100 (2021)
  38. Dying to Survive-The p53 Paradox. Lees A, Sessler T, McDade S. Cancers (Basel) 13 3257 (2021)
  39. Salvation of the fallen angel: Reactivating mutant p53. Li Y, Wang Z, Chen Y, Petersen RB, Zheng L, Huang K. Br J Pharmacol 176 817-831 (2019)
  40. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Wang H, Guo M, Wei H, Chen Y. Signal Transduct Target Ther 8 92 (2023)
  41. Association of p53 with Neurodegeneration in Parkinson's Disease. Luo Q, Sun W, Wang YF, Li J, Li DW. Parkinsons Dis 2022 6600944 (2022)
  42. Structural diversity of p63 and p73 isoforms. Osterburg C, Dötsch V. Cell Death Differ 29 921-937 (2022)
  43. Gain of Function (GOF) Mutant p53 in Cancer-Current Therapeutic Approaches. Roszkowska KA, Piecuch A, Sady M, Gajewski Z, Flis S. Int J Mol Sci 23 13287 (2022)
  44. The Undervalued Avenue to Reinstate Tumor Suppressor Functionality of the p53 Protein Family for Improved Cancer Therapy-Drug Repurposing. Zawacka-Pankau JE. Cancers (Basel) 12 E2717 (2020)
  45. Insights from resolving protein-DNA interactions at near base-pair resolution. Venters BJ. Brief Funct Genomics 17 80-88 (2018)
  46. Therapeutic Strategies to Activate p53. Aguilar A, Wang S. Pharmaceuticals (Basel) 16 24 (2022)
  47. Chromatin structure related to oncogenesis. Matsumoto S, Horikoshi N, Takizawa Y, Kurumizaka H. Cancer Sci 114 3068-3075 (2023)
  48. Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Zavileyskiy L, Bunik V. Biomolecules 12 327 (2022)
  49. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Wojtyś W, Oroń M. Cancers (Basel) 15 2918 (2023)
  50. Peptide and protein chemistry approaches to study the tumor suppressor protein p53. Chatterjee C, Singh SK. Org Biomol Chem 20 5500-5509 (2022)

Articles citing this publication (181)

  1. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB. Mol Cell 24 841-851 (2006)
  2. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR, Mylonas E, Svergun DI, Blackledge M, Fersht AR. Proc Natl Acad Sci U S A 105 5762-5767 (2008)
  3. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Proc Natl Acad Sci U S A 105 10360-10365 (2008)
  4. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Joerger AC, Ang HC, Fersht AR. Proc Natl Acad Sci U S A 103 15056-15061 (2006)
  5. Trim24 targets endogenous p53 for degradation. Allton K, Jain AK, Herz HM, Tsai WW, Jung SY, Qin J, Bergmann A, Johnson RL, Barton MC. Proc Natl Acad Sci U S A 106 11612-11616 (2009)
  6. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Wang Y, Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Lee EY, Zhu Y. Cancer Cell 15 514-526 (2009)
  7. Characterization of genome-wide p53-binding sites upon stress response. Smeenk L, van Heeringen SJ, Koeppel M, van Driel MA, Bartels SJ, Akkers RC, Denissov S, Stunnenberg HG, Lohrum M. Nucleic Acids Res 36 3639-3654 (2008)
  8. Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs. Kitayner M, Rozenberg H, Rohs R, Suad O, Rabinovich D, Honig B, Shakked Z. Nat Struct Mol Biol 17 423-429 (2010)
  9. A single-molecule characterization of p53 search on DNA. Tafvizi A, Huang F, Fersht AR, Mirny LA, van Oijen AM. Proc Natl Acad Sci U S A 108 563-568 (2011)
  10. Regulation of p53 target gene expression by peptidylarginine deiminase 4. Li P, Yao H, Zhang Z, Li M, Luo Y, Thompson PR, Gilmour DS, Wang Y. Mol Cell Biol 28 4745-4758 (2008)
  11. Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex. Tidow H, Melero R, Mylonas E, Freund SM, Grossmann JG, Carazo JM, Svergun DI, Valle M, Fersht AR. Proc Natl Acad Sci U S A 104 12324-12329 (2007)
  12. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. Sulak M, Fong L, Mika K, Chigurupati S, Yon L, Mongan NP, Emes RD, Lynch VJ. Elife 5 e11994 (2016)
  13. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Menendez D, Nguyen TA, Freudenberg JM, Mathew VJ, Anderson CW, Jothi R, Resnick MA. Nucleic Acids Res 41 7286-7301 (2013)
  14. Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Bandukwala HS, Wu Y, Feuerer M, Chen Y, Barboza B, Ghosh S, Stroud JC, Benoist C, Mathis D, Rao A, Chen L. Immunity 34 479-491 (2011)
  15. A unique DNA binding domain converts T-cell factors into strong Wnt effectors. Atcha FA, Syed A, Wu B, Hoverter NP, Yokoyama NN, Ting JH, Munguia JE, Mangalam HJ, Marsh JL, Waterman ML. Mol Cell Biol 27 8352-8363 (2007)
  16. Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer. Chen Y, Dey R, Chen L. Structure 18 246-256 (2010)
