2aas Citations

High-resolution three-dimensional structure of ribonuclease A in solution by nuclear magnetic resonance spectroscopy.

J Mol Biol 229 722-34 (1993)
Cited: 104 times
EuropePMC logo PMID: 8381876

Abstract

High-resolution three-dimensional structures of bovine pancreatic ribonuclease A in aqueous solution have been determined by nuclear magnetic resonance (NMR) spectroscopy combined with restrained molecular dynamics calculations. The structures are based on: (1) 464 interproton distance constraints with accurate upper and lower limits, determined from build-up rates of nuclear Overhauser effects (NOE) by using the complete relaxation matrix; (2) 999 more approximate upper limits for interproton distances; and (3) 42 dihedral angle constraints (37 for phi and 5 for chi 1). A total of 16 structures were calculated, which show a root-mean-square (r.m.s.) deviation of 0.66 A for the backbone atoms and 1.68 A for all heavy-atoms. The converged structures are highly similar to those found in the crystal state. r.m.s. deviation of backbone atom positions in the crystal as compared to those in the average solution structure is 0.92 A. Observed differences are concentrated in loop regions and in the neighborhood of His119 and His48 side-chains. Dynamic aspects, such as H/D amide proton exchange and side-chain mobility have been examined.

Reviews - 2aas mentioned but not cited (1)

  1. 2020 FDA TIDES (Peptides and Oligonucleotides) Harvest. Al Musaimi O, Al Shaer D, Albericio F, de la Torre BG. Pharmaceuticals (Basel) 14 145 (2021)

Articles - 2aas mentioned but not cited (20)

  1. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule. Brookes E, Demeler B, Rosano C, Rocco M. Eur Biophys J 39 423-435 (2010)
  2. Search for allosteric disulfide bonds in NMR structures. Schmidt B, Hogg PJ. BMC Struct. Biol. 7 49 (2007)
  3. A conserved mode of protein recognition and binding in a ParD-ParE toxin-antitoxin complex. Dalton KM, Crosson S. Biochemistry 49 2205-2215 (2010)
  4. PRIMO: A Transferable Coarse-grained Force Field for Proteins. Kar P, Gopal SM, Cheng YM, Predeus A, Feig M. J Chem Theory Comput 9 3769-3788 (2013)
  5. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank. Sikic K, Tomic S, Carugo O. Open Biochem J 4 83-95 (2010)
  6. Observation of the closing of individual hydrogen bonds during TFE-induced helix formation in a peptide. Jaravine VA, Alexandrescu AT, Grzesiek S. Protein Sci. 10 943-950 (2001)
  7. All-atom ensemble modeling to analyze small-angle x-ray scattering of glycosylated proteins. Guttman M, Weinkam P, Sali A, Lee KK. Structure 21 321-331 (2013)
  8. On side-chain conformational entropy of proteins. Zhang J, Liu JS. PLoS Comput. Biol. 2 e168 (2006)
  9. X-ray vs. NMR structures as templates for computational protein design. Schneider M, Fu X, Keating AE. Proteins 77 97-110 (2009)
  10. Accurate protein structure modeling using sparse NMR data and homologous structure information. Thompson JM, Sgourakis NG, Liu G, Rossi P, Tang Y, Mills JL, Szyperski T, Montelione GT, Baker D. Proc. Natl. Acad. Sci. U.S.A. 109 9875-9880 (2012)
  11. The dual role of a loop with low loop contact distance in folding and domain swapping. Linhananta A, Zhou H, Zhou Y. Protein Sci 11 1695-1701 (2002)
  12. A generic force field for protein coarse-grained molecular dynamics simulation. Gu J, Bai F, Li H, Wang X. Int J Mol Sci 13 14451-14469 (2012)
  13. A score of the ability of a three-dimensional protein model to retrieve its own sequence as a quantitative measure of its quality and appropriateness. Martínez-Castilla LP, Rodríguez-Sotres R. PLoS ONE 5 e12483 (2010)
  14. Propensity for C-terminal domain swapping correlates with increased regional flexibility in the C-terminus of RNase A. Miller KH, Marqusee S. Protein Sci. 20 1735-1744 (2011)
  15. Quantitative first principles calculations of protein circular dichroism in the near-ultraviolet. Li Z, Hirst JD. Chem Sci 8 4318-4333 (2017)
  16. The effects of rigid motions on elastic network model force constants. Lezon TR. Proteins 80 1133-1142 (2012)
  17. An effective evolutionary algorithm for protein folding on 3D FCC HP model by lattice rotation and generalized move sets. Tsay JJ, Su SC. Proteome Sci 11 S19 (2013)
  18. Generation of a flexible loop structural ensemble and its application to induced-fit structural changes following ligand binding. Watanabe YS, Fukunishi Y, Nakamura H. Biophysics (Nagoya-shi) 2 1-12 (2006)
  19. A round-robin approach provides a detailed assessment of biomolecular small-angle scattering data reproducibility and yields consensus curves for benchmarking. Trewhella J, Vachette P, Bierma J, Blanchet C, Brookes E, Chakravarthy S, Chatzimagas L, Cleveland TE, Cowieson N, Crossett B, Duff AP, Franke D, Gabel F, Gillilan RE, Graewert M, Grishaev A, Guss JM, Hammel M, Hopkins J, Huang Q, Hub JS, Hura GL, Irving TC, Jeffries CM, Jeong C, Kirby N, Krueger S, Martel A, Matsui T, Li N, Pérez J, Porcar L, Prangé T, Rajkovic I, Rocco M, Rosenberg DJ, Ryan TM, Seifert S, Sekiguchi H, Svergun D, Teixeira S, Thureau A, Weiss TM, Whitten AE, Wood K, Zuo X. Acta Crystallogr D Struct Biol 78 1315-1336 (2022)
  20. Long term storage of miRNA at room and elevated temperatures in a silica sol-gel matrix. Chauhan R, Kalbfleisch TS, Potnis CS, Bansal M, Linder MW, Keynton RS, Gupta G. RSC Adv 11 31505-31510 (2021)


