2a64 Citations

Crystal structure of a bacterial ribonuclease P RNA.

Proc Natl Acad Sci U S A 102 13392-7 (2005)
Cited: 143 times
EuropePMC logo PMID: 16157868

Abstract

The x-ray crystal structure of a 417-nt ribonuclease P RNA from Bacillus stearothermophilus was solved to 3.3-A resolution. This RNA enzyme is constructed from a number of coaxially stacked helical domains joined together by local and long-range interactions. These helical domains are arranged to form a remarkably flat surface, which is implicated by a wealth of biochemical data in the binding and cleavage of the precursors of transfer RNA substrate. Previous photoaffinity crosslinking data are used to position the substrate on the crystal structure and to identify the chemically active site of the ribozyme. This site is located in a highly conserved core structure formed by intricately interlaced long-range interactions between interhelical sequences.

Reviews - 2a64 mentioned but not cited (2)

  1. Of proteins and RNA: the RNase P/MRP family. Esakova O, Krasilnikov AS. RNA 16 1725-1747 (2010)
  2. Emerging structural themes in large RNA molecules. Reiter NJ, Chan CW, Mondragón A. Curr Opin Struct Biol 21 319-326 (2011)

Articles - 2a64 mentioned but not cited (23)

  1. Crystal structure of a bacterial ribonuclease P RNA. Kazantsev AV, Krivenko AA, Harrington DJ, Holbrook SR, Adams PD, Pace NR. Proc Natl Acad Sci U S A 102 13392-13397 (2005)
  2. Analysis of four-way junctions in RNA structures. Laing C, Schlick T. J Mol Biol 390 547-559 (2009)
  3. RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. Popenda M, Szachniuk M, Blazewicz M, Wasik S, Burke EK, Blazewicz J, Adamiak RW. BMC Bioinformatics 11 231 (2010)
  4. On the significance of an RNA tertiary structure prediction. Hajdin CE, Ding F, Dokholyan NV, Weeks KM. RNA 16 1340-1349 (2010)
  5. The interaction networks of structured RNAs. Lescoute A, Westhof E. Nucleic Acids Res 34 6587-6604 (2006)
  6. From knotted to nested RNA structures: a variety of computational methods for pseudoknot removal. Smit S, Rother K, Heringa J, Knight R. RNA 14 410-416 (2008)
  7. PRIMO/PRIMONA: a coarse-grained model for proteins and nucleic acids that preserves near-atomistic accuracy. Gopal SM, Mukherjee S, Cheng YM, Feig M. Proteins 78 1266-1281 (2010)
  8. Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. Kazantsev AV, Krivenko AA, Pace NR. RNA 15 266-276 (2009)
  9. LigandRNA: computational predictor of RNA-ligand interactions. Philips A, Milanowska K, Lach G, Bujnicki JM. RNA 19 1605-1616 (2013)
  10. R2DT is a framework for predicting and visualising RNA secondary structure using templates. Sweeney BA, Hoksza D, Nawrocki EP, Ribas CE, Madeira F, Cannone JJ, Gutell R, Maddala A, Meade CD, Williams LD, Petrov AS, Chan PP, Lowe TM, Finn RD, Petrov AI. Nat Commun 12 3494 (2021)
  11. Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation. Getz MM, Andrews AJ, Fierke CA, Al-Hashimi HM. RNA 13 251-266 (2007)
  12. Footprinting analysis demonstrates extensive similarity between eukaryotic RNase P and RNase MRP holoenzymes. Esakova O, Perederina A, Quan C, Schmitt ME, Krasilnikov AS. RNA 14 1558-1567 (2008)
  13. Structural variation and uniformity among tetraloop-receptor interactions and other loop-helix interactions in RNA crystal structures. Wu L, Chai D, Fraser ME, Zimmerly S. PLoS One 7 e49225 (2012)
