2adm Citations

Differential binding of S-adenosylmethionine S-adenosylhomocysteine and Sinefungin to the adenine-specific DNA methyltransferase M.TaqI.

J. Mol. Biol. 265 56-67 (1997)
Related entries: 1aqi, 1aqj

Cited: 62 times
EuropePMC logo PMID: 8995524

Abstract

The crystal structures of the binary complexes of the DNA methyltransferase M.TaqI with the inhibitor Sinefungin and the reaction product S-adenosyl-L-homocysteine were determined, both at 2.6 A resolution. Structural comparison of these binary complexes with the complex formed by M.TaqI and the cofactor S-adenosyl-L-methionine suggests that the key element for molecular recognition of these ligands is the binding of their adenosine part in a pocket, and discrimination between cofactor, reaction product and inhibitor is mediated by different conformations of these molecules; the methionine part of S-adenosyl-L-methionine is located in the binding cleft, whereas the amino acid moieties of Sinefungin and S-adenosyl-L-homocysteine are in a different orientation and interact with the active site amino acid residues 105NPPY108. Dissociation constants for the complexes of M.TaqI with the three ligands were determined spectrofluorometrically. Sinefungin binds more strongly than S-adenosyl-L-homocysteine or S-adenosyl-L-methionine, with KD=0.34 microM, 2.4 microM and 2.0 microM, respectively.

Reviews - 2adm mentioned but not cited (1)

  1. Many paths to methyltransfer: a chronicle of convergence. Schubert HL, Blumenthal RM, Cheng X. Trends Biochem. Sci. 28 329-335 (2003)

Articles - 2adm mentioned but not cited (8)

  1. Natural history of S-adenosylmethionine-binding proteins. Kozbial PZ, Mushegian AR. BMC Struct. Biol. 5 19 (2005)
  2. MedusaScore: an accurate force field-based scoring function for virtual drug screening. Yin S, Biedermannova L, Vondrasek J, Dokholyan NV. J Chem Inf Model 48 1656-1662 (2008)
  3. On the molecular discrimination between adenine and guanine by proteins. Nobeli I, Laskowski RA, Valdar WS, Thornton JM. Nucleic Acids Res. 29 4294-4309 (2001)
  4. Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. Sette M, Spurio R, van Tilborg P, Gualerzi CO, Boelens R. RNA 5 82-92 (1999)
  5. Partial order optimum likelihood (POOL): maximum likelihood prediction of protein active site residues using 3D Structure and sequence properties. Tong W, Wei Y, Murga LF, Ondrechen MJ, Williams RJ. PLoS Comput. Biol. 5 e1000266 (2009)
  6. Crystal structure of threonine synthase from Arabidopsis thaliana. Thomazeau K, Curien G, Dumas R, Biou V. Protein Sci. 10 638-648 (2001)
  7. A new type of protein lysine methyltransferase trimethylates Lys-79 of elongation factor 1A. Dzialo MC, Travaglini KJ, Shen S, Loo JA, Clarke SG. Biochem. Biophys. Res. Commun. 455 382-389 (2014)
  8. Biochemical and structural characterization of a DNA N6-adenine methyltransferase from Helicobacter pylori. Ma B, Ma J, Liu D, Guo L, Chen H, Ding J, Liu W, Zhang H. Oncotarget 7 40965-40977 (2016)


Reviews citing this publication (6)

  1. Type I restriction enzymes and their relatives. Loenen WA, Dryden DT, Raleigh EA, Wilson GG. Nucleic Acids Res. 42 20-44 (2014)
  2. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, Zhang H, Zhang L, Xu Z. Curr. Med. Chem. 17 4052-4071 (2010)
  3. Structure, function and mechanism of exocyclic DNA methyltransferases. Bheemanaik S, Reddy YV, Rao DN. Biochem. J. 399 177-190 (2006)
  4. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Jeltsch A. Chembiochem 3 274-293 (2002)
  5. Fold change in evolution of protein structures. Grishin NV. J. Struct. Biol. 134 167-185 (2001)
  6. Involvement of DNA methylation in human carcinogenesis. Schmutte C, Jones PA. Biol. Chem. 379 377-388 (1998)

