1zmm Citations

Crystal structures of human alpha-defensins HNP4, HD5, and HD6.

Protein Sci 15 2749-60 (2006)
Related entries: 1zmp, 1zmq

Cited: 135 times
EuropePMC logo PMID: 17088326

Abstract

Six alpha-defensins have been found in humans. These small arginine-rich peptides play important roles in various processes related to host defense, being the effectors and regulators of innate immunity as well as enhancers of adoptive immune responses. Four defensins, called neutrophil peptides 1 through 4, are stored primarily in polymorphonuclear leukocytes. Major sites of expression of defensins 5 and 6 are Paneth cells of human small intestine. So far, only one structure of human alpha-defensin (HNP3) has been reported, and the properties of the intestine defensins 5 and 6 are particularly poorly understood. In this report, we present the high-resolution X-ray structures of three human defensins, 4 through 6, supplemented with studies of their antimicrobial and chemotactic properties. Despite only modest amino acid sequence identity, all three defensins share their tertiary structures with other known alpha- and beta-defensins. Like HNP3 but in contrast to murine or rabbit alpha-defensins, human defensins 4-6 form characteristic dimers. Whereas antimicrobial and chemotactic activity of HNP4 is somewhat comparable to that of other human neutrophil defensins, neither of the intestinal defensins appears to be chemotactic, and for HD6 also an antimicrobial activity has yet to be observed. The unusual biological inactivity of HD6 may be associated with its structural properties, somewhat standing out when compared with other human alpha-defensins. The strongest cationic properties and unique distribution of charged residues on the molecular surface of HD5 may be associated with its highest bactericidal activity among human alpha-defensins.

Reviews - 1zmm mentioned but not cited (7)

  1. The antimicrobial peptides and their potential clinical applications. Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q. Am J Transl Res 11 3919-3931 (2019)
  2. Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC. Front Chem 6 204 (2018)
  3. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? Rončević T, Puizina J, Tossi A. Int J Mol Sci 20 E5713 (2019)
  4. The chemistry and biology of theta defensins. Conibear AC, Craik DJ. Angew Chem Int Ed Engl 53 10612-10623 (2014)
  5. Nanotechnology-Based Delivery Systems for Antimicrobial Peptides. Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. Pharmaceutics 13 1795 (2021)
  6. Structure and Synthesis of Antifungal Disulfide β-Strand Proteins from Filamentous Fungi. Váradi G, Tóth GK, Batta G. Microorganisms 7 E5 (2018)
  7. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. FEMS Microbiol Rev 46 fuac032 (2022)

Articles - 1zmm mentioned but not cited (7)

  1. Crystal structures of human alpha-defensins HNP4, HD5, and HD6. Szyk A, Wu Z, Tucker K, Yang D, Lu W, Lubkowski J. Protein Sci 15 2749-2760 (2006)
  2. Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope. Pierce BG, Boucher EN, Piepenbrink KH, Ejemel M, Rapp CA, Thomas WD, Sundberg EJ, Weng Z, Wang Y. J Virol 91 e01032-17 (2017)
  3. Initial insights into structure-activity relationships of avian defensins. Derache C, Meudal H, Aucagne V, Mark KJ, Cadène M, Delmas AF, Lalmanach AC, Landon C. J Biol Chem 287 7746-7755 (2012)