  17. Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Joerger AC, Rajagopalan S, Natan E, Veprintsev DB, Robinson CV, Fersht AR. Proc Natl Acad Sci U S A 106 17705-17710 (2009)
  18. Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. Wu SY, Chiang CM. EMBO J 28 1246-1259 (2009)
  19. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53. Jordan JJ, Menendez D, Inga A, Noureddine M, Bell DA, Resnick MA. PLoS Genet 4 e1000104 (2008)
  20. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. Okorokov AL, Sherman MB, Plisson C, Grinkevich V, Sigmundsson K, Selivanova G, Milner J, Orlova EV. EMBO J 25 5191-5200 (2006)
  21. Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA. Veprintsev DB, Fersht AR. Nucleic Acids Res 36 1589-1598 (2008)
  22. Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Li P, Wang D, Yao H, Doret P, Hao G, Shen Q, Qiu H, Zhang X, Wang Y, Chen G, Wang Y. Oncogene 29 3153-3162 (2010)
  23. HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Rowell JP, Simpson KL, Stott K, Watson M, Thomas JO. Structure 20 2014-2024 (2012)
  24. Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. Matheny CJ, Speck ME, Cushing PR, Zhou Y, Corpora T, Regan M, Newman M, Roudaia L, Speck CL, Gu TL, Griffey SM, Bushweller JH, Speck NA. EMBO J 26 1163-1175 (2007)
  25. Activation and control of p53 tetramerization in individual living cells. Gaglia G, Guan Y, Shah JV, Lahav G. Proc Natl Acad Sci U S A 110 15497-15501 (2013)
  26. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Schlereth K, Beinoraviciute-Kellner R, Zeitlinger MK, Bretz AC, Sauer M, Charles JP, Vogiatzi F, Leich E, Samans B, Eilers M, Kisker C, Rosenwald A, Stiewe T. Mol Cell 38 356-368 (2010)
  27. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Laptenko O, Shiff I, Freed-Pastor W, Zupnick A, Mattia M, Freulich E, Shamir I, Kadouri N, Kahan T, Manfredi J, Simon I, Prives C. Mol Cell 57 1034-1046 (2015)
  28. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. Petty TJ, Emamzadah S, Costantino L, Petkova I, Stavridi ES, Saven JG, Vauthey E, Halazonetis TD. EMBO J 30 2167-2176 (2011)
  29. Characterization of the p53 cistrome--DNA binding cooperativity dissects p53's tumor suppressor functions. Schlereth K, Heyl C, Krampitz AM, Mernberger M, Finkernagel F, Scharfe M, Jarek M, Leich E, Rosenwald A, Stiewe T. PLoS Genet 9 e1003726 (2013)
  30. p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation. Laptenko O, Beckerman R, Freulich E, Prives C. Proc Natl Acad Sci U S A 108 10385-10390 (2011)
  31. p53-dependent gene repression through p21 is mediated by recruitment of E2F4 repression complexes. Benson EK, Mungamuri SK, Attie O, Kracikova M, Sachidanandam R, Manfredi JJ, Aaronson SA. Oncogene 33 3959-3969 (2014)
  32. Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Arbely E, Natan E, Brandt T, Allen MD, Veprintsev DB, Robinson CV, Chin JW, Joerger AC, Fersht AR. Proc Natl Acad Sci U S A 108 8251-8256 (2011)
  33. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant. Basse N, Kaar JL, Settanni G, Joerger AC, Rutherford TJ, Fersht AR. Chem Biol 17 46-56 (2010)
  34. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer. Schumacher B, Mondry J, Thiel P, Weyand M, Ottmann C. FEBS Lett 584 1443-1448 (2010)
  35. Crystal structure of a p53 core tetramer bound to DNA. Malecka KA, Ho WC, Marmorstein R. Oncogene 28 325-333 (2009)
  36. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Timofeev O, Schlereth K, Wanzel M, Braun A, Nieswandt B, Pagenstecher A, Rosenwald A, Elsässer HP, Stiewe T. Cell Rep 3 1512-1525 (2013)
  37. Impact of Alu repeats on the evolution of human p53 binding sites. Cui F, Sirotin MV, Zhurkin VB. Biol Direct 6 2 (2011)
  38. Structural and functional analysis of the Crb2-BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair. Kilkenny ML, Doré AS, Roe SM, Nestoras K, Ho JC, Watts FZ, Pearl LH. Genes Dev 22 2034-2047 (2008)
  39. The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Follis AV, Llambi F, Ou L, Baran K, Green DR, Kriwacki RW. Nat Struct Mol Biol 21 535-543 (2014)
  40. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family. Brandt T, Petrovich M, Joerger AC, Veprintsev DB. BMC Genomics 10 628 (2009)
  41. Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53. Sykes SM, Stanek TJ, Frank A, Murphy ME, McMahon SB. J Biol Chem 284 20197-20205 (2009)
  42. Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA. Melero R, Rajagopalan S, Lázaro M, Joerger AC, Brandt T, Veprintsev DB, Lasso G, Gil D, Scheres SH, Carazo JM, Fersht AR, Valle M. Proc Natl Acad Sci U S A 108 557-562 (2011)
