1zil Citations

Buried polar residues and structural specificity in the GCN4 leucine zipper.

Nat Struct Biol 3 1011-8 (1996)
Related entries: 1zik, 1zim

Cited: 135 times
EuropePMC logo PMID: 8946854

Abstract

A conserved asparagine (Asn 16) buried in the interface of the GCN4 leucine zipper selectively favours the parallel, dimeric, coiled-coil structure. To test if other polar residues confer oligomerization specificity, the structural effects of Gln and Lys substitutions for Asn 16 were characterized. Like the wild-type peptide, the Asn 16Lys mutant formed exclusively dimers. In contrast, Gln 16, despite its chemical similarity to Asn, allowed the peptide to form both dimers and trimers. The Gln 16 side chain was accommodated by qualitatively different interactions in the dimer and trimer crystal structures. These findings demonstrate that the structural selectivity of polar residues results not only from the burial of polar atoms, but also depends on the complementarity of the side-chain stereochemistry with the surrounding structural environment.

Articles - 1zil mentioned but not cited (5)

  1. Electrostatic contributions to the stability of the GCN4 leucine zipper structure. Matousek WM, Ciani B, Fitch CA, Garcia-Moreno B, Kammerer RA, Alexandrescu AT. J Mol Biol 374 206-219 (2007)
  2. How sequence directs bending in tropomyosin and other two-stranded alpha-helical coiled coils. Brown JH. Protein Sci 19 1366-1375 (2010)
  3. Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins. Sunitha MS, Nair AG, Charya A, Jadhav K, Mukhopadhyay S, Sowdhamini R. BMC Res Notes 5 530 (2012)
  4. Dilated cardiomyopathy mutation E525K in human beta-cardiac myosin stabilizes the interacting-heads motif and super-relaxed state of myosin. Rasicci DV, Tiwari P, Bodt SML, Desetty R, Sadler FR, Sivaramakrishnan S, Craig R, Yengo CM. Elife 11 e77415 (2022)
  5. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix. Kaplan AR, Brady MR, Maciejewski MW, Kammerer RA, Alexandrescu AT. Biochemistry 56 1604-1619 (2017)


Reviews citing this publication (12)

  1. Coiled coil domains: stability, specificity, and biological implications. Mason JM, Arndt KM. Chembiochem 5 170-176 (2004)
  2. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA. Annu Rev Cell Dev Biol 13 457-512 (1997)
  3. De novo design and structural characterization of proteins and metalloproteins. DeGrado WF, Summa CM, Pavone V, Nastri F, Lombardi A. Annu Rev Biochem 68 779-819 (1999)
  4. How do helix-helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles. DeGrado WF, Gratkowski H, Lear JD. Protein Sci 12 647-665 (2003)
  5. Coiled-coils: stability, specificity, and drug delivery potential. Yu YB. Adv Drug Deliv Rev 54 1113-1129 (2002)
  6. The Structure and Topology of α-Helical Coiled Coils. Lupas AN, Bassler J, Dunin-Horkawicz S. Subcell Biochem 82 95-129 (2017)
  7. Programmable protein circuit design. Chen Z, Elowitz MB. Cell 184 2284-2301 (2021)
  8. Analysis and design of three-stranded coiled coils and three-helix bundles. Schneider JP, Lombardi A, DeGrado WF. Fold Des 3 R29-40 (1998)
  9. Hydrophobic core packing and protein design. Lazar GA, Handel TM. Curr Opin Chem Biol 2 675-679 (1998)
  10. Complementary packing of alpha-helices in proteins. Efimov AV. FEBS Lett 463 3-6 (1999)
  11. Peptides and peptidomimetics in the p53/MDM2/MDM4 circuitry - a patent review. Teveroni E, Lucà R, Pellegrino M, Ciolli G, Pontecorvi A, Moretti F. Expert Opin Ther Pat 26 1417-1429 (2016)
  12. Understanding a protein fold: The physics, chemistry, and biology of α-helical coiled coils. Woolfson DN. J Biol Chem 299 104579 (2023)

Articles citing this publication (118)