  4. Comparative genomics and evolution of the alpha-defensin multigene family in primates. Das S, Nikolaidis N, Goto H, McCallister C, Li J, Hirano M, Cooper MD. Mol Biol Evol 27 2333-2343 (2010)
  5. Molecular evolution of the primate α-/θ-defensin multigene family. Cheng DQ, Li Y, Huang JF. PLoS One 9 e97425 (2014)
  6. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  7. Mouse α-Defensins: Structural and Functional Analysis of the 17 Cryptdin Isoforms Identified from a Single Jejunal Crypt. Wang Q, Yang Y, Luo G, Zhou Y, Tolbert WD, Pazgier M, Liao C, Lu W. Infect Immun 91 e0036122 (2023)


Reviews citing this publication (36)

  1. The roles of antimicrobial peptides in innate host defense. Diamond G, Beckloff N, Weinberg A, Kisich KO. Curr Pharm Des 15 2377-2392 (2009)
  2. α-Defensins in human innate immunity. Lehrer RI, Lu W. Immunol Rev 245 84-112 (2012)
  3. Antiviral mechanisms of human defensins. Wilson SS, Wiens ME, Smith JG. J Mol Biol 425 4965-4980 (2013)
  4. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Molecules 25 E2850 (2020)
  5. Paneth cell α-defensins in enteric innate immunity. Ouellette AJ. Cell Mol Life Sci 68 2215-2229 (2011)
  6. Peptides and Peptidomimetics for Antimicrobial Drug Design. Mojsoska B, Jenssen H. Pharmaceuticals (Basel) 8 366-415 (2015)
  7. Human defensins as cancer biomarkers and antitumour molecules. Droin N, Hendra JB, Ducoroy P, Solary E. J Proteomics 72 918-927 (2009)
  8. Defensins in the immunology of bacterial infections. Menendez A, Brett Finlay B. Curr Opin Immunol 19 385-391 (2007)
  9. Convergent evolution of defensin sequence, structure and function. Shafee TM, Lay FT, Phan TK, Anderson MA, Hulett MD. Cell Mol Life Sci 74 663-682 (2017)
  10. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Said Sadier N. Biomed J 41 63-87 (2018)
  11. Multifaceted immune functions of human defensins and underlying mechanisms. Fruitwala S, El-Naccache DW, Chang TL. Semin Cell Dev Biol 88 163-172 (2019)
  12. Paneth cell α-defensins and enteric microbiota in health and disease. Nakamura K, Sakuragi N, Takakuwa A, Ayabe T. Biosci Microbiota Food Health 35 57-67 (2016)
  13. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. J Fungi (Basel) 3 E46 (2017)
  14. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD. Cell Mol Life Sci 74 3809-3825 (2017)
  15. Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Porto WF, Pires AS, Franco OL. Biotechnol Adv 35 337-349 (2017)
  16. Cysteines and Disulfide Bonds as Structure-Forming Units: Insights From Different Domains of Life and the Potential for Characterization by NMR. Wiedemann C, Kumar A, Lang A, Ohlenschläger O. Front Chem 8 280 (2020)
  17. Role of gut microbiota in Crohn's disease. Baker PI, Love DR, Ferguson LR. Expert Rev Gastroenterol Hepatol 3 535-546 (2009)
  18. A Novel View of Human Helicobacter pylori Infections: Interplay between Microbiota and Beta-Defensins. Pero R, Brancaccio M, Laneri S, Biasi MG, Lombardo B, Scudiero O. Biomolecules 9 E237 (2019)
  19. Towards the Application of Human Defensins as Antivirals. Park MS, Kim JI, Lee I, Park S, Bae JY, Park MS. Biomol Ther (Seoul) 26 242-254 (2018)
  20. Human α-Defensin 6: A Small Peptide That Self-Assembles and Protects the Host by Entangling Microbes. Chairatana P, Nolan EM. Acc Chem Res 50 960-967 (2017)