  14. McGenus: a Monte Carlo algorithm to predict RNA secondary structures with pseudoknots. Bon M, Micheletti C, Orland H. Nucleic Acids Res 41 1895-1900 (2013)
  15. Posttranscriptional site-directed spin labeling of large RNAs with an unnatural base pair system under non-denaturing conditions. Wang Y, Kathiresan V, Chen Y, Hu Y, Jiang W, Bai G, Liu G, Qin PZ, Fang X. Chem Sci 11 9655-9664 (2020)
  16. Automated nucleic acid chain tracing in real time. Cowtan K. IUCrJ 1 387-392 (2014)
  17. Modeling Noncanonical RNA Base Pairs by a Coarse-Grained IsRNA2 Model. Zhang D, Chen SJ, Zhou R. J Phys Chem B 125 11907-11915 (2021)
  18. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking. Hua L, Song Y, Kim N, Laing C, Wang JT, Schlick T. PLoS One 11 e0147097 (2016)
  19. Structural Roles of Noncoding RNAs in the Heart of Enzymatic Complexes. Martin WJ, Reiter NJ. Biochemistry 56 3-13 (2017)
  20. rPredictorDB: a predictive database of individual secondary structures of RNAs and their formatted plots. Jelínek J, Hoksza D, Hajič J, Pešek J, Drozen J, Hladík T, Klimpera M, Vohradský J, Pánek J. Database (Oxford) 2019 baz047 (2019)
  21. Exploring RNA conformational space under sparse distance restraints. Taylor WR, Hamilton RS. Sci Rep 7 44074 (2017)
  22. Phosphorothioate-Based Site-Specific Labeling of Large RNAs for Structural and Dynamic Studies. Hu Y, Wang Y, Singh J, Sun R, Xu L, Niu X, Huang K, Bai G, Liu G, Zuo X, Chen C, Qin PZ, Fang X. ACS Chem Biol 17 2448-2460 (2022)
  23. research-article Determining structures of individual RNA conformers using atomic force microscopy images and deep neural networks. Degenhardt MFS, Degenhardt HF, Bhandari YR, Lee YT, Ding J, Heinz WF, Stagno JR, Schwieters CD, Zhang J, Wang YX. Res Sq rs.3.rs-2798658 (2023)


Reviews citing this publication (37)

  1. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Serganov A, Patel DJ. Nat Rev Genet 8 776-790 (2007)
  2. RNase P: interface of the RNA and protein worlds. Evans D, Marquez SM, Pace NR. Trends Biochem Sci 31 333-341 (2006)
  3. Bacterial RNase P: a new view of an ancient enzyme. Kazantsev AV, Pace NR. Nat Rev Microbiol 4 729-740 (2006)
  4. Atomic level architecture of group I introns revealed. Vicens Q, Cech TR. Trends Biochem Sci 31 41-51 (2006)
  5. Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects. Lai LB, Vioque A, Kirsebom LA, Gopalan V. FEBS Lett 584 287-296 (2010)
  6. Nucleic acid catalysis: metals, nucleobases, and other cofactors. Ward WL, Plakos K, DeRose VJ. Chem Rev 114 4318-4342 (2014)
  7. RNA misfolding and the action of chaperones. Russell R. Front Biosci 13 1-20 (2008)
  8. Archaeal/eukaryal RNase P: subunits, functions and RNA diversification. Jarrous N, Gopalan V. Nucleic Acids Res 38 7885-7894 (2010)
  9. Structural principles from large RNAs. Holbrook SR. Annu Rev Biophys 37 445-464 (2008)
  10. Ribozymes. Scott WG. Curr Opin Struct Biol 17 280-286 (2007)
  11. A view of RNase P. Altman S. Mol Biosyst 3 604-607 (2007)
  12. RNA catalysis: ribozymes, ribosomes, and riboswitches. Strobel SA, Cochrane JC. Curr Opin Chem Biol 11 636-643 (2007)
  13. Structure of ribonuclease P--a universal ribozyme. Torres-Larios A, Swinger KK, Pan T, Mondragón A. Curr Opin Struct Biol 16 327-335 (2006)
  14. Structural studies of RNase P. Mondragón A. Annu Rev Biophys 42 537-557 (2013)
