1zs0 Citations

Structural insight into the stereoselective inhibition of MMP-8 by enantiomeric sulfonamide phosphonates.

Abstract

Potent and selective inhibitors of matrix metalloproteinases (MMPs), a family of zinc proteases that can degrade all the components of the extracellular matrix, could be useful for treatment of diseases such as cancer and arthritis. The most potent MMP inhibitors are based on hydroxamate as zinc-binding group (ZBG). alpha-Arylsulfonylamino phosphonates incorporate a particularly favorable combination of phosphonate as ZBG and arylsulfonylamino backbone so that their affinity exceptionally attains the nanomolar strength frequently observed for hydroxamate analogues. The detailed mode of binding of [1-(4'-methoxybiphenyl-4-sulfonylamino)-2-methylpropyl]phosphonate has been clarified by the crystal structures of the complexes that the R- and S-enantiomers respectively form with MMP-8. The reasons for the preferential MMP-8 inhibition by the R-phosphonate are underlined and the differences in the mode of binding of analogous alpha-arylsulfonylamino hydroxamates and carboxylates are discussed.

Articles - 1zs0 mentioned but not cited (3)

  1. Network pharmacology-based prediction of the multi-target capabilities of the compounds in Taohong Siwu decoction, and their application in osteoarthritis. Zheng CS, Xu XJ, Ye HZ, Wu GW, Li XH, Xu HF, Liu XX. Exp Ther Med 6 125-132 (2013)
  2. Analysis of X-ray structures of matrix metalloproteinases via chaotic map clustering. Giangreco I, Nicolotti O, Carotti A, De Carlo F, Gargano G, Bellotti R. BMC Bioinformatics 11 500 (2010)
  3. The Automatic Solution of Macromolecular Crystal Structures via Molecular Replacement Techniques: REMO22 and Its Pipeline. Carrozzini B, Cascarano GL, Giacovazzo C. Int J Mol Sci 24 6070 (2023)


Reviews citing this publication (13)

  1. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Wang X, Khalil RA. Adv Pharmacol 81 241-330 (2018)
  2. Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Dormán G, Cseh S, Hajdú I, Barna L, Kónya D, Kupai K, Kovács L, Ferdinandy P. Drugs 70 949-964 (2010)
  3. The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Fields GB. Cells 8 E984 (2019)
  4. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. Benjamin MM, Khalil RA. Exp Suppl 103 209-279 (2012)
  5. Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. Liu J, Khalil RA. Prog Mol Biol Transl Sci 148 355-420 (2017)
  6. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins. Kucukguven A, Khalil RA. Curr Drug Targets 14 287-324 (2013)
  7. Functional Roles of Matrix Metalloproteinases and Their Inhibitors in Melanoma. Napoli S, Scuderi C, Gattuso G, Bella VD, Candido S, Basile MS, Libra M, Falzone L. Cells 9 E1151 (2020)
  8. Matrix Metalloproteinases as Regulators of Vein Structure and Function: Implications in Chronic Venous Disease. MacColl E, Khalil RA. J Pharmacol Exp Ther 355 410-428 (2015)
  9. Regulation and involvement of matrix metalloproteinases in vascular diseases. Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Front Biosci (Landmark Ed) 21 89-118 (2016)
  10. Matrix Metalloproteinases in Remodeling of Lower Extremity Veins and Chronic Venous Disease. Chen Y, Peng W, Raffetto JD, Khalil RA. Prog Mol Biol Transl Sci 147 267-299 (2017)
  11. Challenges in Matrix Metalloproteinases Inhibition. Laronha H, Carpinteiro I, Portugal J, Azul A, Polido M, Petrova KT, Salema-Oom M, Caldeira J. Biomolecules 10 E717 (2020)
  12. Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview. Adhikari N, Mukherjee A, Saha A, Jha T. Eur J Med Chem 129 72-109 (2017)
  13. Molecular Imaging Probes Based on Matrix Metalloproteinase Inhibitors (MMPIs). Rangasamy L, Geronimo BD, Ortín I, Coderch C, Zapico JM, Ramos A, de Pascual-Teresa B. Molecules 24 E2982 (2019)