  21. Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR. Su Y, Li S, Hong M. Amino Acids 44 821-833 (2013)
  22. Enteric alpha defensins in norm and pathology. Lisitsyn NA, Bukurova YA, Nikitina IG, Krasnov GS, Sykulev Y, Beresten SF. Ann Clin Microbiol Antimicrob 11 1 (2012)
  23. Guardians of the Gut: Enteric Defensins. Sankaran-Walters S, Hart R, Dills C. Front Microbiol 8 647 (2017)
  24. Amyloid formation: functional friend or fearful foe? Bergman P, Roan NR, Römling U, Bevins CL, Münch J. J Intern Med 280 139-152 (2016)
  25. G.I. pros: Antimicrobial defense in the gastrointestinal tract. Chung LK, Raffatellu M. Semin Cell Dev Biol 88 129-137 (2019)
  26. Bioactive Peptides Against Fungal Biofilms. Oshiro KGN, Rodrigues G, Monges BED, Cardoso MH, Franco OL. Front Microbiol 10 2169 (2019)
  27. Antimicrobial Peptides: From Design to Clinical Application. Zhang C, Yang M. Antibiotics (Basel) 11 349 (2022)
  28. Innate microbial sensors and their relevance to allergy. Liu AH. J Allergy Clin Immunol 122 846-58; quiz 858-60 (2008)
  29. Review of the chemistry of alphaS2-casein and the generation of a homologous molecular model to explain its properties. Farrell HM, Malin EL, Brown EM, Mora-Gutierrez A. J Dairy Sci 92 1338-1353 (2009)
  30. Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. Shagaghi N, Palombo EA, Clayton AHA, Bhave M. World J Microbiol Biotechnol 34 62 (2018)
  31. Determining the orientation and localization of membrane-bound peptides. Hohlweg W, Kosol S, Zangger K. Curr Protein Pept Sci 13 267-279 (2012)
  32. Redox Active Antimicrobial Peptides in Controlling Growth of Microorganisms at Body Barriers. Brzoza P, Godlewska U, Borek A, Morytko A, Zegar A, Kwiecinska P, Zabel BA, Osyczka A, Kwitniewski M, Cichy J. Antioxidants (Basel) 10 446 (2021)
  33. Functional Amyloids and their Possible Influence on Alzheimer Disease. Lau A, Bourkas M, Lu YQQ, Ostrowski LA, Weber-Adrian D, Figueiredo C, Arshad H, Shoaei SZS, Morrone CD, Matan-Lithwick S, Abraham KJ, Wang H, Schmitt-Ulms G. Discoveries (Craiova) 5 e79 (2017)
  34. Alterations in Immune-Related Defensin Alpha 4 (DEFA4) Gene Expression in Health and Disease. Basingab F, Alsaiary A, Almontashri S, Alrofaidi A, Alharbi M, Azhari S, Algothmi K, Alhazmi S. Int J Inflam 2022 9099136 (2022)
  35. Anti-Cancer Peptides: Status and Future Prospects. Ghaly G, Tallima H, Dabbish E, Badr ElDin N, Abd El-Rahman MK, Ibrahim MAA, Shoeib T. Molecules 28 1148 (2023)
  36. Saliva based diagnostic methodologies for a fast track detection of autism spectrum disorder: A mini-review. Sharma V, Choudhury SP, Kumar S, Nikolajeff F. Front Neurosci 16 893251 (2022)

Articles citing this publication (85)

  1. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Chu H, Pazgier M, Jung G, Nuccio SP, Castillo PA, de Jong MF, Winter MG, Winter SE, Wehkamp J, Shen B, Salzman NH, Underwood MA, Tsolis RM, Young GM, Lu W, Lehrer RI, Bäumler AJ, Bevins CL. Science 337 477-481 (2012)
  2. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. de Leeuw E, Li C, Zeng P, Li C, Diepeveen-de Buin M, Lu WY, Breukink E, Lu W. FEBS Lett 584 1543-1548 (2010)
  3. Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human alpha-defensin family. Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J. J Immunol 179 3958-3965 (2007)
  4. Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. Smith JG, Silvestry M, Lindert S, Lu W, Nemerow GR, Stewart PL. PLoS Pathog 6 e1000959 (2010)