Articles citing this publication (47)

  1. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. EMBO J. 21 2757-2768 (2002)
  2. A new method to detect related function among proteins independent of sequence and fold homology. Schmitt S, Kuhn D, Klebe G. J. Mol. Biol. 323 387-406 (2002)
  3. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. McDaniel BA, Grundy FJ, Artsimovitch I, Henkin TM. Proc. Natl. Acad. Sci. U.S.A. 100 3083-3088 (2003)
  4. RNA methylation under heat shock control. Bügl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U. Mol. Cell 6 349-360 (2000)
  5. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Holz B, Klimasauskas S, Serva S, Weinhold E. Nucleic Acids Res. 26 1076-1083 (1998)
  6. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine. Djordjevic S, Stock AM. Structure 5 545-558 (1997)
  7. Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii. Khan A, Taylor S, Su C, Mackey AJ, Boyle J, Cole R, Glover D, Tang K, Paulsen IT, Berriman M, Boothroyd JC, Pfefferkorn ER, Dubey JP, Ajioka JW, Roos DS, Wootton JC, Sibley LD. Nucleic Acids Res. 33 2980-2992 (2005)
  8. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Korolev S, Ikeguchi Y, Skarina T, Beasley S, Arrowsmith C, Edwards A, Joachimiak A, Pegg AE, Savchenko A. Nat. Struct. Biol. 9 27-31 (2002)
  9. Structure of the YibK methyltransferase from Haemophilus influenzae (HI0766): a cofactor bound at a site formed by a knot. Lim K, Zhang H, Tempczyk A, Krajewski W, Bonander N, Toedt J, Howard A, Eisenstein E, Herzberg O. Proteins 51 56-67 (2003)
  10. Protein structure alignment using a genetic algorithm. Szustakowski JD, Weng Z. Proteins 38 428-440 (2000)
  11. Structure of RsrI methyltransferase, a member of the N6-adenine beta class of DNA methyltransferases. Scavetta RD, Thomas CB, Walsh MA, Szegedi S, Joachimiak A, Gumport RI, Churchill ME. Nucleic Acids Res. 28 3950-3961 (2000)
  12. The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C. J. Mol. Biol. 289 277-291 (1999)
  13. The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate. Foster PG, Nunes CR, Greene P, Moustakas D, Stroud RM. Structure 11 1609-1620 (2003)
  14. Crystal structure of a putative type I restriction-modification S subunit from Mycoplasma genitalium. Calisto BM, Pich OQ, Piñol J, Fita I, Querol E, Carpena X. J. Mol. Biol. 351 749-762 (2005)
  15. Crystal structure of protein isoaspartyl methyltransferase: a catalyst for protein repair. Skinner MM, Puvathingal JM, Walter RL, Friedman AM. Structure 8 1189-1201 (2000)
  16. Synthesis of S-adenosyl-L-homocysteine capture compounds for selective photoinduced isolation of methyltransferases. Dalhoff C, Hüben M, Lenz T, Poot P, Nordhoff E, Köster H, Weinhold E. Chembiochem 11 256-265 (2010)
  17. Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in streptomycetes. Huh JH, Kim DJ, Zhao XQ, Li M, Jo YY, Yoon TM, Shin SK, Yong JH, Ryu YW, Yang YY, Suh JW. FEMS Microbiol. Lett. 238 439-447 (2004)
  18. Structural basis of tRNA modification with CO2 fixation and methylation by wybutosine synthesizing enzyme TYW4. Suzuki Y, Noma A, Suzuki T, Ishitani R, Nureki O. Nucleic Acids Res. 37 2910-2925 (2009)
  19. Chemical display of thymine residues flipped out by DNA methyltransferases. Serva S, Weinhold E, Roberts RJ, Klimasauskas S. Nucleic Acids Res. 26 3473-3479 (1998)