Articles citing this publication (24)

  1. Recent advances in MMP inhibitor design. Fisher JF, Mobashery S. Cancer Metastasis Rev 25 115-136 (2006)
  2. Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. Gerhardt S, Hassall G, Hawtin P, McCall E, Flavell L, Minshull C, Hargreaves D, Ting A, Pauptit RA, Parker AE, Abbott WM. J Mol Biol 373 891-902 (2007)
  3. Biphenyl sulfonylamino methyl bisphosphonic acids as inhibitors of matrix metalloproteinases and bone resorption. Rubino MT, Agamennone M, Campestre C, Campiglia P, Cremasco V, Faccio R, Laghezza A, Loiodice F, Maggi D, Panza E, Rossello A, Tortorella P. ChemMedChem 6 1258-1268 (2011)
  4. Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Tauro M, Laghezza A, Loiodice F, Agamennone M, Campestre C, Tortorella P. Bioorg Med Chem 21 6456-6465 (2013)
  5. alpha-Biphenylsulfonylamino 2-methylpropyl phosphonates: enantioselective synthesis and selective inhibition of MMPs. Biasone A, Tortorella P, Campestre C, Agamennone M, Preziuso S, Chiappini M, Nuti E, Carelli P, Rossello A, Mazza F, Gallina C. Bioorg Med Chem 15 791-799 (2007)
  6. Introduction of the 4-(4-bromophenyl)benzenesulfonyl group to hydrazide analogs of Ilomastat leads to potent gelatinase B (MMP-9) inhibitors with improved selectivity. Ledour G, Moroy G, Rouffet M, Bourguet E, Guillaume D, Decarme M, Elmourabit H, Augé F, Alix AJ, Laronze JY, Bellon G, Hornebeck W, Sapi J. Bioorg Med Chem 16 8745-8759 (2008)
  7. Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings. Edwards JV, Howley PS. J Biomed Mater Res A 83 446-454 (2007)
  8. Identification of novel matrix metalloproteinase inhibitors by screening of phenol fragments library. Rubino MT, Maggi D, Laghezza A, Loiodice F, Tortorella P. Arch Pharm (Weinheim) 344 557-563 (2011)
  9. Synthesis, SAR, and biological evaluation of alpha-sulfonylphosphonic acids as selective matrix metalloproteinase inhibitors. Rubino MT, Agamennone M, Campestre C, Fracchiolla G, Laghezza A, Loiodice F, Nuti E, Rossello A, Tortorella P. ChemMedChem 4 352-362 (2009)
  10. Catechol-based matrix metalloproteinase inhibitors with additional antioxidative activity. Tauro M, Laghezza A, Loiodice F, Piemontese L, Caradonna A, Capelli D, Montanari R, Pochetti G, Di Pizio A, Agamennone M, Campestre C, Tortorella P. J Enzyme Inhib Med Chem 31 25-37 (2016)
  11. Dual carbonic anhydrase/matrix metalloproteinase inhibitors incorporating bisphosphonic acid moieties targeting bone tumors. Tauro M, Loiodice F, Ceruso M, Supuran CT, Tortorella P. Bioorg Med Chem Lett 24 2617-2620 (2014)
  12. Synthesis and antitumor activities of novel rhein α-aminophosphonates conjugates. Yao GY, Ye MY, Huang RZ, Li YJ, Pan YM, Xu Q, Liao ZX, Wang HS. Bioorg Med Chem Lett 24 501-507 (2014)
  13. Novel hydroxamic acid-related phosphinates: inhibition of neutral aminopeptidase N (APN). Drag M, Grzywa R, Oleksyszyn J. Bioorg Med Chem Lett 17 1516-1519 (2007)
  14. Synthesis, cytotoxicity, DNA binding and apoptosis of rhein-phosphonate derivatives as antitumor agents. Ye MY, Yao GY, Wei JC, Pan YM, Liao ZX, Wang HS. Int J Mol Sci 14 9424-9439 (2013)