  15. Human RNase P: a tRNA-processing enzyme and transcription factor. Jarrous N, Reiner R. Nucleic Acids Res 35 3519-3524 (2007)
  16. Structure and function of the T-loop structural motif in noncoding RNAs. Chan CW, Chetnani B, Mondragón A. Wiley Interdiscip Rev RNA 4 507-522 (2013)
  17. Identification of catalytic metal ion ligands in ribozymes. Frederiksen JK, Piccirilli JA. Methods 49 148-166 (2009)
  18. RNA structure and dynamics: a base pairing perspective. Halder S, Bhattacharyya D. Prog Biophys Mol Biol 113 264-283 (2013)
  19. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. Biomolecules 6 E27 (2016)
  20. Programming Structured DNA Assemblies to Probe Biophysical Processes. Wamhoff EC, Banal JL, Bricker WP, Shepherd TR, Parsons MF, Veneziano R, Stone MB, Jun H, Wang X, Bathe M. Annu Rev Biophys 48 395-419 (2019)
  21. Nucleic acids: function and potential for abiogenesis. Wachowius F, Attwater J, Holliger P. Q Rev Biophys 50 e4 (2017)
  22. Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures. Fang X, Stagno JR, Bhandari YR, Zuo X, Wang YX. Curr Opin Struct Biol 30 147-160 (2015)
  23. Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis. Smith JK, Hsieh J, Fierke CA. Biopolymers 87 329-338 (2007)
  24. Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water. Draper DE. Biopolymers 99 1105-1113 (2013)
  25. Folding of a universal ribozyme: the ribonuclease P RNA. Baird NJ, Fang XW, Srividya N, Pan T, Sosnick TR. Q Rev Biophys 40 113-161 (2007)
  26. Trials, travails and triumphs: an account of RNA catalysis in RNase P. McClain WH, Lai LB, Gopalan V. J Mol Biol 397 627-646 (2010)
  27. Unwinding the twister ribozyme: from structure to mechanism. Gebetsberger J, Micura R. Wiley Interdiscip Rev RNA 8 (2017)
  28. Information available at cut rates: structure and mechanism of ribonucleases. Worrall JA, Luisi BF. Curr Opin Struct Biol 17 128-137 (2007)
  29. Progress and outlook in structural biology of large viral RNAs. Cantara WA, Olson ED, Forsyth KM. Virus Res 193 24-38 (2014)
  30. Ribonucleases P/MRP and the expanding ribonucleoprotein world. Hernandez-Cid A, Aguirre-Sampieri S, Diaz-Vilchis A, Torres-Larios A. IUBMB Life 64 521-528 (2012)
  31. Chemical biology at the crossroads of molecular structure and mechanism. Doudna JA. Nat Chem Biol 1 300-303 (2005)
  32. The structure and function of catalytic RNAs. Wu Q, Huang L, Zhang Y. Sci China C Life Sci 52 232-244 (2009)
  33. Human RNase P: overview of a ribonuclease of interrelated molecular networks and gene-targeting systems. Jarrous N, Liu F. RNA 29 300-307 (2023)
  34. RNA takes center stage. Todd G, Karbstein K. Biopolymers 87 275-278 (2007)
  35. Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors. Kimura M. Biosci Biotechnol Biochem 81 1670-1680 (2017)
  36. Insights into functional modulation of catalytic RNA activity. Vourekas A, Stamatopoulou V, Toumpeki C, Tsitlaidou M, Drainas D. IUBMB Life 60 669-683 (2008)
  37. The specificity landscape of bacterial ribonuclease P. Chamberlain AR, Huynh L, Huang W, Taylor DJ, Harris ME. J Biol Chem 300 105498 (2024)

Articles citing this publication (81)

  1. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR. Appl Environ Microbiol 72 3685-3695 (2006)
  2. Topology of three-way junctions in folded RNAs. Lescoute A, Westhof E. RNA 12 83-93 (2006)
  3. Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Reiter NJ, Osterman A, Torres-Larios A, Swinger KK, Pan T, Mondragón A. Nature 468 784-789 (2010)