  5. Human Intestinal Defensin 5 Inhibits SARS-CoV-2 Invasion by Cloaking ACE2. Wang C, Wang S, Li D, Wei DQ, Zhao J, Wang J. Gastroenterology 159 1145-1147.e4 (2020)
  6. Through the looking glass, mechanistic insights from enantiomeric human defensins. Wei G, de Leeuw E, Pazgier M, Yuan W, Zou G, Wang J, Ericksen B, Lu WY, Lehrer RI, Lu W. J Biol Chem 284 29180-29192 (2009)
  7. An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function. Nyström EEL, Martinez-Abad B, Arike L, Birchenough GMH, Nonnecke EB, Castillo PA, Svensson F, Bevins CL, Hansson GC, Johansson MEV. Science 372 eabb1590 (2021)
  8. Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity: role in enhanced transmission. Klotman ME, Rapista A, Teleshova N, Micsenyi A, Jarvis GA, Lu W, Porter E, Chang TL. J Immunol 180 6176-6185 (2008)
  9. Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Hong M, Su Y. Protein Sci 20 641-655 (2011)
  10. Neutrophil alpha-defensins cause lung injury by disrupting the capillary-epithelial barrier. Bdeir K, Higazi AA, Kulikovskaya I, Christofidou-Solomidou M, Vinogradov SA, Allen TC, Idell S, Linzmeier R, Ganz T, Cines DB. Am J Respir Crit Care Med 181 935-946 (2010)
  11. Structure-dependent functional properties of human defensin 5. de Leeuw E, Burks SR, Li X, Kao JP, Lu W. FEBS Lett 581 515-520 (2007)
  12. Critical determinants of human α-defensin 5 activity against non-enveloped viruses. Gounder AP, Wiens ME, Wilson SS, Lu W, Smith JG. J Biol Chem 287 24554-24562 (2012)
  13. Functional determinants of human enteric α-defensin HD5: crucial role for hydrophobicity at dimer interface. Rajabi M, Ericksen B, Wu X, de Leeuw E, Zhao L, Pazgier M, Lu W. J Biol Chem 287 21615-21627 (2012)
  14. The Tomato Defensin TPP3 Binds Phosphatidylinositol (4,5)-Bisphosphate via a Conserved Dimeric Cationic Grip Conformation To Mediate Cell Lysis. Baxter AA, Richter V, Lay FT, Poon IK, Adda CG, Veneer PK, Phan TK, Bleackley MR, Anderson MA, Kvansakul M, Hulett MD. Mol Cell Biol 35 1964-1978 (2015)
  15. Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Rapista A, Ding J, Benito B, Lo YT, Neiditch MB, Lu W, Chang TL. Retrovirology 8 45 (2011)
  16. The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption. Zhang Y, Lu W, Hong M. Biochemistry 49 9770-9782 (2010)
  17. Dimerization of plant defensin NaD1 enhances its antifungal activity. Lay FT, Mills GD, Poon IK, Cowieson NP, Kirby N, Baxter AA, van der Weerden NL, Dogovski C, Perugini MA, Anderson MA, Kvansakul M, Hulett MD. J Biol Chem 287 19961-19972 (2012)
  18. Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Chileveru HR, Lim SA, Chairatana P, Wommack AJ, Chiang IL, Nolan EM. Biochemistry 54 1767-1777 (2015)
  19. Trp-26 imparts functional versatility to human alpha-defensin HNP1. Wei G, Pazgier M, de Leeuw E, Rajabi M, Li J, Zou G, Jung G, Yuan W, Lu WY, Lehrer RI, Lu W. J Biol Chem 285 16275-16285 (2010)
  20. Selective arginines are important for the antibacterial activity and host cell interaction of human alpha-defensin 5. de Leeuw E, Rajabi M, Zou G, Pazgier M, Lu W. FEBS Lett 583 2507-2512 (2009)
  21. Human defensin 5 disulfide array mutants: disulfide bond deletion attenuates antibacterial activity against Staphylococcus aureus. Wanniarachchi YA, Kaczmarek P, Wan A, Nolan EM. Biochemistry 50 8005-8017 (2011)