Reviews citing this publication (3)

  1. Probing the partly folded states of proteins by limited proteolysis. Fontana A, Polverino de Laureto P, De Filippis V, Scaramella E, Zambonin M. Fold Des 2 R17-26 (1997)
  2. Disulfide-linked protein folding pathways. Mamathambika BS, Bardwell JC. Annu. Rev. Cell Dev. Biol. 24 211-235 (2008)
  3. Folding studies on ribonuclease A, a model protein. Neira JL, Rico M. Fold Des 2 R1-11 (1997)

Articles citing this publication (80)

  1. Combining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins. Georgescu RE, Alexov EG, Gunner MR. Biophys. J. 83 1731-1748 (2002)
  2. The structures of RNase A complexed with 3'-CMP and d(CpA): active site conformation and conserved water molecules. Zegers I, Maes D, Dao-Thi MH, Poortmans F, Palmer R, Wyns L. Protein Sci. 3 2322-2339 (1994)
  3. Hydrogen peroxide-induced structural alterations of RNAse A. Lasch P, Petras T, Ullrich O, Backmann J, Naumann D, Grune T. J. Biol. Chem. 276 9492-9502 (2001)
  4. Tyrosine hydrogen bonds make a large contribution to protein stability. Pace CN, Horn G, Hebert EJ, Bechert J, Shaw K, Urbanikova L, Scholtz JM, Sevcik J. J. Mol. Biol. 312 393-404 (2001)
  5. Effects of glycosylation on protein structure and dynamics in ribonuclease B and some of its individual glycoforms. Joao HC, Dwek RA. Eur. J. Biochem. 218 239-244 (1993)
  6. Minor folding defects trigger local modification of glycoproteins by the ER folding sensor GT. Ritter C, Quirin K, Kowarik M, Helenius A. EMBO J. 24 1730-1738 (2005)
  7. Effect of urea on peptide conformation in water: molecular dynamics and experimental characterization. Caballero-Herrera A, Nordstrand K, Berndt KD, Nilsson L. Biophys. J. 89 842-857 (2005)
  8. Protein titration in the crystal state. Berisio R, Lamzin VS, Sica F, Wilson KS, Zagari A, Mazzarella L. J. Mol. Biol. 292 845-854 (1999)
  9. The ultrahigh resolution crystal structure of ribonuclease A containing an isoaspartyl residue: hydration and sterochemical analysis. Esposito L, Vitagliano L, Sica F, Sorrentino G, Zagari A, Mazzarella L. J. Mol. Biol. 297 713-732 (2000)
  10. Hydrogen exchange in ribonuclease A and ribonuclease S: evidence for residual structure in the unfolded state under native conditions. Neira JL, Sevilla P, Menéndez M, Bruix M, Rico M. J. Mol. Biol. 285 627-643 (1999)
  11. Subtle functional collective motions in pancreatic-like ribonucleases: from ribonuclease A to angiogenin. Merlino A, Vitagliano L, Ceruso MA, Mazzarella L. Proteins 53 101-110 (2003)
  12. Thermal unfolding of ribonuclease A in phosphate at neutral pH: deviations from the two-state model. Stelea SD, Pancoska P, Benight AS, Keiderling TA. Protein Sci. 10 970-978 (2001)
  13. Dynamic properties of the N-terminal swapped dimer of ribonuclease A. Merlino A, Vitagliano L, Ceruso MA, Mazzarella L. Biophys. J. 86 2383-2391 (2004)
  14. Global and local motions in ribonuclease A: a molecular dynamics study. Merlino A, Vitagliano L, Ceruso MA, Di Nola A, Mazzarella L. Biopolymers 65 274-283 (2002)
  15. Reversible substrate-induced domain motions in ribonuclease A. Vitagliano L, Merlino A, Zagari A, Mazzarella L. Proteins 46 97-104 (2002)
  16. A general two-process model describes the hydrogen exchange behavior of RNase A in unfolding conditions. Loh SN, Rohl CA, Kiefhaber T, Baldwin RL. Proc. Natl. Acad. Sci. U.S.A. 93 1982-1987 (1996)
