1zmh Citations

Reconstruction of the conserved beta-bulge in mammalian defensins using D-amino acids.

J Biol Chem 280 32921-9 (2005)
Related entries: 1zmi, 1zmk

Cited: 44 times
EuropePMC logo PMID: 15894545

Abstract

Defensins are cationic antimicrobial mini-proteins that play important roles in the innate immune defense against microbial infection. Six invariant Cys residues in each defensin form three structurally indispensable intramolecular disulfide bridges. The only other residue invariant in all known mammalian defensins is a Gly. Structural studies indicate that the invariant Gly residue is located in an atypical, classic-type beta-bulge with the backbone torsion angles (Phi, Psi) disallowed for L-amino acids but permissible for D-enantiomers. We replaced the invariant Gly17 residue in human neutrophil alpha-defensin 2 (HNP2) by L-Ala or one of the D-amino acids Ala, Glu, Phe, Arg, Thr, Val, or Tyr. Although L-Ala17-HNP2 could not be folded, resulting in massive aggregation, all of the D-amino acid-substituted analogs folded with high efficiency. The high resolution x-ray crystal structures of dimeric D-Ala17-HNP2 were determined in three different crystal forms, showing a well preserved beta-bulge identical to those found in other defensins. The seven D-analogs of HNP2 exhibited highly variable bactericidal activity against Gram-positive and Gram-negative test strains, consistent with the premise that interplay between charge and hydrophobicity dictates how amphiphilic defensins kill. Further, the bactericidal activity of these d-amino acid analogs of HNP2 correlated well with their ability to induce leakage from large unilamellar vesicles, supporting membrane permeabilization as the lethal event in microbial killing by HNP2. Our findings identify a conformational prerequisite in the beta-bulge of defensins essential for correct folding and native structure, thereby explaining the molecular basis of the Gly-Xaa-Cys motif conserved in all mammalian defensins.

Reviews citing this publication (7)

  1. The roles of antimicrobial peptides in innate host defense. Diamond G, Beckloff N, Weinberg A, Kisich KO. Curr Pharm Des 15 2377-2392 (2009)
  2. α-Defensins in human innate immunity. Lehrer RI, Lu W. Immunol Rev 245 84-112 (2012)
  3. Antiviral mechanisms of human defensins. Wilson SS, Wiens ME, Smith JG. J Mol Biol 425 4965-4980 (2013)
  4. Unifying themes in host defence effector polypeptides. Yeaman MR, Yount NY. Nat Rev Microbiol 5 727-740 (2007)
  5. Antimicrobial peptides and proteins of the horse--insights into a well-armed organism. Bruhn O, Grötzinger J, Cascorbi I, Jung S. Vet Res 42 98 (2011)
  6. Guardians of the Gut: Enteric Defensins. Sankaran-Walters S, Hart R, Dills C. Front Microbiol 8 647 (2017)
  7. Targeting and inactivation of bacterial toxins by human defensins. Kudryashova E, Seveau SM, Kudryashov DS. Biol Chem 398 1069-1085 (2017)

Articles citing this publication (37)