  1. Atomic structure of a thermostable subdomain of HIV-1 gp41. Tan K, Liu J, Wang J, Shen S, Lu M. Proc Natl Acad Sci U S A 94 12303-12308 (1997)
  2. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. Malashkevich VN, Schneider BJ, McNally ML, Milhollen MA, Pang JX, Kim PS. Proc Natl Acad Sci U S A 96 2662-2667 (1999)
  3. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Boyken SE, Chen Z, Groves B, Langan RA, Oberdorfer G, Ford A, Gilmore JM, Xu C, DiMaio F, Pereira JH, Sankaran B, Seelig G, Zwart PH, Baker D. Science 352 680-687 (2016)
  4. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d". Tripet B, Wagschal K, Lavigne P, Mant CT, Hodges RS. J Mol Biol 300 377-402 (2000)
  5. Automated protein crystal structure determination using ELVES. Holton J, Alber T. Proc Natl Acad Sci U S A 101 1537-1542 (2004)
  6. Rab and Arl GTPase family members cooperate in the localization of the golgin GCC185. Burguete AS, Fenn TD, Brunger AT, Pfeffer SR. Cell 132 286-298 (2008)
  7. X-ray crystal structure of voltage-gated proton channel. Takeshita K, Sakata S, Yamashita E, Fujiwara Y, Kawanabe A, Kurokawa T, Okochi Y, Matsuda M, Narita H, Okamura Y, Nakagawa A. Nat Struct Mol Biol 21 352-357 (2014)
  8. A seven-helix coiled coil. Liu J, Zheng Q, Deng Y, Cheng CS, Kallenbach NR, Lu M. Proc Natl Acad Sci U S A 103 15457-15462 (2006)
  9. An autonomous folding unit mediates the assembly of two-stranded coiled coils. Kammerer RA, Schulthess T, Landwehr R, Lustig A, Engel J, Aebi U, Steinmetz MO. Proc Natl Acad Sci U S A 95 13419-13424 (1998)
  10. The role of position a in determining the stability and oligomerization state of alpha-helical coiled coils: 20 amino acid stability coefficients in the hydrophobic core of proteins. Wagschal K, Tripet B, Lavigne P, Mant C, Hodges RS. Protein Sci 8 2312-2329 (1999)
  11. Determinants of strand register in antiparallel beta-sheets of proteins. Hutchinson EG, Sessions RB, Thornton JM, Woolfson DN. Protein Sci 7 2287-2300 (1998)
  12. Engineering the morphology of a self-assembling protein fibre. Ryadnov MG, Woolfson DN. Nat Mater 2 329-332 (2003)
  13. The crystal structure of the SIV gp41 ectodomain at 1.47 A resolution. Yang ZN, Mueser TC, Kaufman J, Stahl SJ, Wingfield PT, Hyde CC. J Struct Biol 126 131-144 (1999)
  14. Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs. Deppmann CD, Acharya A, Rishi V, Wobbes B, Smeekens S, Taparowsky EJ, Vinson C. Nucleic Acids Res 32 3435-3445 (2004)
  15. Electrostatic interactions in the GCN4 leucine zipper: substantial contributions arise from intramolecular interactions enhanced on binding. Hendsch ZS, Tidor B. Protein Sci 8 1381-1392 (1999)
  16. Programmable design of orthogonal protein heterodimers. Chen Z, Boyken SE, Jia M, Busch F, Flores-Solis D, Bick MJ, Lu P, VanAernum ZL, Sahasrabuddhe A, Langan RA, Bermeo S, Brunette TJ, Mulligan VK, Carter LP, DiMaio F, Sgourakis NG, Wysocki VH, Baker D. Nature 565 106-111 (2019)
  17. Semirational design of Jun-Fos coiled coils with increased affinity: Universal implications for leucine zipper prediction and design. Mason JM, Schmitz MA, Müller KM, Arndt KM. Proc Natl Acad Sci U S A 103 8989-8994 (2006)
  18. Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. Rosa-Calatrava M, Grave L, Puvion-Dutilleul F, Chatton B, Kedinger C. J Virol 75 7131-7141 (2001)
  19. Predicting specificity in bZIP coiled-coil protein interactions. Fong JH, Keating AE, Singh M. Genome Biol 5 R11 (2004)
  20. LOGICOIL--multi-state prediction of coiled-coil oligomeric state. Vincent TL, Green PJ, Woolfson DN. Bioinformatics 29 69-76 (2013)
  21. The structure of the coiled-coil domain of Ndel1 and the basis of its interaction with Lis1, the causal protein of Miller-Dieker lissencephaly. Derewenda U, Tarricone C, Choi WC, Cooper DR, Lukasik S, Perrina F, Tripathy A, Kim MH, Cafiso DS, Musacchio A, Derewenda ZS. Structure 15 1467-1481 (2007)
  22. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. Lavigne P, Crump MP, Gagné SM, Hodges RS, Kay CM, Sykes BD. J Mol Biol 281 165-181 (1998)