  20. Kinetics of methylation and binding of DNA by the EcoRV adenine-N6 methyltransferase. Jeltsch A, Friedrich T, Roth M. J. Mol. Biol. 275 747-758 (1998)
  21. Crystal structure of MboIIA methyltransferase. Osipiuk J, Walsh MA, Joachimiak A. Nucleic Acids Res. 31 5440-5448 (2003)
  22. C5-DNA methyltransferase inhibitors: from screening to effects on zebrafish embryo development. Ceccaldi A, Rajavelu A, Champion C, Rampon C, Jurkowska R, Jankevicius G, Sénamaud-Beaufort C, Ponger L, Gagey N, Ali HD, Tost J, Vriz S, Ros S, Dauzonne D, Jeltsch A, Guianvarc'h D, Arimondo PB. Chembiochem 12 1337-1345 (2011)
  23. Vesicular stomatitis viruses resistant to the methylase inhibitor sinefungin upregulate RNA synthesis and reveal mutations that affect mRNA cap methylation. Li J, Chorba JS, Whelan SP. J. Virol. 81 4104-4115 (2007)
  24. Substrate binding in vitro and kinetics of RsrI [N6-adenine] DNA methyltransferase. Szegedi SS, Reich NO, Gumport RI. Nucleic Acids Res. 28 3962-3971 (2000)
  25. RNA:(guanine-N2) methyltransferases RsmC/RsmD and their homologs revisited--bioinformatic analysis and prediction of the active site based on the uncharacterized Mj0882 protein structure. Bujnicki JM, Rychlewski L. BMC Bioinformatics 3 10 (2002)
  26. Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase. Guelorget A, Roovers M, Guérineau V, Barbey C, Li X, Golinelli-Pimpaneau B. Nucleic Acids Res. 38 6206-6218 (2010)
  27. Quantitative labeling of long plasmid DNA with nanometer precision. Pljevaljcić G, Schmidt F, Scheidig AJ, Lurz R, Weinhold E. Chembiochem 8 1516-1519 (2007)
  28. Identification of DNMT1 selective antagonists using a novel scintillation proximity assay. Kilgore JA, Du X, Melito L, Wei S, Wang C, Chin HG, Posner B, Pradhan S, Ready JM, Williams NS. J. Biol. Chem. 288 19673-19684 (2013)
  29. A theoretical examination of the factors controlling the catalytic efficiency of the DNA-(adenine-N6)-methyltransferase from Thermus aquaticus. Newby ZE, Lau EY, Bruice TC. Proc. Natl. Acad. Sci. U.S.A. 99 7922-7927 (2002)
  30. Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life. Fislage M, Roovers M, Tuszynska I, Bujnicki JM, Droogmans L, Versées W. Nucleic Acids Res. 40 5149-5161 (2012)
  31. Structural basis for binding of RNA and cofactor by a KsgA methyltransferase. Tu C, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X. Structure 17 374-385 (2009)
  32. Development of a universal radioactive DNA methyltransferase inhibition test for high-throughput screening and mechanistic studies. Gros C, Chauvigné L, Poulet A, Menon Y, Ausseil F, Dufau I, Arimondo PB. Nucleic Acids Res. 41 e185 (2013)
  33. Hyperthermophilic DNA methyltransferase M.PabI from the archaeon Pyrococcus abyssi. Watanabe M, Yuzawa H, Handa N, Kobayashi I. Appl. Environ. Microbiol. 72 5367-5375 (2006)
  34. Substrate-dependent dihydroxylation of substituted cyclopentenes: toward the syntheses of carbocyclic sinefungin and noraristeromycin. Jiang MX, Jin B, Gage JL, Priour A, Savela G, Miller MJ. J. Org. Chem. 71 4164-4169 (2006)
  35. Circular permutation of DNA cytosine-N4 methyltransferases: in vivo coexistence in the BcnI system and in vitro probing by hybrid formation. Vilkaitis G, Lubys A, Merkiene E, Timinskas A, Janulaitis A, Klimasauskas S. Nucleic Acids Res. 30 1547-1557 (2002)