  4. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB. J Math Biol 56 215-252 (2008)
  5. Ribonuclease P: the evolution of an ancient RNA enzyme. Walker SC, Engelke DR. Crit Rev Biochem Mol Biol 41 77-102 (2006)
  6. Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3' UTR of turnip crinkle virus. Zuo X, Wang J, Yu P, Eyler D, Xu H, Starich MR, Tiede DM, Simon AE, Kasprzak W, Schwieters CD, Shapiro BA, Wang YX. Proc Natl Acad Sci U S A 107 1385-1390 (2010)
  7. A general strategy to solve the phase problem in RNA crystallography. Keel AY, Rambo RP, Batey RT, Kieft JS. Structure 15 761-772 (2007)
  8. Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. Zhang H, Endrizzi JA, Shu Y, Haque F, Sauter C, Shlyakhtenko LS, Lyubchenko Y, Guo P, Chi YI. RNA 19 1226-1237 (2013)
  9. Functional reconstitution and characterization of Pyrococcus furiosus RNase P. Tsai HY, Pulukkunat DK, Woznick WK, Gopalan V. Proc Natl Acad Sci U S A 103 16147-16152 (2006)
  10. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more. Rivas E, Lang R, Eddy SR. RNA 18 193-212 (2012)
  11. Structural perspective on the activation of RNAse P RNA by protein. Buck AH, Kazantsev AV, Dalby AB, Pace NR. Nat Struct Mol Biol 12 958-964 (2005)
  12. Transcriptome-wide analyses of 5'-ends in RNase J mutants of a gram-positive pathogen reveal a role in RNA maturation, regulation and degradation. Linder P, Lemeille S, Redder P. PLoS Genet 10 e1004207 (2014)
  13. Predicting helical coaxial stacking in RNA multibranch loops. Tyagi R, Mathews DH. RNA 13 939-951 (2007)
  14. Effects of Mg2+ on the free energy landscape for folding a purine riboswitch RNA. Leipply D, Draper DE. Biochemistry 50 2790-2799 (2011)
  15. A fifth protein subunit Ph1496p elevates the optimum temperature for the ribonuclease P activity from Pyrococcus horikoshii OT3. Fukuhara H, Kifusa M, Watanabe M, Terada A, Honda T, Numata T, Kakuta Y, Kimura M. Biochem Biophys Res Commun 343 956-964 (2006)
  16. A three-dimensional model of a group II intron RNA and its interaction with the intron-encoded reverse transcriptase. Dai L, Chai D, Gu SQ, Gabel J, Noskov SY, Blocker FJ, Lambowitz AM, Zimmerly S. Mol Cell 30 472-485 (2008)
  17. Coarse-grained model for simulation of RNA three-dimensional structures. Xia Z, Gardner DP, Gutell RR, Ren P. J Phys Chem B 114 13497-13506 (2010)
  18. Structure of Pfu Pop5, an archaeal RNase P protein. Wilson RC, Bohlen CJ, Foster MP, Bell CE. Proc Natl Acad Sci U S A 103 873-878 (2006)
  19. Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain. Perederina A, Esakova O, Quan C, Khanova E, Krasilnikov AS. EMBO J 29 761-769 (2010)
  20. Conformational change in the Bacillus subtilis RNase P holoenzyme--pre-tRNA complex enhances substrate affinity and limits cleavage rate. Hsieh J, Fierke CA. RNA 15 1565-1577 (2009)
  21. Dissecting functional cooperation among protein subunits in archaeal RNase P, a catalytic ribonucleoprotein complex. Chen WY, Pulukkunat DK, Cho IM, Tsai HY, Gopalan V. Nucleic Acids Res 38 8316-8327 (2010)
  22. Studies on Methanocaldococcus jannaschii RNase P reveal insights into the roles of RNA and protein cofactors in RNase P catalysis. Pulukkunat DK, Gopalan V. Nucleic Acids Res 36 4172-4180 (2008)
  23. RNase P RNA-mediated cleavage. Kirsebom LA, Trobro S. IUBMB Life 61 189-200 (2009)