  1. Human alpha-defensins block papillomavirus infection. Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, Schiller JT. Proc Natl Acad Sci U S A 103 1516-1521 (2006)
  2. Crystal structures of human alpha-defensins HNP4, HD5, and HD6. Szyk A, Wu Z, Tucker K, Yang D, Lu W, Lubkowski J. Protein Sci 15 2749-2760 (2006)
  3. Through the looking glass, mechanistic insights from enantiomeric human defensins. Wei G, de Leeuw E, Pazgier M, Yuan W, Zou G, Wang J, Ericksen B, Lu WY, Lehrer RI, Lu W. J Biol Chem 284 29180-29192 (2009)
  4. Functional determinants of human enteric α-defensin HD5: crucial role for hydrophobicity at dimer interface. Rajabi M, Ericksen B, Wu X, de Leeuw E, Zhao L, Pazgier M, Lu W. J Biol Chem 287 21615-21627 (2012)
  5. Strain-specific polymorphisms in Paneth cell α-defensins of C57BL/6 mice and evidence of vestigial myeloid α-defensin pseudogenes. Shanahan MT, Tanabe H, Ouellette AJ. Infect Immun 79 459-473 (2011)
  6. Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Rapista A, Ding J, Benito B, Lo YT, Neiditch MB, Lu W, Chang TL. Retrovirology 8 45 (2011)
  7. The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption. Zhang Y, Lu W, Hong M. Biochemistry 49 9770-9782 (2010)
  8. Trp-26 imparts functional versatility to human alpha-defensin HNP1. Wei G, Pazgier M, de Leeuw E, Rajabi M, Li J, Zou G, Jung G, Yuan W, Lu WY, Lehrer RI, Lu W. J Biol Chem 285 16275-16285 (2010)
  9. The conserved salt bridge in human alpha-defensin 5 is required for its precursor processing and proteolytic stability. Rajabi M, de Leeuw E, Pazgier M, Li J, Lubkowski J, Lu W. J Biol Chem 283 21509-21518 (2008)
  10. The antimicrobial activity of CCL28 is dependent on C-terminal positively-charged amino acids. Liu B, Wilson E. Eur J Immunol 40 186-196 (2010)
  11. Identifying the hotspots on the top faces of WD40-repeat proteins from their primary sequences by β-bulges and DHSW tetrads. Wu XH, Wang Y, Zhuo Z, Jiang F, Wu YD. PLoS One 7 e43005 (2012)
  12. A molecular dynamics study of human defensins HBD-1 and HNP-3 in water. Sharadadevi A, Nagaraj R. J Biomol Struct Dyn 27 541-550 (2010)
  13. Delineation of interfaces on human alpha-defensins critical for human adenovirus and human papillomavirus inhibition. Tenge VR, Gounder AP, Wiens ME, Lu W, Smith JG. PLoS Pathog 10 e1004360 (2014)
  14. An ancestral host defence peptide within human β-defensin 3 recapitulates the antibacterial and antiviral activity of the full-length molecule. Nigro E, Colavita I, Sarnataro D, Scudiero O, Zambrano G, Granata V, Daniele A, Carotenuto A, Galdiero S, Folliero V, Galdiero M, Urbanowicz RA, Ball JK, Salvatore F, Pessi A. Sci Rep 5 18450 (2015)
  15. Impact of pro segments on the folding and function of human neutrophil alpha-defensins. Wu Z, Li X, Ericksen B, de Leeuw E, Zou G, Zeng P, Xie C, Li C, Lubkowski J, Lu WY, Lu W. J Mol Biol 368 537-549 (2007)
  16. Initial insights into structure-activity relationships of avian defensins. Derache C, Meudal H, Aucagne V, Mark KJ, Cadène M, Delmas AF, Lalmanach AC, Landon C. J Biol Chem 287 7746-7755 (2012)
  17. Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Lee J, Lee DG. Exp Mol Med 40 370-376 (2008)
  18. Quantification of polysaccharides fixed to Gram stained slides using lactophenol cotton blue and digital image processing. Ericksen B. F1000Res 4 1 (2015)
  19. Invariant gly residue is important for α-defensin folding, dimerization, and function: a case study of the human neutrophil α-defensin HNP1. Zhao L, Ericksen B, Wu X, Zhan C, Yuan W, Li X, Pazgier M, Lu W. J Biol Chem 287 18900-18912 (2012)