  23. Crystal structure of GCN4-pIQI, a trimeric coiled coil with buried polar residues. Eckert DM, Malashkevich VN, Kim PS. J Mol Biol 284 859-865 (1998)
  24. Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor. Danielson MA, Bass RB, Falke JJ. J Biol Chem 272 32878-32888 (1997)
  25. A coiled-coil motif that sequesters ions to the hydrophobic core. Hartmann MD, Ridderbusch O, Zeth K, Albrecht R, Testa O, Woolfson DN, Sauer G, Dunin-Horkawicz S, Lupas AN, Alvarez BH. Proc Natl Acad Sci U S A 106 16950-16955 (2009)
  26. Crystal structure of tetranectin, a trimeric plasminogen-binding protein with an alpha-helical coiled coil. Nielsen BB, Kastrup JS, Rasmussen H, Holtet TL, Graversen JH, Graversen JH, Etzerodt M, Thøgersen HC, Larsen IK. FEBS Lett 412 388-396 (1997)
  27. The core of the respiratory syncytial virus fusion protein is a trimeric coiled coil. Matthews JM, Young TF, Tucker SP, Mackay JP. J Virol 74 5911-5920 (2000)
  28. De novo design of a model peptide sequence to examine the effects of single amino acid substitutions in the hydrophobic core on both stability and oligomerization state of coiled-coils. Wagschal K, Tripet B, Hodges RS. J Mol Biol 285 785-803 (1999)
  29. Orientation, positional, additivity, and oligomerization-state effects of interhelical ion pairs in alpha-helical coiled-coils. Kohn WD, Kay CM, Hodges RS. J Mol Biol 283 993-1012 (1998)
  30. Solution structure and dynamics of a designed hydrophobic core variant of ubiquitin. Johnson EC, Lazar GA, Desjarlais JR, Handel TM. Structure 7 967-976 (1999)
  31. Energy functions for protein design I: efficient and accurate continuum electrostatics and solvation. Pokala N, Handel TM. Protein Sci 13 925-936 (2004)
  32. Preferred side-chain constellations at antiparallel coiled-coil interfaces. Hadley EB, Testa OD, Woolfson DN, Gellman SH. Proc Natl Acad Sci U S A 105 530-535 (2008)
  33. Coiled coils at the edge of configurational heterogeneity. Structural analyses of parallel and antiparallel homotetrameric coiled coils reveal configurational sensitivity to a single solvent-exposed amino acid substitution. Yadav MK, Leman LJ, Price DJ, Brooks CL, Stout CD, Ghadiri MR. Biochemistry 45 4463-4473 (2006)
  34. Molecular dissection of VirB, a key regulator of the virulence cascade of Shigella flexneri. Beloin C, McKenna S, Dorman CJ. J Biol Chem 277 15333-15344 (2002)
  35. Ring cycle for dilating and constricting the nuclear pore. Solmaz SR, Blobel G, Melcák I. Proc Natl Acad Sci U S A 110 5858-5863 (2013)
  36. Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Jing P, Rudra JS, Herr AB, Collier JH. Biomacromolecules 9 2438-2446 (2008)
  37. Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor. Escobedo A, Topal B, Kunze MBA, Aranda J, Chiesa G, Mungianu D, Bernardo-Seisdedos G, Eftekharzadeh B, Gairí M, Pierattelli R, Felli IC, Diercks T, Millet O, García J, Orozco M, Crehuet R, Lindorff-Larsen K, Salvatella X. Nat Commun 10 2034 (2019)
  38. pH-induced folding of an apoptotic coiled coil. Dutta K, Alexandrov A, Huang H, Pascal SM. Protein Sci 10 2531-2540 (2001)
  39. Protein grafting of an HIV-1-inhibiting epitope. Sia SK, Kim PS. Proc Natl Acad Sci U S A 100 9756-9761 (2003)
  40. Crystal structure and biophysical properties of a complex between the N-terminal SNARE region of SNAP25 and syntaxin 1a. Misura KM, Gonzalez LC, May AP, Scheller RH, Weis WI. J Biol Chem 276 41301-41309 (2001)
  41. Coiled-coil assembly by peptides with non-heptad sequence motifs. Hicks MR, Holberton DV, Kowalczyk C, Woolfson DN. Fold Des 2 149-158 (1997)
  42. Probing the roles of the two different dimers mediated by the receiver domain of the response regulator PhoB. Mack TR, Gao R, Stock AM. J Mol Biol 389 349-364 (2009)
  43. Temperature profiling of polypeptides in reversed-phase liquid chromatography. II. Monitoring of folding and stability of two-stranded alpha-helical coiled-coils. Mant CT, Tripet B, Hodges RS. J Chromatogr A 1009 45-59 (2003)