  24. Predicting coaxial helical stacking in RNA junctions. Laing C, Wen D, Wang JT, Schlick T. Nucleic Acids Res 40 487-498 (2012)
  25. TRMT2B is responsible for both tRNA and rRNA m5U-methylation in human mitochondria. Powell CA, Minczuk M. RNA Biol 17 451-462 (2020)
  26. Tertiary motifs revealed in analyses of higher-order RNA junctions. Laing C, Jung S, Iqbal A, Schlick T. J Mol Biol 393 67-82 (2009)
  27. Evidence for induced fit in bacterial RNase P RNA-mediated cleavage. Brännvall M, Kikovska E, Wu S, Kirsebom LA. J Mol Biol 372 1149-1164 (2007)
  28. Structure and function of eukaryotic Ribonuclease P RNA. Marquez SM, Chen JL, Evans D, Pace NR. Mol Cell 24 445-456 (2006)
  29. Structural insight into precursor tRNA processing by yeast ribonuclease P. Lan P, Tan M, Zhang Y, Niu S, Chen J, Shi S, Qiu S, Wang X, Peng X, Cai G, Cheng H, Wu J, Li G, Lei M. Science 362 eaat6678 (2018)
  30. Solution structure of RNase P RNA. Kazantsev AV, Rambo RP, Karimpour S, Santalucia J, Tainer JA, Pace NR. RNA 17 1159-1171 (2011)
  31. Solution structure of an archaeal RNase P binary protein complex: formation of the 30-kDa complex between Pyrococcus furiosus RPP21 and RPP29 is accompanied by coupled protein folding and highlights critical features for protein-protein and protein-RNA interactions. Xu Y, Amero CD, Pulukkunat DK, Gopalan V, Foster MP. J Mol Biol 393 1043-1055 (2009)
  32. The P4 metal binding site in RNase P RNA affects active site metal affinity through substrate positioning. Christian EL, Smith KM, Perera N, Harris ME. RNA 12 1463-1467 (2006)
  33. The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions. Lee JC, Gutell RR, Russell R. J Mol Biol 360 978-988 (2006)
  34. RNA structure prediction using positive and negative evolutionary information. Rivas E. PLoS Comput Biol 16 e1008387 (2020)
  35. The ancient history of the structure of ribonuclease P and the early origins of Archaea. Sun FJ, Caetano-Anollés G. BMC Bioinformatics 11 153 (2010)
  36. Uniformity amid diversity in RNase P. Gopalan V. Proc Natl Acad Sci U S A 104 2031-2032 (2007)
  37. In vivo and in vitro investigation of bacterial type B RNase P interaction with tRNA 3'-CCA. Wegscheid B, Hartmann RK. Nucleic Acids Res 35 2060-2073 (2007)
  38. Single-molecule nonequilibrium periodic Mg2+-concentration jump experiments reveal details of the early folding pathways of a large RNA. Qu X, Smith GJ, Lee KT, Sosnick TR, Pan T, Scherer NF. Proc Natl Acad Sci U S A 105 6602-6607 (2008)
  39. Cryo-electron microscopy structure of an archaeal ribonuclease P holoenzyme. Wan F, Wang Q, Tan J, Tan M, Chen J, Shi S, Lan P, Wu J, Lei M. Nat Commun 10 2617 (2019)
  40. Minor changes largely restore catalytic activity of archaeal RNase P RNA from Methanothermobacter thermoautotrophicus. Li D, Willkomm DK, Hartmann RK. Nucleic Acids Res 37 231-242 (2009)
  41. Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage. Niranjanakumari S, Day-Storms JJ, Ahmed M, Hsieh J, Zahler NH, Venters RA, Fierke CA. RNA 13 521-535 (2007)
  42. A divalent cation stabilizes the active conformation of the B. subtilis RNase P x pre-tRNA complex: a role for an inner-sphere metal ion in RNase P. Hsieh J, Koutmou KS, Rueda D, Koutmos M, Walter NG, Fierke CA. J Mol Biol 400 38-51 (2010)
  43. Structural constraints identified with covariation analysis in ribosomal RNA. Shang L, Xu W, Ozer S, Gutell RR. PLoS One 7 e39383 (2012)