  22. Human defensin alpha-1 causes Trypanosoma cruzi membrane pore formation and induces DNA fragmentation, which leads to trypanosome destruction. Madison MN, Kleshchenko YY, Nde PN, Simmons KJ, Lima MF, Villalta F. Infect Immun 75 4780-4791 (2007)
  23. Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. Chairatana P, Nolan EM. J Am Chem Soc 136 13267-13276 (2014)
  24. Alpha-defensin-dependent enhancement of enteric viral infection. Wilson SS, Bromme BA, Holly MK, Wiens ME, Gounder AP, Sul Y, Smith JG. PLoS Pathog 13 e1006446 (2017)
  25. The conserved salt bridge in human alpha-defensin 5 is required for its precursor processing and proteolytic stability. Rajabi M, de Leeuw E, Pazgier M, Li J, Lubkowski J, Lu W. J Biol Chem 283 21509-21518 (2008)
  26. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. Flatt JW, Flatt JW, Kim R, Smith JG, Nemerow GR, Stewart PL. PLoS One 8 e61571 (2013)
  27. Defensins enable macrophages to inhibit the intracellular proliferation of Listeria monocytogenes. Arnett E, Lehrer RI, Pratikhya P, Lu W, Seveau S. Cell Microbiol 13 635-651 (2011)
  28. Sometimes it takes two to tango: contributions of dimerization to functions of human α-defensin HNP1 peptide. Pazgier M, Wei G, Ericksen B, Jung G, Wu Z, de Leeuw E, Yuan W, Szmacinski H, Lu WY, Lubkowski J, Lehrer RI, Lu W. J Biol Chem 287 8944-8953 (2012)
  29. Peptide-lipid interactions: experiments and applications. Galdiero S, Falanga A, Cantisani M, Vitiello M, Morelli G, Galdiero M. Int J Mol Sci 14 18758-18789 (2013)
  30. Reduction of human defensin 5 affords a high-affinity zinc-chelating peptide. Zhang Y, Cougnon FB, Wanniarachchi YA, Hayden JA, Nolan EM. ACS Chem Biol 8 1907-1911 (2013)
  31. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet. Ibusuki R, Uto H, Arima S, Mawatari S, Setoguchi Y, Iwashita Y, Hashimoto S, Maeda T, Tanoue S, Kanmura S, Oketani M, Ido A, Tsubouchi H. Liver Int 33 1549-1556 (2013)
  32. A molecular dynamics study of human defensins HBD-1 and HNP-3 in water. Sharadadevi A, Nagaraj R. J Biomol Struct Dyn 27 541-550 (2010)
  33. ADP-ribosylation of human defensin HNP-1 results in the replacement of the modified arginine with the noncoded amino acid ornithine. Stevens LA, Levine RL, Gochuico BR, Moss J. Proc Natl Acad Sci U S A 106 19796-19800 (2009)
  34. NMR solution structure and condition-dependent oligomerization of the antimicrobial peptide human defensin 5. Wommack AJ, Robson SA, Wanniarachchi YA, Wan A, Turner CJ, Wagner G, Nolan EM. Biochemistry 51 9624-9637 (2012)
  35. Over-expression of paneth cell-derived anti-microbial peptides in the gut of patients with ankylosing spondylitis and subclinical intestinal inflammation. Ciccia F, Bombardieri M, Rizzo A, Principato A, Giardina AR, Raiata F, Peralta S, Ferrante A, Drago S, Cottone M, Pitzalis C, Triolo G. Rheumatology (Oxford) 49 2076-2083 (2010)
  36. Inhibition of HIV-1 infection by human α-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. Furci L, Tolazzi M, Sironi F, Vassena L, Lusso P. PLoS One 7 e45208 (2012)
  37. High level expression and purification of bioactive human alpha-defensin 5 mature peptide in Pichia pastoris. Wang A, Wang S, Shen M, Chen F, Zou Z, Ran X, Cheng T, Su Y, Wang J. Appl Microbiol Biotechnol 84 877-884 (2009)