  17. Three-dimensional solution structure of human angiogenin determined by 1H,15N-NMR spectroscopy--characterization of histidine protonation states and pKa values. Lequin O, Thüring H, Robin M, Lallemand JY. Eur. J. Biochem. 250 712-726 (1997)
  18. Effect of the three-dimensional structure on the deamidation reaction of ribonuclease A. Capasso S, Salvadori S. J. Pept. Res. 54 377-382 (1999)
  19. Non-invasive iontophoretic delivery of enzymatically active ribonuclease A (13.6 kDa) across intact porcine and human skins. Dubey S, Kalia YN. J Control Release 145 203-209 (2010)
  20. Calculations of the CD spectrum of bovine pancreatic ribonuclease. Kurapkat G, Krüger P, Wollmer A, Fleischhauer J, Kramer B, Zobel E, Koslowski A, Botterweck H, Woody RW. Biopolymers 41 267-287 (1997)
  21. Interaction of semisynthetic variants of RNase A with ribonuclease inhibitor. Neumann U, Hofsteenge J. Protein Sci. 3 248-256 (1994)
  22. Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Catanzano F, Graziano G, Capasso S, Barone G. Protein Sci. 6 1682-1693 (1997)
  23. Three-dimensional structure of the complexes of ribonuclease A with 2',5'-CpA and 3',5'-d(CpA) in aqueous solution, as obtained by NMR and restrained molecular dynamics. Toiron C, González C, Bruix M, Rico M. Protein Sci. 5 1633-1647 (1996)
  24. Limited proteolysis of ribonuclease A with thermolysin in trifluoroethanol. Polverino de Laureto P, Scaramella E, De Filippis V, Bruix M, Rico M, Fontana A. Protein Sci. 6 860-872 (1997)
  25. Oligomerization and aggregation of bovine pancreatic ribonuclease A: characteristic events observed by FTIR spectroscopy. Yan YB, Zhang J, He HW, Zhou HM. Biophys. J. 90 2525-2533 (2006)
  26. Optimization of solvation models for predicting the structure of surface loops in proteins. Das B, Meirovitch H. Proteins 43 303-314 (2001)
  27. The solution structure of a cytotoxic ribonuclease from the oocytes of Rana catesbeiana (bullfrog). Chang CF, Chen C, Chen YC, Hom K, Huang RF, Huang TH. J. Mol. Biol. 283 231-244 (1998)
  28. NMR of hydrogen bonding in cold-shock protein A and an analysis of the influence of crystallographic resolution on comparisons of hydrogen bond lengths. Alexandrescu AT, Snyder DR, Abildgaard F. Protein Sci. 10 1856-1868 (2001)
  29. NMR structural determinants of eosinophil cationic protein binding to membrane and heparin mimetics. García-Mayoral MF, Moussaoui M, de la Torre BG, Andreu D, Boix E, Nogués MV, Rico M, Laurents DV, Bruix M. Biophys. J. 98 2702-2711 (2010)
  30. Ribonuclease A suggests how proteins self-chaperone against amyloid fiber formation. Teng PK, Anderson NJ, Goldschmidt L, Sawaya MR, Sambashivan S, Eisenberg D. Protein Sci 21 26-37 (2012)
  31. Conformational studies of the Man8 oligosaccharide on native ribonuclease B and on the reduced and denatured protein. González L, Bruix M, Díaz-Mauriño T, Feizi T, Rico M, Solís D, Jiménez-Barbero J. Arch. Biochem. Biophys. 383 17-27 (2000)
  32. Dynamics of ribonuclease A and ribonuclease S: computational and experimental studies. Nadig G, Ratnaparkhi GS, Varadarajan R, Vishveshwara S. Protein Sci. 5 2104-2114 (1996)