  44. The exocyclic amine at the RNase P cleavage site contributes to substrate binding and catalysis. Kikovska E, Brännvall M, Kirsebom LA. J Mol Biol 359 572-584 (2006)
  45. An RNA molecular switch: Intrinsic flexibility of 23S rRNA Helices 40 and 68 5'-UAA/5'-GAN internal loops studied by molecular dynamics methods. Réblová K, Střelcová Z, Kulhánek P, Beššeová I, Mathews DH, Nostrand KV, Yildirim I, Turner DH, Sponer J. J Chem Theory Comput 2010 910-929 (2010)
  46. Fluorescence competition and optical melting measurements of RNA three-way multibranch loops provide a revised model for thermodynamic parameters. Liu B, Diamond JM, Mathews DH, Turner DH. Biochemistry 50 640-653 (2011)
  47. Studies on the mechanism of inhibition of bacterial ribonuclease P by aminoglycoside derivatives. Kawamoto SA, Sudhahar CG, Hatfield CL, Sun J, Behrman EJ, Gopalan V. Nucleic Acids Res 36 697-704 (2008)
  48. The naturally trans-acting ribozyme RNase P RNA has leadzyme properties. Kikovska E, Mikkelsen NE, Kirsebom LA. Nucleic Acids Res 33 6920-6930 (2005)
  49. Characterization of the archaeal ribonuclease P proteins from Pyrococcus horikoshii OT3. Terada A, Honda T, Fukuhara H, Hada K, Kimura M. J Biochem 140 293-298 (2006)
  50. A new way to see RNA. Keating KS, Humphris EL, Pyle AM. Q Rev Biophys 44 433-466 (2011)
  51. Cryo-EM structure of catalytic ribonucleoprotein complex RNase MRP. Perederina A, Li D, Lee H, Bator C, Berezin I, Hafenstein SL, Krasilnikov AS. Nat Commun 11 3474 (2020)
  52. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components. Fagerlund RD, Perederina A, Berezin I, Krasilnikov AS. RNA 21 1591-1605 (2015)
  53. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy. Hipp K, Galani K, Batisse C, Prinz S, Böttcher B. Nucleic Acids Res 40 3275-3288 (2012)
  54. NMR structure of a 4 x 4 nucleotide RNA internal loop from an R2 retrotransposon: identification of a three purine-purine sheared pair motif and comparison to MC-SYM predictions. Lerman YV, Kennedy SD, Shankar N, Parisien M, Major F, Turner DH. RNA 17 1664-1677 (2011)
  55. RNase P of the Cyanophora paradoxa cyanelle: a plastid ribozyme. Li D, Willkomm DK, Schön A, Hartmann RK. Biochimie 89 1528-1538 (2007)
  56. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions. Khanova E, Esakova O, Perederina A, Berezin I, Krasilnikov AS. RNA 18 720-728 (2012)
  57. In vitro reconstitution and analysis of eukaryotic RNase P RNPs. Perederina A, Berezin I, Krasilnikov AS. Nucleic Acids Res 46 6857-6868 (2018)
  58. RNA binding properties of conserved protein subunits of human RNase P. Reiner R, Alfiya-Mor N, Berrebi-Demma M, Wesolowski D, Altman S, Jarrous N. Nucleic Acids Res 39 5704-5714 (2011)
  59. The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning. Reiter NJ, Osterman AK, Mondragón A. Nucleic Acids Res 40 10384-10393 (2012)
  60. Cooperative RNP assembly: complementary rescue of structural defects by protein and RNA subunits of archaeal RNase P. Chen WY, Xu Y, Cho IM, Oruganti SV, Foster MP, Gopalan V. J Mol Biol 411 368-383 (2011)
  61. Structural modeling of RNase P RNA of the hyperthermophilic archaeon Pyrococcus horikoshii OT3. Zwieb C, Nakao Y, Nakashima T, Takagi H, Goda S, Andersen ES, Kakuta Y, Kimura M. Biochem Biophys Res Commun 414 517-522 (2011)