  38. Human Enteric α-Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion. Xu D, Liao C, Zhang B, Tolbert WD, He W, Dai Z, Zhang W, Yuan W, Pazgier M, Liu J, Yu J, Sansonetti PJ, Bevins CL, Shao Y, Lu W. Immunity 48 1233-1244.e6 (2018)
  39. Resonance assignment and three-dimensional structure determination of a human alpha-defensin, HNP-1, by solid-state NMR. Zhang Y, Doherty T, Li J, Lu W, Barinka C, Lubkowski J, Hong M. J Mol Biol 397 408-422 (2010)
  40. Single, double and quadruple alanine substitutions at oligomeric interfaces identify hydrophobicity as the key determinant of human neutrophil alpha defensin HNP1 function. Zhao L, Tolbert WD, Ericksen B, Zhan C, Wu X, Yuan W, Li X, Pazgier M, Lu W. PLoS One 8 e78937 (2013)
  41. New role for human α-defensin 5 in the fight against hypervirulent Clostridium difficile strains. Furci L, Baldan R, Bianchini V, Trovato A, Ossi C, Cichero P, Cirillo DM. Infect Immun 83 986-995 (2015)
  42. Discovery and characterization of a disulfide-locked C(2)-symmetric defensin peptide. Wommack AJ, Ziarek JJ, Tomaras J, Chileveru HR, Zhang Y, Wagner G, Nolan EM. J Am Chem Soc 136 13494-13497 (2014)
  43. Invariant gly residue is important for α-defensin folding, dimerization, and function: a case study of the human neutrophil α-defensin HNP1. Zhao L, Ericksen B, Wu X, Zhan C, Yuan W, Li X, Pazgier M, Lu W. J Biol Chem 287 18900-18912 (2012)
  44. Research Support, Non-U.S. Gov't The intramolecular disulfide-stapled structure of laterosporulin, a class IId bacteriocin, conceals a human defensin-like structural module. Singh PK, Solanki V, Sharma S, Thakur KG, Krishnan B, Korpole S. FEBS J 282 203-214 (2015)
  45. Proteolysis Triggers Self-Assembly and Unmasks Innate Immune Function of a Human α-Defensin Peptide. Chairatana P, Chu H, Castillo PA, Shen B, Bevins CL, Nolan EM. Chem Sci 7 1738-1752 (2016)
  46. Pro-inflammatory and pro-apoptotic properties of Human Defensin 5. Lu W, de Leeuw E. Biochem Biophys Res Commun 436 557-562 (2013)
  47. Enhancement of antiviral activity of human alpha-defensin 5 against herpes simplex virus 2 by arginine mutagenesis at adaptive evolution sites. Wang A, Chen F, Wang Y, Shen M, Xu Y, Hu J, Wang S, Geng F, Wang C, Ran X, Su Y, Cheng T, Wang J. J Virol 87 2835-2845 (2013)
  48. Pancreas-specific protein disulfide isomerase has a cell type-specific expression in various mouse tissues and is absent in human pancreatic adenocarcinoma cells: implications for its functions. Fu XM, Dai X, Ding J, Zhu BT. J Mol Histol 40 189-199 (2009)
  49. Antimicrobial α-defensins as multi-target inhibitors against amyloid formation and microbial infection. Zhang Y, Liu Y, Tang Y, Zhang D, He H, Wu J, Zheng J. Chem Sci 12 9124-9139 (2021)
  50. Arginine-specific mono ADP-ribosylation in vitro of antimicrobial peptides by ADP-ribosylating toxins. Castagnini M, Picchianti M, Talluri E, Biagini M, Del Vecchio M, Di Procolo P, Norais N, Nardi-Dei V, Balducci E. PLoS One 7 e41417 (2012)
  51. Single nucleotide polymorphisms in human Paneth cell defensin A5 may confer susceptibility to inflammatory bowel disease in a New Zealand Caucasian population. Ferguson LR, Browning BL, Huebner C, Petermann I, Shelling AN, Demmers P, McCulloch A, Gearry RB, Barclay ML, Philpott M. Dig Liver Dis 40 723-730 (2008)
  52. Succinylated casein-coated peptide-mesoporous silica nanoparticles as an antibiotic against intestinal bacterial infection. Zhao G, Chen Y, He Y, Chen F, Gong Y, Chen S, Xu Y, Su Y, Wang C, Wang J. Biomater Sci 7 2440-2451 (2019)