  43. Proteopedia - a scientific 'wiki' bridging the rift between three-dimensional structure and function of biomacromolecules. Hodis E, Prilusky J, Martz E, Silman I, Moult J, Sussman JL. Genome Biol 9 R121 (2008)
  44. Aurora B interacts with NIR-p53, leading to p53 phosphorylation in its DNA-binding domain and subsequent functional suppression. Wu L, Ma CA, Zhao Y, Jain A. J Biol Chem 286 2236-2244 (2011)
  45. Revealing a human p53 universe. Nguyen TT, Grimm SA, Bushel PR, Li J, Li Y, Bennett BD, Lavender CA, Ward JM, Fargo DC, Anderson CW, Li L, Resnick MA, Menendez D. Nucleic Acids Res 46 8153-8167 (2018)
  46. A historical account of Hoogsteen base-pairs in duplex DNA. Nikolova EN, Zhou H, Gottardo FL, Alvey HS, Kimsey IJ, Al-Hashimi HM. Biopolymers 99 955-968 (2013)
  47. Differential activities of the two closely related withanolides, Withaferin A and Withanone: bioinformatics and experimental evidences. Vaishnavi K, Saxena N, Shah N, Singh R, Manjunath K, Uthayakumar M, Kanaujia SP, Kaul SC, Sekar K, Wadhwa R. PLoS One 7 e44419 (2012)
  48. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces. Engin HB, Kreisberg JF, Carter H. PLoS One 11 e0152929 (2016)
  49. A comprehensive and high-resolution genome-wide response of p53 to stress. Chang GS, Chen XA, Park B, Rhee HS, Li P, Han KH, Mishra T, Chan-Salis KY, Li Y, Hardison RC, Wang Y, Pugh BF. Cell Rep 8 514-527 (2014)
  50. Structure of p53 binding to the BAX response element reveals DNA unwinding and compression to accommodate base-pair insertion. Chen Y, Zhang X, Dantas Machado AC, Ding Y, Chen Z, Qin PZ, Rohs R, Chen L. Nucleic Acids Res 41 8368-8376 (2013)
  51. Extensive post-translational modification of active and inactivated forms of endogenous p53. DeHart CJ, Chahal JS, Flint SJ, Perlman DH. Mol Cell Proteomics 13 1-17 (2014)
  52. Sequence analysis of p53 response-elements suggests multiple binding modes of the p53 tetramer to DNA targets. Ma B, Pan Y, Zheng J, Levine AJ, Nussinov R. Nucleic Acids Res 35 2986-3001 (2007)
  53. Estrogen receptor acting in cis enhances WT and mutant p53 transactivation at canonical and noncanonical p53 target sequences. Menendez D, Inga A, Resnick MA. Proc Natl Acad Sci U S A 107 1500-1505 (2010)
  54. Sliding of p53 along DNA can be modulated by its oligomeric state and by cross-talks between its constituent domains. Khazanov N, Levy Y. J Mol Biol 408 335-355 (2011)
  55. Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains. Kamagata K, Kanbayashi S, Honda M, Itoh Y, Takahashi H, Kameda T, Nagatsugi F, Takahashi S. Sci Rep 10 580 (2020)
  56. Selection of Oncogenic Mutant Clones in Normal Human Skin Varies with Body Site. Fowler JC, King C, Bryant C, Hall MWJ, Sood R, Ong SH, Earp E, Fernandez-Antoran D, Koeppel J, Dentro SC, Shorthouse D, Durrani A, Fife K, Rytina E, Milne D, Roshan A, Mahububani K, Saeb-Parsy K, Hall BA, Gerstung M, Jones PH. Cancer Discov 11 340-361 (2021)
  57. p53 and p73 display common and distinct requirements for sequence specific binding to DNA. Lokshin M, Li Y, Gaiddon C, Prives C. Nucleic Acids Res 35 340-352 (2007)
  58. Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Horikawa I, Park KY, Isogaya K, Hiyoshi Y, Li H, Anami K, Robles AI, Mondal AM, Fujita K, Serrano M, Harris CC. Cell Death Differ 24 1017-1028 (2017)
  59. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. Suad O, Rozenberg H, Brosh R, Diskin-Posner Y, Kessler N, Shimon LJ, Frolow F, Liran A, Rotter V, Shakked Z. J Mol Biol 385 249-265 (2009)
  60. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions. Eldar A, Rozenberg H, Diskin-Posner Y, Rohs R, Shakked Z. Nucleic Acids Res 41 8748-8759 (2013)
  61. p53 binding to nucleosomal DNA depends on the rotational positioning of DNA response element. Sahu G, Wang D, Chen CB, Zhurkin VB, Harrington RE, Appella E, Hager GL, Nagaich AK. J Biol Chem 285 1321-1332 (2010)
  62. Sequence-dependent cooperative binding of p53 to DNA targets and its relationship to the structural properties of the DNA targets. Beno I, Rosenthal K, Levitine M, Shaulov L, Haran TE. Nucleic Acids Res 39 1919-1932 (2011)
  63. Structure of p73 DNA-binding domain tetramer modulates p73 transactivation. Ethayathulla AS, Tse PW, Monti P, Nguyen S, Inga A, Fronza G, Viadiu H. Proc Natl Acad Sci U S A 109 6066-6071 (2012)
  64. Effects of oncogenic mutations and DNA response elements on the binding of p53 to p53-binding protein 2 (53BP2). Tidow H, Veprintsev DB, Freund SM, Fersht AR. J Biol Chem 281 32526-32533 (2006)