  33. Solution structure of the cytotoxic RNase 4 from oocytes of bullfrog Rana catesbeiana. Hsu CH, Liao YD, Pan YR, Chen LW, Wu SH, Leu YJ, Chen C. J. Mol. Biol. 326 1189-1201 (2003)
  34. Multiple solvent crystal structures of ribonuclease A: an assessment of the method. Dechene M, Wink G, Smith M, Swartz P, Mattos C. Proteins 76 861-881 (2009)
  35. Electrically-assisted delivery of an anionic protein across intact skin: cathodal iontophoresis of biologically active ribonuclease T1. Dubey S, Kalia YN. J Control Release 152 356-362 (2011)
  36. Probing the unfolding region of ribonuclease A by site-directed mutagenesis. Köditz J, Ulbrich-Hofmann R, Arnold U. Eur. J. Biochem. 271 4147-4156 (2004)
  37. The Electrostatic Interaction of Rigid, Globular Proteins with Arbitrary Charge Distributions. McClurg RB, Zukoski CF. J Colloid Interface Sci 208 529-542 (1998)
  38. The occupancy of two distinct conformations by active-site histidine-119 in crystals of ribonuclease is modulated by pH. de Mel VS, Doscher MS, Martin PD, Edwards BF. FEBS Lett. 349 155-160 (1994)
  39. Multiple conformations of the sea anemone polypeptide anthopleurin-A in solution. Scanlon MJ, Norton RS. Protein Sci. 3 1121-1124 (1994)
  40. Native-state hydrogen-exchange studies of a fragment complex can provide structural information about the isolated fragments. Chakshusmathi G, Ratnaparkhi GS, Madhu PK, Varadarajan R. Proc. Natl. Acad. Sci. U.S.A. 96 7899-7904 (1999)
  41. Pressure-jump-induced kinetics reveals a hydration dependent folding/unfolding mechanism of ribonuclease A. Font J, Torrent J, Ribó M, Laurents DV, Balny C, Vilanova M, Lange R. Biophys. J. 91 2264-2274 (2006)
  42. Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments. Cohen LS, Arshava B, Neumoin A, Becker JM, Güntert P, Zerbe O, Naider F. Biochim. Biophys. Acta 1808 2674-2684 (2011)
  43. Mapping oxygen accessibility to ribonuclease a using high-resolution NMR relaxation spectroscopy. Teng CL, Bryant RG. Biophys. J. 86 1713-1725 (2004)
  44. Carrier protein-modulated presentation and recognition of an N-glycan: observations on the interactions of Man(8) glycoform of ribonuclease B with conglutinin. Solís D, Bruix M, González L, Díaz-Mauriño T, Rico M, Jiménez-Barbero J, Feizi T. Glycobiology 11 31-36 (2001)
  45. Correlation of folding kinetics with the number and isomerization states of prolines in three homologous proteins of the RNase family. Pradeep L, Shin HC, Scheraga HA. FEBS Lett. 580 5029-5032 (2006)
  46. On the thermal stability of the two dimeric forms of ribonuclease A. Bucci E, Vitagliano L, Barone R, Sorrentino S, D'Alessio G, Graziano G. Biophys. Chem. 116 89-95 (2005)
  47. Destabilizing mutations alter the hydrogen exchange mechanism in ribonuclease A. Bruix M, Ribó M, Benito A, Laurents DV, Rico M, Vilanova M. Biophys. J. 94 2297-2305 (2008)
  48. Pressure- and temperature-induced unfolding studies: thermodynamics of core hydrophobicity and packing of ribonuclease A. Font J, Benito A, Torrent J, Lange R, Ribó M, Vilanova M. Biol. Chem. 387 285-296 (2006)
  49. Structure and dynamics of the potato carboxypeptidase inhibitor by 1H and 15N NMR. González C, Neira JL, Ventura S, Bronsoms S, Rico M, Avilés FX. Proteins 50 410-422 (2003)