  53. Variations in the interaction of human defensins with Escherichia coli: Possible implications in bacterial killing. Mathew B, Nagaraj R. PLoS One 12 e0175858 (2017)
  54. De novo design of a pH-triggered self-assembled β-hairpin nanopeptide with the dual biological functions for antibacterial and entrapment. Li Q, Li J, Yu W, Wang Z, Li J, Feng X, Wang J, Shan A. J Nanobiotechnology 19 183 (2021)
  55. Innate immunity and non-Hodgkin's lymphoma (NHL) related genes in a nested case-control study for gastric cancer risk. Park SK, Yang JJ, Oh S, Cho LY, Ma SH, Shin A, Ko KP, Park T, Yoo KY, Kang D. PLoS One 7 e45274 (2012)
  56. Mucosal human defensins 5 and 6 antagonize the anti-HIV activity of candidate polyanion microbicides. Ding J, Rapista A, Teleshova N, Lu W, Klotman ME, Chang TL. J Innate Immun 3 208-212 (2011)
  57. Paneth cell α-defensin misfolding correlates with dysbiosis and ileitis in Crohn's disease model mice. Shimizu Y, Nakamura K, Yoshii A, Yokoi Y, Kikuchi M, Shinozaki R, Nakamura S, Ohira S, Sugimoto R, Ayabe T. Life Sci Alliance 3 e201900592 (2020)
  58. An optimized Fmoc synthesis of human defensin 5. Vernieri E, Valle J, Andreu D, de la Torre BG. Amino Acids 46 395-400 (2014)
  59. Hydrophobic determinants of α-defensin bactericidal activity. Tai KP, Le VV, Selsted ME, Ouellette AJ. Infect Immun 82 2195-2202 (2014)
  60. Insights into the Folding of Disulfide-Rich μ-Conotoxins. Paul George AA, Heimer P, Maaß A, Hamaekers J, Hofmann-Apitius M, Biswas A, Imhof D. ACS Omega 3 12330-12340 (2018)
  61. 3D (13)C-(13)C-(13)C correlation NMR for de novo distance determination of solid proteins and application to a human alpha-defensin. Li S, Zhang Y, Hong M. J Magn Reson 202 203-210 (2010)
  62. Different dynamics and pathway of disulfide bonds reduction of two human defensins, a molecular dynamics simulation study. Zhang L. Proteins 85 665-681 (2017)
  63. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis. Ibusuki R, Uto H, Oda K, Ohshige A, Tabu K, Mawatari S, Kumagai K, Kanmura S, Tamai T, Moriuchi A, Tsubouchi H, Ido A. PLoS One 12 e0174913 (2017)
  64. α-Defensin HD5 Stabilizes Human Papillomavirus 16 Capsid/Core Interactions. Gulati NM, Miyagi M, Wiens ME, Smith JG, Stewart PL. Pathog Immun 4 196-234 (2019)
  65. Rattusin structure reveals a novel defensin scaffold formed by intermolecular disulfide exchanges. Min HJ, Yun H, Ji S, Rajasekaran G, Kim JI, Kim JS, Shin SY, Lee CW. Sci Rep 7 45282 (2017)
  66. Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides. Zhang R, Loers G, Schachner M, Boelens R, Wienk H, Siebert S, Eckert T, Kraan S, Rojas-Macias MA, Lütteke T, Galuska SP, Scheidig A, Petridis AK, Liang S, Billeter M, Schauer R, Steinmeyer J, Schröder JM, Siebert HC. ChemMedChem 11 990-1002 (2016)
  67. Antimicrobial activity of human α-defensin 6 analogs: insights into the physico-chemical reasons behind weak bactericidal activity of HD6 in vitro. Mathew B, Nagaraj R. J Pept Sci 21 811-818 (2015)
  68. Prediction of the impact of coding missense and nonsense single nucleotide polymorphisms on HD5 and HBD1 antibacterial activity against Escherichia coli. Porto WF, Nolasco DO, Pires ÁS, Pereira RW, Franco OL, Alencar SA. Biopolymers 106 633-644 (2016)