  65. p53 transactivation and the impact of mutations, cofactors and small molecules using a simplified yeast-based screening system. Andreotti V, Ciribilli Y, Monti P, Bisio A, Lion M, Jordan J, Fronza G, Menichini P, Resnick MA, Inga A. PLoS One 6 e20643 (2011)
  66. Genome-wide mapping indicates that p73 and p63 co-occupy target sites and have similar dna-binding profiles in vivo. Yang A, Zhu Z, Kettenbach A, Kapranov P, McKeon F, Gingeras TR, Struhl K. PLoS One 5 e11572 (2010)
  67. Interaction between the transactivation domain of p53 and PC4 exemplifies acidic activation domains as single-stranded DNA mimics. Rajagopalan S, Andreeva A, Teufel DP, Freund SM, Fersht AR. J Biol Chem 284 21728-21737 (2009)
  68. p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Fischer NW, Prodeus A, Malkin D, Gariépy J. Cell Cycle 15 3210-3219 (2016)
  69. t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Okumura AJ, Peterson LF, Okumura F, Boyapati A, Zhang DE. Blood 112 1392-1401 (2008)
  70. Life or death: p53-induced apoptosis requires DNA binding cooperativity. Schlereth K, Charles JP, Bretz AC, Stiewe T. Cell Cycle 9 4068-4076 (2010)
  71. Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53. Lowry DF, Stancik A, Shrestha RM, Daughdrill GW. Proteins 71 587-598 (2008)
  72. Domain-domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy. Bista M, Bista M, Freund SM, Fersht AR. Proc Natl Acad Sci U S A 109 15752-15756 (2012)
  73. Quaternary structure of the specific p53-DNA complex reveals the mechanism of p53 mutant dominance. Aramayo R, Sherman MB, Brownless K, Lurz R, Okorokov AL, Orlova EV. Nucleic Acids Res 39 8960-8971 (2011)
  74. High prevalence of p53 exon 4 mutations in soft tissue sarcoma. Das P, Kotilingam D, Korchin B, Liu J, Yu D, Lazar AJ, Pollock RE, Lev D. Cancer 109 2323-2333 (2007)
  75. Post-translational regulation of p53 function through 20S proteasome-mediated cleavage. Solomon H, Bräuning B, Fainer I, Ben-Nissan G, Rabani S, Goldfinger N, Moscovitz O, Shakked Z, Rotter V, Sharon M. Cell Death Differ 24 2187-2198 (2017)
  76. Runx1 binds as a dimeric complex to overlapping Runx1 sites within a palindromic element in the human GM-CSF enhancer. Bowers SR, Calero-Nieto FJ, Valeaux S, Fernandez-Fuentes N, Cockerill PN. Nucleic Acids Res 38 6124-6134 (2010)
  77. Sequence-based prediction of protein binding mode landscapes. Horvath A, Miskei M, Ambrus V, Vendruscolo M, Fuxreiter M. PLoS Comput Biol 16 e1007864 (2020)
  78. Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry. Arlt C, Ihling CH, Sinz A. Proteomics 15 2746-2755 (2015)
  79. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements. Raimondi I, Ciribilli Y, Monti P, Bisio A, Pollegioni L, Fronza G, Inga A, Campomenosi P. PLoS One 8 e69152 (2013)
  80. Interaction of OKL38 and p53 in regulating mitochondrial structure and function. Hu J, Yao H, Gan F, Tokarski A, Wang Y. PLoS One 7 e43362 (2012)
  81. Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study. Kamaraj B, Bogaerts A. PLoS One 10 e0134638 (2015)
  82. TP53 mutants in the tower of babel of cancer progression. Bisio A, Ciribilli Y, Fronza G, Inga A, Monti P. Hum Mutat 35 689-701 (2014)
  83. p53 sumoylation: mechanistic insights from reconstitution studies. Wu SY, Chiang CM. Epigenetics 4 445-451 (2009)
  84. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights. Merabet A, Houlleberghs H, Maclagan K, Akanho E, Bui TT, Pagano B, Drake AF, Fraternali F, Nikolova PV. Biochem J 427 225-236 (2010)
  85. Reversal of the DNA-binding-induced loop L1 conformational switch in an engineered human p53 protein. Emamzadah S, Tropia L, Vincenti I, Falquet B, Halazonetis TD. J Mol Biol 426 936-944 (2014)
  86. Structural basis for p53 binding-induced DNA bending. Pan Y, Nussinov R. J Biol Chem 282 691-699 (2007)
  87. Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code. Ciribilli Y, Monti P, Bisio A, Nguyen HT, Ethayathulla AS, Ramos A, Foggetti G, Menichini P, Menendez D, Resnick MA, Viadiu H, Fronza G, Inga A. Nucleic Acids Res 41 8637-8653 (2013)
  88. p53 mediates target gene association with nuclear speckles for amplified RNA expression. Alexander KA, Coté A, Nguyen SC, Zhang L, Gholamalamdari O, Agudelo-Garcia P, Lin-Shiao E, Tanim KMA, Lim J, Biddle N, Dunagin MC, Good CR, Mendoza MR, Little SC, Belmont A, Joyce EF, Raj A, Berger SL. Mol Cell 81 1666-1681.e6 (2021)
  89. Low-level p53 expression changes transactivation rules and reveals superactivating sequences. Jordan JJ, Menendez D, Sharav J, Beno I, Rosenthal K, Resnick MA, Haran TE. Proc Natl Acad Sci U S A 109 14387-14392 (2012)