  50. The (1)H, (13)C, (15)N resonance assignment, solution structure, and residue level stability of eosinophil cationic protein/RNase 3 determined by NMR spectroscopy. Laurents DV, Bruix M, Jiménez MA, Santoro J, Boix E, Moussaoui M, Nogués MV, Rico M. Biopolymers 91 1018-1028 (2009)
  51. The structural and functional studies of His119 and His12 in RNase A via chemical modification. Safarian S, Moosavi-Movahedi AA, Hosseinkhani S, Xia Z, Habibi-Rezaei M, Hosseini G, Sorenson C, Sheibani N. J Protein Chem 22 643-654 (2003)
  52. Characterization of substrate UpA binding to RNase A--computer modelling and energetics approach. Seshadri K, Rao VS, Vishveshwara S. J. Biomol. Struct. Dyn. 12 581-603 (1994)
  53. Crystal structure of Onconase at 1.1 Å resolution--insights into substrate binding and collective motion. Holloway DE, Singh UP, Shogen K, Acharya KR. FEBS J. 278 4136-4149 (2011)
  54. The crystal structure of ribonuclease A in complex with thymidine-3'-monophosphate provides further insight into ligand binding. Doucet N, Jayasundera TB, Simonović M, Loria JP. Proteins 78 2459-2468 (2010)
  55. The crystal structure of the cis-proline to glycine variant (P114G) of ribonuclease A. Schultz DA, Friedman AM, White MA, Fox RO. Protein Sci. 14 2862-2870 (2005)
  56. Formation of methionine sulfoxide during glycoxidation and lipoxidation of ribonuclease A. Brock JW, Ames JM, Thorpe SR, Baynes JW. Arch. Biochem. Biophys. 457 170-176 (2007)
  57. The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment. Takashima S. Biopolymers 58 398-409 (2001)
  58. A phthalimidation protocol that follows protein defined parameters. Singudas R, Adusumalli SR, Joshi PN, Rai V. Chem. Commun. (Camb.) 51 473-476 (2015)
  59. Assignment and secondary-structure determination of monomeric bovine seminal ribonuclease employing computer-assisted evaluation of homonuclear three-dimensional 1H-NMR spectra. D'Ursi A, Oschkinat H, Cieslar C, Picone D, D'Alessio G, Amodeo P, Temussi PA. Eur. J. Biochem. 229 494-502 (1995)
  60. Chemically accurate protein structures: validation of protein NMR structures by comparison of measured and predicted pKa values. Powers N, Jensen JH. J. Biomol. NMR 35 39-51 (2006)
  61. Conformational changes below the Tm: molecular dynamics studies of the thermal pretransition of ribonuclease A. Merkley ED, Bernard B, Daggett V. Biochemistry 47 880-892 (2008)
  62. Mass spectrometric investigation of protein alkylation by the RNA footprinting probe kethoxal. Akinsiku OT, Yu ET, Fabris D. J Mass Spectrom 40 1372-1381 (2005)
  63. Proton resonance assignments and secondary structure of bovine angiogenin. Reisdorf C, Abergel D, Bontems F, Lallemand JY, Decottignies JP, Spik G. Eur. J. Biochem. 224 811-822 (1994)
  64. Structural investigation of catalytically modified F120L and F120Y semisynthetic ribonucleases. deMel VS, Doscher MS, Glinn MA, Martin PD, Ram ML, Edwards BF. Protein Sci. 3 39-50 (1994)
  65. Two-phase unfolding pathway of ribonuclease A during denaturation induced by dithiothreitol. Yan YB, Jiang B, Zhang RQ, Zhou HM. Protein Sci. 10 321-328 (2001)
  66. Understanding the poor iontophoretic transport of lysozyme across the skin: when high charge and high electrophoretic mobility are not enough. Dubey S, Kalia YN. J Control Release 183 35-42 (2014)
  67. Mapping the stability clusters in bovine pancreatic ribonuclease A. Vilà R, Benito A, Ribó M, Vilanova M. Biopolymers 91 1038-1047 (2009)