  36. Functional mapping of the EcoRV DNA methyltransferase by random mutagenesis and screening for catalytically inactive mutants. Friedrich T, Roth M, Helm-Kruse S, Jeltsch A. Biol. Chem. 379 475-480 (1998)
  37. Enzyme-mediated cytosine deamination by the bacterial methyltransferase M.MspI. Zingg JM, Shen JC, Jones PA. Biochem. J. 332 ( Pt 1) 223-230 (1998)
  38. Sinefungin, a natural nucleoside analogue of S-adenosylmethionine, inhibits Streptococcus pneumoniae biofilm growth. Yadav MK, Park SW, Chae SW, Song JJ. Biomed Res Int 2014 156987 (2014)
  39. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1. Guja KE, Venkataraman K, Yakubovskaya E, Shi H, Mejia E, Hambardjieva E, Karzai AW, Garcia-Diaz M. Nucleic Acids Res. 41 7947-7959 (2013)
  40. Sinefungin resistance of Saccharomyces cerevisiae arising from Sam3 mutations that inactivate the AdoMet transporter or from increased expression of AdoMet synthase plus mRNA cap guanine-N7 methyltransferase. Zheng S, Shuman S, Schwer B. Nucleic Acids Res. 35 6895-6903 (2007)
  41. Structural and functional analyses of the archaeal tRNA m2G/m22G10 methyltransferase aTrm11 provide mechanistic insights into site specificity of a tRNA methyltransferase that contains common RNA-binding modules. Hirata A, Nishiyama S, Tamura T, Yamauchi A, Hori H. Nucleic Acids Res. 44 6377-6390 (2016)
  42. 1H and 13C NMR study of the complex formed by copper(II) with the nucleoside antibiotic sinefungin. Cappannelli M, Gaggelli E, Jezowska-Bojczuk M, Molteni E, Mucha A, Porciatti E, Valensin D, Valensin G. J. Inorg. Biochem. 101 1005-1012 (2007)
  43. Structure of Type IIL Restriction-Modification Enzyme MmeI in Complex with DNA Has Implications for Engineering New Specificities. Callahan SJ, Luyten YA, Gupta YK, Wilson GG, Roberts RJ, Morgan RD, Aggarwal AK. PLoS Biol. 14 e1002442 (2016)
  44. Cysteine methylation controls radical generation in the Cfr radical AdoMet rRNA methyltransferase. Challand MR, Salvadori E, Driesener RC, Kay CW, Roach PL, Spencer J. PLoS ONE 8 e67979 (2013)
  45. Binding of MmeI restriction-modification enzyme to its specific recognition sequence is stimulated by S-adenosyl-L-methionine. Nakonieczna J, Zmijewski JW, Banecki B, Podhajska AJ. Mol. Biotechnol. 37 127-135 (2007)
  46. Crystallization and initial X-ray diffraction analysis of the tellurite-resistance S-adenosyl-L-methionine transferase protein TehB from Escherichia coli. Choudhury HG, Beis K. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 1496-1499 (2010)
  47. High-throughput screening-compatible assays of As(III) S-adenosylmethionine methyltransferase activity. Dong H, Xu W, Pillai JK, Packianathan C, Rosen BP. Anal. Biochem. 480 67-73 (2015)


Related citations provided by authors (3)

  1. Universal Catalytic Domain Structure of Adomet-Dependent Methyltransferases. Schluckebier G, O'Gara M, Saenger W, Cheng X J. Mol. Biol. 247 16- (1995)
  2. A Model for DNA Binding and Enzyme Action Derived from Crystallographic Studies of the TaqI N6-Adenine-Methyltransferase. Schluckebier G, Labahn J, Granzin J, Schildkraut I, Saenger W Gene 157 131- (1995)
  3. Three-Dimensional Structure of the Adenine-Specific DNA Methyltransferase M.Taq I in Complex with the Cofactor S-Adenosylmethionine. Labahn J, Granzin J, Schluckebier G, Robinson DP, Jack WE, Schildkraut I, Saenger W Proc. Natl. Acad. Sci. U.S.A. 91 10957- (1994)