  90. Molecular dynamics of the full-length p53 monomer. Chillemi G, Davidovich P, D'Abramo M, Mametnabiev T, Garabadzhiu AV, Desideri A, Melino G. Cell Cycle 12 3098-3108 (2013)
  91. p53-Induced DNA bending: the interplay between p53-DNA and p53-p53 interactions. Pan Y, Nussinov R. J Phys Chem B 112 6716-6724 (2008)
  92. Thermodynamic and Evolutionary Coupling between the Native and Amyloid State of Globular Proteins. Langenberg T, Gallardo R, van der Kant R, Louros N, Michiels E, Duran-Romaña R, Houben B, Cassio R, Wilkinson H, Garcia T, Ulens C, Van Durme J, Rousseau F, Schymkowitz J. Cell Rep 31 107512 (2020)
  93. Full-length p53 tetramer bound to DNA and its quaternary dynamics. Demir Ö, Ieong PU, Amaro RE. Oncogene 36 1451-1460 (2017)
  94. PI2PE: protein interface/interior prediction engine. Tjong H, Qin S, Zhou HX. Nucleic Acids Res 35 W357-62 (2007)
  95. Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Degtjarik O, Golovenko D, Diskin-Posner Y, Abrahmsén L, Rozenberg H, Shakked Z. Nat Commun 12 7057 (2021)
  96. R248Q mutation--Beyond p53-DNA binding. Ng JW, Lama D, Lukman S, Lane DP, Verma CS, Sim AY. Proteins 83 2240-2250 (2015)
  97. Two p53 tetramers bind one consensus DNA response element. Kearns S, Lurz R, Orlova EV, Okorokov AL. Nucleic Acids Res 44 6185-6199 (2016)
  98. A phosphorylation-dependent switch in the disordered p53 transactivation domain regulates DNA binding. Sun X, Dyson HJ, Wright PE. Proc Natl Acad Sci U S A 118 e2021456118 (2021)
  99. From mutational inactivation to aberrant gain-of-function: Unraveling the structural basis of mutant p53 oncogenic transition. Olotu FA, Soliman MES. J Cell Biochem 119 2646-2652 (2018)
  100. Modulation of the disordered conformational ensembles of the p53 transactivation domain by cancer-associated mutations. Ganguly D, Chen J. PLoS Comput Biol 11 e1004247 (2015)
  101. Probing the conformational diversity of cancer-associated mutations in p53 with ion-mobility mass spectrometry. Jurneczko E, Cruickshank F, Porrini M, Clarke DJ, Campuzano ID, Morris M, Nikolova PV, Barran PE. Angew Chem Int Ed Engl 52 4370-4374 (2013)
  102. Significant Differences in the Development of Acquired Resistance to the MDM2 Inhibitor SAR405838 between In Vitro and In Vivo Drug Treatment. Hoffman-Luca CG, Yang CY, Lu J, Ziazadeh D, McEachern D, Debussche L, Wang S. PLoS One 10 e0128807 (2015)
  103. Structural and functional implications of p53 missense cancer mutations. Tan Y, Luo R. PMC Biophys 2 5 (2009)
  104. p53 binds the mdmx mRNA and controls its translation. Tournillon AS, López I, Malbert-Colas L, Findakly S, Naski N, Olivares-Illana V, Karakostis K, Vojtesek B, Nylander K, Fåhraeus R. Oncogene 36 723-730 (2017)
  105. DNA structural properties in the classification of genomic transcription regulation elements. Meysman P, Marchal K, Engelen K. Bioinform Biol Insights 6 155-168 (2012)
  106. Diverse p53/DNA binding modes expand the repertoire of p53 response elements. Vyas P, Beno I, Xi Z, Stein Y, Golovenko D, Kessler N, Rotter V, Shakked Z, Haran TE. Proc Natl Acad Sci U S A 114 10624-10629 (2017)
  107. Structural Basis for p53 Lys120-Acetylation-Dependent DNA-Binding Mode. Vainer R, Cohen S, Shahar A, Zarivach R, Arbely E. J Mol Biol 428 3013-3025 (2016)
  108. p53 Dimers associate with a head-to-tail response element to repress cyclin B transcription. Lipski R, Lippincott DJ, Durden BC, Kaplan AR, Keiser HE, Park JH, Levesque AA. PLoS One 7 e42615 (2012)
  109. p53 partial loss-of-function mutations sensitize to chemotherapy. Klimovich B, Merle N, Neumann M, Elmshäuser S, Nist A, Mernberger M, Kazdal D, Stenzinger A, Timofeev O, Stiewe T. Oncogene 41 1011-1023 (2022)
  110. Resistance of mitochondrial p53 to dominant inhibition. Heyne K, Schmitt K, Mueller D, Armbruester V, Mestres P, Roemer K. Mol Cancer 7 54 (2008)
  111. An Integrated Mass Spectrometry Based Approach to Probe the Structure of the Full-Length Wild-Type Tetrameric p53 Tumor Suppressor. Arlt C, Flegler V, Ihling CH, Schäfer M, Thondorf I, Sinz A. Angew Chem Int Ed Engl 56 275-279 (2017)
  112. Cooperativity dominates the genomic organization of p53-response elements: a mechanistic view. Pan Y, Nussinov R. PLoS Comput Biol 5 e1000448 (2009)
  113. Directed evolution of p53 variants with altered DNA-binding specificities by in vitro compartmentalization. Fen CX, Coomber DW, Lane DP, Ghadessy FJ. J Mol Biol 371 1238-1248 (2007)