  20. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. Sharma H, Nagaraj R. PLoS One 10 e0119525 (2015)
  21. The gamma-core motif correlates with antimicrobial activity in cysteine-containing kaliocin-1 originating from transferrins. Yount NY, Andrés MT, Fierro JF, Yeaman MR. Biochim Biophys Acta 1768 2862-2872 (2007)
  22. A novel horse alpha-defensin: gene transcription, recombinant expression and characterization of the structure and function. Bruhn O, Regenhard P, Michalek M, Paul S, Gelhaus C, Jung S, Thaller G, Podschun R, Leippe M, Grötzinger J, Kalm E. Biochem J 407 267-276 (2007)
  23. The α-defensin salt-bridge induces backbone stability to facilitate folding and confer proteolytic resistance. Andersson HS, Figueredo SM, Haugaard-Kedström LM, Bengtsson E, Daly NL, Qu X, Craik DJ, Ouellette AJ, Rosengren KJ. Amino Acids 43 1471-1483 (2012)
  24. Enhancement of antiviral activity of human alpha-defensin 5 against herpes simplex virus 2 by arginine mutagenesis at adaptive evolution sites. Wang A, Chen F, Wang Y, Shen M, Xu Y, Hu J, Wang S, Geng F, Wang C, Ran X, Su Y, Cheng T, Wang J. J Virol 87 2835-2845 (2013)
  25. Arginine-specific mono ADP-ribosylation in vitro of antimicrobial peptides by ADP-ribosylating toxins. Castagnini M, Picchianti M, Talluri E, Biagini M, Del Vecchio M, Di Procolo P, Norais N, Nardi-Dei V, Balducci E. PLoS One 7 e41417 (2012)
  26. Effects of the terminal charges in human neutrophil alpha-defensin 2 on its bactericidal and membrane activity. Xie C, Zeng P, Ericksen B, Wu Z, Lu WY, Lu W. Peptides 26 2377-2383 (2005)
  27. The repertoire of equine intestinal alpha-defensins. Bruhn O, Paul S, Tetens J, Thaller G. BMC Genomics 10 631 (2009)
  28. Is glycine a surrogate for a D-amino acid in the collagen triple helix? Horng JC, Kotch FW, Raines RT. Protein Sci 16 208-215 (2007)
  29. Hydrophobic determinants of α-defensin bactericidal activity. Tai KP, Le VV, Selsted ME, Ouellette AJ. Infect Immun 82 2195-2202 (2014)
  30. Modelling study of dimerization in mammalian defensins. Suresh A, Verma C. BMC Bioinformatics 7 Suppl 5 S17 (2006)
  31. Molecular Evolutionary Analysis of β-Defensin Peptides in Vertebrates. Tu J, Li D, Li Q, Zhang L, Zhu Q, Gaur U, Fan X, Xu H, Yao Y, Zhao X, Yang M. Evol Bioinform Online 11 105-114 (2015)
  32. 3D (13)C-(13)C-(13)C correlation NMR for de novo distance determination of solid proteins and application to a human alpha-defensin. Li S, Zhang Y, Hong M. J Magn Reson 202 203-210 (2010)
  33. Effect of selectively introducing arginine and D-amino acids on the antimicrobial activity and salt sensitivity in analogs of human beta-defensins. Olli S, Rangaraj N, Nagaraj R. PLoS One 8 e77031 (2013)
  34. R-thanatin inhibits growth and biofilm formation of methicillin-resistant Staphylococcus epidermidis in vivo and in vitro. Hou Z, Da F, Liu B, Xue X, Xu X, Zhou Y, Li M, Li Z, Ma X, Meng J, Jia M, Wang Y, Luo X. Antimicrob Agents Chemother 57 5045-5052 (2013)
  35. High-Throughput Quantification of Bacterial-Cell Interactions Using Virtual Colony Counts. Hoffmann S, Walter S, Blume AK, Fuchs S, Schmidt C, Scholz A, Gerlach RG. Front Cell Infect Microbiol 8 43 (2018)
  36. Molecular characterization of a novel β-defensin isoform from the red-toothed trigger fish, Odonus niger (Ruppel, 1836). Neelima S, Archana K, Athira PP, Anju MV, Anooja VV, Bright Singh IS, Philip R. J Genet Eng Biotechnol 19 71 (2021)
  37. Mouse α-Defensins: Structural and Functional Analysis of the 17 Cryptdin Isoforms Identified from a Single Jejunal Crypt. Wang Q, Yang Y, Luo G, Zhou Y, Tolbert WD, Pazgier M, Liao C, Lu W. Infect Immun 91 e0036122 (2023)