  15. Thioredoxin fusion construct enables high-yield production of soluble, active matrix metalloproteinase-8 (MMP-8) in Escherichia coli. McNiff ML, Haynes EP, Dixit N, Gao FP, Laurence JS. Protein Expr Purif 122 64-71 (2016)
  16. In vitro comparison of new bisphosphonic acids and zoledronate effects on human gingival fibroblasts viability, inflammation and matrix turnover. De Colli M, Tortorella P, Marconi GD, Agamennone M, Campestre C, Tauro M, Cataldi A, Zara S. Clin Oral Investig 20 2013-2021 (2016)
  17. Mechanisms of Lower Extremity Vein Dysfunction in Chronic Venous Disease and Implications in Management of Varicose Veins. Raffetto JD, Khalil RA. Vessel Plus 5 36 (2021)
  18. Dual targeting of cancer-related human matrix metalloproteinases and carbonic anhydrases by chiral N-(biarylsulfonyl)-phosphonic acids. Luisi G, Angelini G, Gasbarri C, Laghezza A, Agamennone M, Loiodice F, Supuran CT, Campestre C, Tortorella P. J Enzyme Inhib Med Chem 32 1260-1264 (2017)
  19. Functionalization of α-hydroxyphosphonates as a convenient route to N-tosyl-α-aminophosphonates. Cytlak T, Skibińska M, Kaczmarek P, Kaźmierczak M, Rapp M, Kubicki M, Koroniak H. RSC Adv 8 11957-11974 (2018)
  20. Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy. Laghezza A, Piemontese L, Brunetti L, Caradonna A, Agamennone M, Di Pizio A, Pochetti G, Montanari R, Capelli D, Tauro M, Loiodice F, Tortorella P. Pharmaceuticals (Basel) 13 E113 (2020)
  21. Insight towards the conserved water mediated recognition of catalytic and structural Zn(+2) ions in human Matrix Metalloproteinase-8 enzyme: A study by MD-simulation methods. Chakrabarti B, Bairagya HR, Mishra DK, Chatterjee PK, Mukhopadhyay BP. Bioinformation 9 126-133 (2013)
  22. Identification of Broad-Spectrum MMP Inhibitors by Virtual Screening. Gimeno A, Cuffaro D, Nuti E, Ojeda-Montes MJ, Beltrán-Debón R, Mulero M, Rossello A, Pujadas G, Garcia-Vallvé S. Molecules 26 4553 (2021)
  23. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor. Maize KM, Kurbanov EK, Johnson RL, Amin EA, Finzel BC. FEBS Lett 589 3836-3841 (2015)
  24. Synthesis, antiinflammatory activity, and molecular docking studies of bisphosphonic esters as potential MMP-8 and MMP-9 inhibitors. Cortes-Pacheco A, Jiménez-Arellanes MA, Palacios-Can FJ, Valcarcel-Gamiño JA, Razo-Hernández RS, Juárez-Vázquez MDC, López-Torres A, Ramírez-Marroquín OA. Beilstein J Org Chem 16 1277-1287 (2020)


Related citations provided by authors (3)

  1. X-ray structure of human stromelysin catalytic domain complexed with nonpeptide inhibitors: implications for inhibitor selectivity.. Pavlovsky AG, Williams MG, Ye QZ, Ortwine DF, Purchase CF, White AD, Dhanaraj V, Roth BD, Johnson LL, Hupe D, Humblet C, Blundell TL Protein Sci 8 1455-62 (1999)
  2. Two crystal structures of human neutrophil collagenase, one complexed with a primed- and the other with an unprimed-side inhibitor: implications for drug design.. Gavuzzo E, Pochetti G, Mazza F, Gallina C, Gorini B, D'Alessio S, Pieper M, Tschesche H, Tucker PA J Med Chem 43 3377-85 (2000)
  3. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design.. Grams F, Reinemer P, Powers JC, Kleine T, Pieper M, Tschesche H, Huber R, Bode W Eur J Biochem 228 830-41 (1995)