  114. Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene. Doffe F, Carbonnier V, Tissier M, Leroy B, Martins I, Mattsson JSM, Micke P, Pavlova S, Pospisilova S, Smardova J, Joerger AC, Wiman KG, Kroemer G, Soussi T. Cell Death Differ 28 1477-1492 (2021)
  115. Pliable DNA conformation of response elements bound to transcription factor p63. Chen C, Gorlatova N, Herzberg O. J Biol Chem 287 7477-7486 (2012)
  116. Structure and stability insights into tumour suppressor p53 evolutionary related proteins. Pagano B, Jama A, Martinez P, Akanho E, Bui TT, Drake AF, Fraternali F, Nikolova PV. PLoS One 8 e76014 (2013)
  117. Crystal structures of the DNA-binding domain tetramer of the p53 tumor suppressor family member p73 bound to different full-site response elements. Ethayathulla AS, Nguyen HT, Viadiu H. J Biol Chem 288 4744-4754 (2013)
  118. The RNF20/40 complex regulates p53-dependent gene transcription and mRNA splicing. Wu C, Cui Y, Liu X, Zhang F, Lu LY, Yu X. J Mol Cell Biol 12 113-124 (2020)
  119. Distinct mechanisms control genome recognition by p53 at its target genes linked to different cell fates. Farkas M, Hashimoto H, Bi Y, Davuluri RV, Resnick-Silverman L, Manfredi JJ, Debler EW, McMahon SB. Nat Commun 12 484 (2021)
  120. Evolution of p53 transactivation specificity through the lens of a yeast-based functional assay. Lion M, Raimondi I, Donati S, Jousson O, Ciribilli Y, Inga A. PLoS One 10 e0116177 (2015)
  121. Expression of the Long Noncoding RNA DINO in Human Papillomavirus-Positive Cervical Cancer Cells Reactivates the Dormant TP53 Tumor Suppressor through ATM/CHK2 Signaling. Sharma S, Munger K. mBio 11 e01190-20 (2020)
  122. Spacing between core recognition motifs determines relative orientation of AraR monomers on bipartite operators. Jain D, Nair DT. Nucleic Acids Res 41 639-647 (2013)
  123. iASPP mediates p53 selectivity through a modular mechanism fine-tuning DNA recognition. Chen S, Wu J, Zhong S, Li Y, Zhang P, Ma J, Ren J, Tan Y, Wang Y, Au KF, Siebold C, Bond GL, Chen Z, Lu M, Jones EY, Lu X. Proc Natl Acad Sci U S A 116 17470-17479 (2019)
  124. Mutations in the TP53 gene affected recruitment of 53BP1 protein to DNA lesions, but level of 53BP1 was stable after γ-irradiation that depleted MDC1 protein in specific TP53 mutants. Suchánková J, Legartová S, Ručková E, Vojtěšek B, Kozubek S, Bártová E. Histochem Cell Biol 148 239-255 (2017)
  125. Evaluating Drosophila p53 as a model system for studying cancer mutations. Herzog G, Joerger AC, Shmueli MD, Fersht AR, Gazit E, Segal D. J Biol Chem 287 44330-44337 (2012)
  126. Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: Structural and molecular insights toward the design of potent reactivators in cancer therapy. Olotu FA, Soliman MES. J Cell Biochem 120 951-966 (2019)
  127. Lysine120 interactions with p53 response elements can allosterically direct p53 organization. Pan Y, Nussinov R. PLoS Comput Biol 6 e1000878 (2010)
  128. The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding. Gomes AS, Trovão F, Andrade Pinheiro B, Freire F, Gomes S, Oliveira C, Domingues L, Romão MJ, Saraiva L, Carvalho AL. Int J Mol Sci 19 E1184 (2018)
  129. Linker DNA and histone contributions in nucleosome binding by p53. Nishimura M, Arimura Y, Nozawa K, Kurumizaka H. J Biochem 168 669-675 (2020)
  130. Molecular basis for modulation of the p53 target selectivity by KLF4. Brandt T, Townsley FM, Teufel DP, Freund SM, Veprintsev DB. PLoS One 7 e48252 (2012)
  131. Combined inhibition of XIAP and BCL2 drives maximal therapeutic efficacy in genetically diverse aggressive acute myeloid leukemia. Hashimoto M, Saito Y, Nakagawa R, Ogahara I, Takagi S, Takata S, Amitani H, Endo M, Yuki H, Ramilowski JA, Severin J, Manabe RI, Watanabe T, Ozaki K, Kaneko A, Kajita H, Fujiki S, Sato K, Honma T, Uchida N, Fukami T, Okazaki Y, Ohara O, Shultz LD, Yamada M, Taniguchi S, Vyas P, de Hoon M, Momozawa Y, Ishikawa F. Nat Cancer 2 340-356 (2021)
  132. Composite structural motifs of binding sites for delineating biological functions of proteins. Kinjo AR, Nakamura H. PLoS One 7 e31437 (2012)
  133. Quaternary structure of p53: the light at the end of the tunnel. Shakked Z. Proc Natl Acad Sci U S A 104 12231-12232 (2007)
  134. The complex architecture of p53 binding sites. Senitzki A, Safieh J, Sharma V, Golovenko D, Danin-Poleg Y, Inga A, Haran TE. Nucleic Acids Res 49 1364-1382 (2021)
  135. Water's potential role: Insights from studies of the p53 core domain. Xu X, Ma Z, Wang X, Xiao ZT, Li Y, Xue ZH, Wang YH. J Struct Biol 177 358-366 (2012)