  62. A large collapsed-state RNA can exhibit simple exponential single-molecule dynamics. Smith GJ, Lee KT, Qu X, Xie Z, Pesic J, Sosnick TR, Pan T, Scherer NF. J Mol Biol 378 943-953 (2008)
  63. Interactions of a Pop5/Rpp1 heterodimer with the catalytic domain of RNase MRP. Perederina A, Khanova E, Quan C, Berezin I, Esakova O, Krasilnikov AS. RNA 17 1922-1931 (2011)
  64. A 2'-methyl or 2'-methylene group at G+1 in precursor tRNA interferes with Mg2+ binding at the enzyme-substrate interface in E-S complexes of E. coli RNase P. Cuzic S, Hartmann RK. Biol Chem 388 717-726 (2007)
  65. Frequency of RNA-RNA interaction in a model of the RNA World. Striggles JC, Martin MB, Schmidt FJ. RNA 12 353-359 (2006)
  66. Soaking Hexammine Cations into RNA Crystals to Obtain Derivatives for Phasing Diffraction Data. Batey RT, Kieft JS. Methods Mol Biol 1320 219-232 (2016)
  67. Improvement of RNA secondary structure prediction using RNase H cleavage and randomized oligonucleotides. Kauffmann AD, Campagna RJ, Bartels CB, Childs-Disney JL. Nucleic Acids Res 37 e121 (2009)
  68. Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Zhu J, Huang W, Zhao J, Huynh L, Taylor DJ, Harris ME. Nat Commun 13 5120 (2022)
  69. RNase A - tRNA binding alters protein conformation. N'soukpoé-Kossi CN, Ragi C, Tajmir-Riahi HA. Biochem Cell Biol 85 311-318 (2007)
  70. Twist-joints and double twist-joints in RNA structure. Boutorine YI, Steinberg SV. RNA 18 2287-2298 (2012)
  71. Understanding catalysis of phosphate-transfer reactions by the large ribozymes. Lönnberg T. Chemistry 17 7140-7153 (2011)
  72. Bacterial type B RNase P: functional characterization of the L5.1-L15.1 tertiary contact and antisense inhibition. Walczyk D, Willkomm DK, Hartmann RK. RNA 22 1699-1709 (2016)
  73. Context-dependence of T-loop Mediated Long-range RNA Tertiary Interactions. Hansen LN, Kletzien OA, Urquijo M, Schwanz LT, Batey RT. J Mol Biol 435 168070 (2023)
  74. Dissecting Monomer-Dimer Equilibrium of an RNase P Protein Provides Insight Into the Synergistic Flexibility of 5' Leader Pre-tRNA Recognition. Zeng D, Abzhanova A, Brown BP, Reiter NJ. Front Mol Biosci 8 730274 (2021)
  75. Evolution of the RNase P RNA structural domain in Leptospira spp. Ravishankar V, Ahmed A, Sivagnanam U, Muthuraman K, Karthikaichamy A, Wilson HA, Devendran A, Hartskeerl RA, Raj SM. Res Microbiol 165 813-825 (2014)
  76. Identification of the Acinetobacter baumannii Ribonuclease P Catalytic Subunit: Cleavage of a Target mRNA in the Presence of an External Guide Sequence. Davies-Sala C, Jani S, Zorreguieta A, Tolmasky ME. Front Microbiol 9 2408 (2018)
  77. NMR resonance assignments of RNase P protein from Thermotoga maritima. Zeng D, Brown BP, Voehler MW, Cai S, Reiter NJ. Biomol NMR Assign 12 183-187 (2018)
  78. Rational Design of an Orthogonal Pair of Bimolecular RNase P Ribozymes through Heterologous Assembly of Their Modular Domains. Nozawa Y, Hagihara M, Rahman MS, Matsumura S, Ikawa Y. Biology (Basel) 8 E65 (2019)
  79. Recruiting more proteins to the RNA world. Scott WG, Nagai K. Science 362 644-645 (2018)
  80. [2'-Modified oligoribonucleotides, containing 1,2-diol and aldehyde groups. Synthesis and properties]. Khomiakova EA, Zubin EM, Pavlova LV, Kazanova EV, Smirnov IP, Pozmogova GE, Muller S, Dolinnaia NG, Kubareva EA, Harmann RK, Oretskaia TS. Bioorg Khim 38 555-568 (2012)
  81. Comment Two Ps in the bacterial pod. Peculis BA. Nat Struct Mol Biol 12 941-943 (2005)