  68. X-ray crystallographic studies of RNase A variants engineered at the most destabilizing positions of the main hydrophobic core: further insight into protein stability. Kurpiewska K, Font J, Ribó M, Vilanova M, Lewiński K. Proteins 77 658-669 (2009)
  69. Dissecting the effect of trifluoroethanol on ribonuclease A. Subtle structural changes detected by nonspecific proteases. Köditz J, Arnold U, Ulbrich-Hofmann R. Eur. J. Biochem. 269 3831-3837 (2002)
  70. Refolding of ribonuclease A monitored by real-time photo-CIDNP NMR spectroscopy. Day IJ, Maeda K, Paisley HJ, Mok KH, Hore PJ. J. Biomol. NMR 44 77-86 (2009)
  71. The secondary structure of a pyrimidine-guanine sequence-specific ribonuclease possessing cytotoxic activity from the oocytes of Rana catesbeiana. Chen C, Hom K, Huang RF, Chou PJ, Liao YD, Huang T. J. Biomol. NMR 8 331-344 (1996)
  72. NMR study of the positions of His-12 and His-119 in the ribonuclease A-uridine vanadate complex. Veenstra TD, Lee L. Biophys. J. 67 331-335 (1994)
  73. Role of aspartic acid 121 in human pancreatic ribonuclease catalysis. Gaur D, Batra JK. Mol. Cell. Biochem. 275 95-101 (2005)
  74. Tautomeric stabilities of 4-fluorohistidine shed new light on mechanistic experiments with labeled ribonuclease A. Kasireddy C, Ellis JM, Bann JG, Mitchell-Koch KR. Chem Phys Lett 666 58-61 (2016)
  75. Tracking local conformational changes of ribonuclease A using picosecond time-resolved fluorescence of the six tyrosine residues. Noronha M, Lima JC, Paci E, Santos H, Maçanita AL. Biophys. J. 92 4401-4414 (2007)
  76. Conformation of 3'CMP bound to RNase A using TrNOESY. Lee YC, Jackson PL, Jablonsky MJ, Muccio DD. Arch. Biochem. Biophys. 463 37-46 (2007)
  77. Formation of an RNase A derivative containing an aminosuccinyl residue in place of asparagine 67. Capasso S, Di Cerbo P. Biopolymers 56 14-19 (2000)
  78. Investigation of spectral diffusion in ribonuclease by photolabeling of intrinsic aromatic amino acids. Somoza MM, Ponkratov VV, Friedrich J. J Chem Phys 125 194713 (2006)
  79. Atomic-level reconstruction of biomolecules by a rigid-fragment- and local-frame-based (RF-LF) strategy. Li M, Teng B, Lu W, Zhang JZ. J Mol Model 26 31 (2020)
  80. Two-bead polarizable water models combined with a two-bead multipole force field (TMFF) for coarse-grained simulation of proteins. Li M, Zhang JZ. Phys Chem Chem Phys 19 7410-7419 (2017)


Related citations provided by authors (4)

  1. Refined Structure of Bovine Pancreatic Ribonuclease A by 1H NMR Methods. Side Chain Dynamics. Rico M, Santoro J, Gonzalez C, Bruix M, Neira JL, Nieto JL Appl Magn Reson 4 385- (1993)
  2. 3D Structure of Bovine Pancreatic Ribonuclease A in Aqueous Solution. Rico M, Santoro J, Gonzalez C, Bruix M, Neira JL, Nieto JL, Herranz J J. Biomol. NMR 1 283- (1991)
  3. Solution Structure of Bovine Pancreatic Ribonuclease A and Ribonuclease-Pyrimidine Nucleotide Complexes as Determined by 1H NMR. Rico M, Santoro J, Gonzalez C, Bruix M, Neira JL Structure, Mechanism and Function of Ribonucleases 9- (1991)
  4. Sequential 1H-NMR assignment and solution structure of bovine pancreatic ribonuclease A.. Rico M, Bruix M, Santoro J, Gonzalez C, Neira JL, Nieto JL, Herranz J Eur J Biochem 183 623-38 (1989)