  136. A single AT-GC exchange can modulate charge transfer-induced p53-DNA dissociation. Teo RD, Smithwick ER, Migliore A, Beratan DN. Chem Commun (Camb) 55 206-209 (2018)
  137. Inactivation of Mdm2 restores apoptosis proficiency of cooperativity mutant p53 in vivo. Klimovich B, Stiewe T, Timofeev O. Cell Cycle 19 109-123 (2020)
  138. Measuring thermodynamic preferences to form non-native conformations in nucleic acids using ultraviolet melting. Rangadurai A, Shi H, Xu Y, Liu B, Abou Assi H, Boom JD, Zhou H, Kimsey IJ, Al-Hashimi HM. Proc Natl Acad Sci U S A 119 e2112496119 (2022)
  139. Sequence-specific and DNA structure-dependent interactions of Escherichia coli MutS and human p53 with DNA. Cobb AM, Jackson BR, Kim E, Bond PL, Bowater RP. Anal Biochem 442 51-61 (2013)
  140. Structural features of human histone acetyltransferase p300 and its complex with p53. Banerjee S, Arif M, Rakshit T, Roy NS, Kundu TK, Roy S, Mukhopadhyay R. FEBS Lett 586 3793-3798 (2012)
  141. Acquisition of taxane resistance by p53 inactivation in ovarian cancer cells. Shu C, Zheng X, Wuhafu A, Cicka D, Doyle S, Niu Q, Fan D, Qian K, Ivanov AA, Du Y, Mo X, Fu H. Acta Pharmacol Sin 43 2419-2428 (2022)
  142. Dynamics and Molecular Mechanisms of p53 Transcriptional Activation. Offutt TL, Ieong PU, Demir Ö, Amaro RE. Biochemistry 57 6528-6537 (2018)
  143. Preferred drifting along the DNA major groove and cooperative anchoring of the p53 core domain: mechanisms and scenarios. Pan Y, Nussinov R. J Mol Recognit 23 232-240 (2010)
  144. Reactivation of mutant p53: Constraints on mechanism highlighted by principal component analysis of the DNA binding domain. Ouaray Z, ElSawy KM, Lane DP, Essex JW, Verma C. Proteins 84 1443-1461 (2016)
  145. The ORF45 Protein of Kaposi Sarcoma-Associated Herpesvirus Is an Inhibitor of p53 Signaling during Viral Reactivation. Alzhanova D, Meyo JO, Juarez A, Dittmer DP. J Virol 95 e0145921 (2021)
  146. A single mutant, A276S of p53, turns the switch to apoptosis. Reaz S, Mossalam M, Okal A, Lim CS. Mol Pharm 10 1350-1359 (2013)
  147. Allosteric changes in HDM2 by the ATM phosphomimetic S395D mutation: implications on HDM2 function. Uhrik L, Wang L, Haronikova L, Medina-Medina I, Rebolloso-Gomez Y, Chen S, Vojtesek B, Fahraeus R, Hernychova L, Olivares-Illana V. Biochem J 476 3401-3411 (2019)
  148. Correcting errors in the BRCA1 warning system. Liang Y, Dearnaley WJ, Alden NA, Solares MJ, Gilmore BL, Pridham KJ, Varano AC, Sheng Z, Alli E, Kelly DF. DNA Repair (Amst) 73 120-128 (2019)
  149. Cryo-EM-On-a-Chip: Custom-Designed Substrates for the 3D Analysis of Macromolecules. Alden NA, Varano AC, Dearnaley WJ, Solares MJ, Luqiu WY, Liang Y, Sheng Z, McDonald SM, Damiano J, McConnell J, Dukes MJ, Kelly DF. Small 15 e1900918 (2019)
  150. Regulation of P53 signaling in breast cancer by the E3 ubiquitin ligase RNF187. Li X, Niu Z, Sun C, Zhuo S, Yang H, Yang X, Liu Y, Yan C, Li Z, Cao Q, Ji G, Ding Y, Zhuang T, Zhu J. Cell Death Dis 13 149 (2022)
  151. Single molecule studies reveal that p53 tetramers dynamically bind response elements containing one or two half sites. Ly E, Kugel JF, Goodrich JA. Sci Rep 10 16176 (2020)
  152. Structural basis for p53 binding to its nucleosomal target DNA sequence. Nishimura M, Takizawa Y, Nozawa K, Kurumizaka H. PNAS Nexus 1 pgac177 (2022)
  153. The Diarylheptanoid Curcumin Induces MYC Inhibition and Cross-Links This Oncoprotein to the Coactivator TRRAP. Mödlhammer A, Pfurtscheller S, Feichtner A, Hartl M, Schneider R. Front Oncol 11 660481 (2021)
  154. Therapeutic reactivation of mutant p53 protein by quinazoline derivatives. Sutherland HS, Hwang IY, Marshall ES, Lindsay BS, Denny WA, Gilchrist C, Joseph WR, Greenhalgh D, Richardson E, Kestell P, Ding A, Baguley BC. Invest New Drugs 30 2035-2045 (2012)
  155. article-commentary Transactivation by low and high levels of human p53 reveals new physical rules of engagement and novel super-transactivation sequences. Menendez D, Resnick MA, Haran T. Cell Cycle 11 4287-4288 (2012)
  156. Exposing the secrets of sex determination. Rohs R, Machado AC, Yang L. Nat Struct Mol Biol 22 437-438 (2015)
  157. Comment Four p(53)s in a pod. Chitayat S, Arrowsmith CH. Nat Struct Mol Biol 17 390-391 (2010)
  158. Microchip-Based Structure Determination of Disease-Relevant p53. Solares MJ, Jonaid GM, Luqiu WY, Liang Y, Evans MC, Dearnaley WJ, Sheng Z, Kelly DF. Anal Chem 92 15558-15564 (2020)