  69. Functional intersection of Human Defensin 5 with the TNF receptor pathway. Lu W, de Leeuw E. FEBS Lett 588 1906-1912 (2014)
  70. Human intelectin-1 (ITLN1) genetic variation and intestinal expression. Nonnecke EB, Castillo PA, Dugan AE, Almalki F, Underwood MA, De La Motte CA, Yuan W, Lu W, Shen B, Johansson MEV, Kiessling LL, Hollox EJ, Lönnerdal B, Bevins CL. Sci Rep 11 12889 (2021)
  71. Conformational landscape and pathway of disulfide bond reduction of human alpha defensin. Snijder J, van de Waterbeemd M, Glover MS, Shi L, Clemmer DE, Heck AJ. Protein Sci 24 1264-1271 (2015)
  72. Prophylactic potential of defensins and L-isoleucine in tuberculosis household contacts: an experimental model. Rivas-Santiago B, Rivas-Santiago C, Sada E, Hernández-Pando R. Immunotherapy 7 207-213 (2015)
  73. Synthesis, structure, and activities of an oral mucosal alpha-defensin from rhesus macaque. Vasudevan S, Yuan J, Osapay G, Tran P, Tai K, Liang W, Kumar V, Selsted ME, Cocco MJ. J Biol Chem 283 35869-35877 (2008)
  74. Cationic antimicrobial peptide NRC-03 induces oral squamous cell carcinoma cell apoptosis via CypD-mPTP axis-mediated mitochondrial oxidative stress. Hou D, Hu F, Mao Y, Yan L, Zhang Y, Zheng Z, Wu A, Forouzanfar T, Pathak JL, Wu G. Redox Biol 54 102355 (2022)
  75. Expression and structure/function relationships of human defensin 5. Chapnik N, Levit A, Niv MY, Froy O. Appl Biochem Biotechnol 166 1703-1710 (2012)
  76. Functional synergism of Human Defensin 5 and Human Defensin 6. Zhao A, Lu W, de Leeuw E. Biochem Biophys Res Commun 467 967-972 (2015)
  77. Recombinant expression, purification and PEGylation of Paneth cell peptide (cryptdin-2) with value added attributes against Staphylococcus aureus. Kaur N, Dilawari R, Kaur A, Sahni G, Rishi P. Sci Rep 10 12164 (2020)
  78. HD5 and HBD1 variants' solvation potential energy correlates with their antibacterial activity against Escherichia coli. Porto WF, Nolasco DO, Pires ÁS, Fernandes GR, Franco OL, Alencar SA. Biopolymers 106 43-50 (2016)
  79. Key Determinants of Human α-Defensin 5 and 6 for Enhancement of HIV Infectivity. Valere K, Lu W, Chang TL. Viruses 9 E244 (2017)
  80. The penetration of human defensin 5 (HD5) through bacterial outer membrane: simulation studies. Awang T, Pongprayoon P. J Mol Model 27 291 (2021)
  81. Comprehensive analysis of alfa defensin expression and prognosis in human colorectal cancer. Zhao X, Lu M, Liu Z, Zhang M, Yuan H, Dan Z, Wang D, Ma B, Yang Y, Yang F, Sun R, Li L, Dang C. Front Oncol 12 974654 (2022)
  82. Human α-Defensin-6 Neutralizes Clostridioides difficile Toxins TcdA and TcdB by Direct Binding. Barthold L, Heber S, Schmidt CQ, Gradl M, Weidinger G, Barth H, Fischer S. Int J Mol Sci 23 4509 (2022)
  83. Flagella-driven motility is a target of human Paneth cell defensin activity. Akahoshi DT, Natwick DE, Yuan W, Lu W, Collins SR, Bevins CL. PLoS Pathog 19 e1011200 (2023)
  84. Inhibition of Pertussis Toxin by Human α-Defensins-1 and -5: Differential Mechanisms of Action. Kling C, Sommer A, Almeida-Hernandez Y, Rodríguez A, Perez-Erviti JA, Bhadane R, Ständker L, Wiese S, Barth H, Pupo-Meriño M, Pulliainen AT, Sánchez-García E, Ernst K. Int J Mol Sci 24 10557 (2023)
  85. Molecular dynamics simulations of human α-defensin 5 (HD5) crossing gram-negative bacterial membrane. Awang T, Chairatana P, Pongprayoon P. PLoS One 18 e0294041 (2023)