  159. Phosphomimetic Mutation Destabilizes the Central Core Domain of Human p53. Luwang JW, Natesh R. IUBMB Life 70 1023-1031 (2018)
  160. Sequence Properties of An Intramolecular Interaction That Inhibits p53 DNA Binding. Gregory E, Daughdrill GW. Biomolecules 12 1558 (2022)
  161. Chemical principles additive model aligns low consensus DNA targets of p53 tumor suppressor protein. Thayer KM, Han ISM. Comput Biol Chem 68 186-193 (2017)
  162. Cluster Analysis of p53 Binding Site Sequences Reveals Subsets with Different Functions. Lim JH, Latysheva NS, Iggo RD, Barker D. Cancer Inform 15 199-209 (2016)
  163. High-Resolution Imaging of Human Cancer Proteins Using Microprocessor Materials. Solares MJ, Jonaid GM, Luqiu WY, Berry S, Khadela J, Liang Y, Evans MC, Pridham KJ, Dearnaley WJ, Sheng Z, Kelly DF. Chembiochem 23 e202200310 (2022)
  164. Novel protein contact points among TP53 and minichromosome maintenance complex proteins 2, 3, and 5. Schaefer-Ramadan S, Aleksic J, Al-Thani NM, Malek JA. Cancer Med 11 4989-5000 (2022)
  165. Relative Stability of Wild-Type and Mutant p53 Core Domain: A Molecular Dynamic Study. Rohani L, Morton DJ, Wang XQ, Chaudhary J. J Comput Biol 23 80-89 (2016)
  166. Structural Basis of Mutation-Dependent p53 Tetramerization Deficiency. Rigoli M, Spagnolli G, Lorengo G, Monti P, Potestio R, Biasini E, Inga A. Int J Mol Sci 23 7960 (2022)
  167. The mutational spectrum in whole exon of p53 in oral squamous cell carcinoma and its clinical implications. Hyodo T, Kuribayashi N, Fukumoto C, Komiyama Y, Shiraishi R, Kamimura R, Sawatani Y, Yaguchi E, Hasegawa T, Izumi S, Wakui T, Nakashiro KI, Uchida D, Kawamata H. Sci Rep 12 21695 (2022)
  168. A cytosolic mutp53(E285K) variant confers chemoresistance of malignant melanoma. Dunsche L, Ivanisenko N, Riemann S, Schindler S, Beissert S, Angeli C, Kreis S, Tavassoli M, Lavrik I, Kulms D. Cell Death Dis 14 831 (2023)
  169. A molecular mechanism for the "digital" response of p53 to stress. Safieh J, Chazan A, Saleem H, Vyas P, Danin-Poleg Y, Ron D, Haran TE. Proc Natl Acad Sci U S A 120 e2305713120 (2023)
  170. Complete Models of p53 Better Inform the Impact of Hotspot Mutations. Solares MJ, Kelly DF. Int J Mol Sci 23 15267 (2022)
  171. Conformational selection underpins recognition of multiple DNA sequences by proteins and consequent functional actions. Naiya G, Raha P, Mondal MK, Pal U, Saha R, Chaudhuri S, Batabyal S, Kumar Pal S, Bhattacharyya D, Maiti NC, Roy S. Phys Chem Chem Phys 18 21618-21628 (2016)
  172. Elucidating structural variability in p53 conformers using combinatorial refinement strategies and molecular dynamics. Parves MR, Solares MJ, Dearnaley WJ, Kelly DF. Cancer Biol Ther 25 2290732 (2024)
  173. Homologs of the Tumor Suppressor Protein p53: A Bioinformatics Study for Drug Design. Thayer KM, Carcamo C. MOJ Proteom Bioinform 9 5-14 (2020)
  174. Improving Reporter Gene Assay Methodology for Evaluating the Ability of Compounds to Restore P53 Activity. Han X, Du J, Shi D, Li L, Li D, Zhang K, Lin S, Zhu J, Huang Z, Zhou Y, Fang Z. Int J Mol Sci 23 13867 (2022)
  175. Most Probable Druggable Pockets in Mutant p53-Arg175His Clusters Extracted from Gaussian Accelerated Molecular Dynamics Simulations. Mustafa M, Gharaibeh M. Protein J 41 27-43 (2022)
  176. Radioprobing the conformation of DNA in a p53-DNA complex. Karamychev VN, Wang D, Mazur SJ, Appella E, Neumann RD, Zhurkin VB, Panyutin IG. Int J Radiat Biol 88 1039-1045 (2012)
  177. Role of p53 in transcriptional repression of SVCT2. Kim EH, Koh DI, Ryu YS, Park SS, Hong SW, Moon JH, Shin JS, Kim MJ, Kim DY, Hong JK, Jeong HR, Yun H, Shin JY, Kim J, Park YS, Kim DM, Jin DH. Mol Biol Rep 48 1651-1658 (2021)
  178. Structural assessment of the full-length wild-type tumor suppressor protein p53 by mass spectrometry-guided computational modeling. Di Ianni A, Tüting C, Kipping M, Ihling CH, Köppen J, Iacobucci C, Arlt C, Kastritis PL, Sinz A. Sci Rep 13 8497 (2023)
  179. Temporal gene regulation by p53 is associated with the rotational setting of its binding sites in nucleosomes. Freewoman JM, Snape R, Cui F. Cell Cycle 20 792-807 (2021)
  180. Unraveling the Structural Changes in the DNA-Binding Region of Tumor Protein p53 (TP53) upon Hotspot Mutation p53 Arg248 by Comparative Computational Approach. Balasundaram A, Doss CGP. Int J Mol Sci 23 15499 (2022)
  181. Variable Regions of p53 Isoforms Allosterically Hard Code DNA Interaction. Armour-Garb I, Han ISM, Cowan BS, Thayer KM. J Phys Chem B 126 8495-8507 (2022)