  44. Are trigger sequences essential in the folding of two-stranded alpha-helical coiled-coils? Lee DL, Lavigne P, Hodges RS. J Mol Biol 306 539-553 (2001)
  45. Solvation energetics and conformational change in EF-hand proteins. Ababou A, Desjarlais JR. Protein Sci 10 301-312 (2001)
  46. Assembly pathway of a designed alpha-helical protein fiber. Bromley EH, Channon KJ, King PJ, Mahmoud ZN, Banwell EF, Butler MF, Crump MP, Dafforn TR, Hicks MR, Hirst JD, Rodger A, Woolfson DN. Biophys J 98 1668-1676 (2010)
  47. Crystal structure of a designed, thermostable, heterotrimeric coiled coil. Nautiyal S, Alber T. Protein Sci 8 84-90 (1999)
  48. Structure-based design of a photocontrolled DNA binding protein. Morgan SA, Al-Abdul-Wahid S, Woolley GA. J Mol Biol 399 94-112 (2010)
  49. Dramatic structural and thermodynamic consequences of repacking a protein's hydrophobic core. Willis MA, Bishop B, Regan L, Brunger AT. Structure 8 1319-1328 (2000)
  50. Improved expression of secretory and trimeric proteins in mammalian cells via the introduction of a new trimer motif and a mutant of the tPA signal sequence. Wang JY, Song WT, Li Y, Chen WJ, Yang D, Zhong GC, Zhou HZ, Ren CY, Yu HT, Ling H. Appl Microbiol Biotechnol 91 731-740 (2011)
  51. Kinking the coiled coil--negatively charged residues at the coiled-coil interface. Straussman R, Ben-Ya'acov A, Woolfson DN, Ravid S. J Mol Biol 366 1232-1242 (2007)
  52. The native GCN4 leucine-zipper domain does not uniquely specify a dimeric oligomerization state. Oshaben KM, Salari R, McCaslin DR, Chong LT, Horne WS. Biochemistry 51 9581-9591 (2012)
  53. Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms. Wiltscheck R, Kammerer RA, Dames SA, Schulthess T, Blommers MJ, Engel J, Alexandrescu AT. Protein Sci 6 1734-1745 (1997)
  54. Hybrid hydrogels self-assembled from HPMA copolymers containing peptide grafts. Yang J, Xu C, Kopecková P, Kopecek J. Macromol Biosci 6 201-209 (2006)
  55. Structural criteria for regulation of membrane fusion and virion incorporation by the murine leukemia virus TM cytoplasmic domain. Taylor GM, Sanders DA. Virology 312 295-305 (2003)
  56. A polar, solvent-exposed residue can be essential for native protein structure. Hill RB, DeGrado WF. Structure 8 471-479 (2000)
  57. The contribution of buried polar groups to the conformational stability of the GCN4 coiled coil. Zhu H, Celinski SA, Scholtz JM, Hu JC. J Mol Biol 300 1377-1387 (2000)
  58. Structure-based engineering of internal cavities in coiled-coil peptides. Yadav MK, Redman JE, Leman LJ, Alvarez-Gutiérrez JM, Zhang Y, Stout CD, Ghadiri MR. Biochemistry 44 9723-9732 (2005)
  59. Orientation and oligomerization specificity of the Bcr coiled-coil oligomerization domain. Taylor CM, Keating AE. Biochemistry 44 16246-16256 (2005)
  60. A crystal structure of the cyclic GMP-dependent protein kinase I{beta} dimerization/docking domain reveals molecular details of isoform-specific anchoring. Casteel DE, Smith-Nguyen EV, Sankaran B, Roh SH, Pilz RB, Kim C. J Biol Chem 285 32684-32688 (2010)
  61. Importance of potential interhelical salt-bridges involving interior residues for coiled-coil stability and quaternary structure. McClain DL, Gurnon DG, Oakley MG. J Mol Biol 324 257-270 (2002)
  62. A buried polar residue in the hydrophobic interface of the coiled-coil peptide, GCN4-p1, plays a thermodynamic, not a kinetic role in folding. Knappenberger JA, Smith JE, Thorpe SH, Zitzewitz JA, Matthews CR. J Mol Biol 321 1-6 (2002)
  63. Direct simulation of transmembrane helix association: role of asparagines. Stockner T, Ash WL, MacCallum JL, Tieleman DP. Biophys J 87 1650-1656 (2004)
  64. A novel coiled-coil repeat variant in a class of bacterial cytoskeletal proteins. Walshaw J, Gillespie MD, Kelemen GH. J Struct Biol 170 202-215 (2010)
  65. Crystal structure of a trimeric form of the K(V)7.1 (KCNQ1) A-domain tail coiled-coil reveals structural plasticity and context dependent changes in a putative coiled-coil trimerization motif. Xu Q, Minor DL. Protein Sci 18 2100-2114 (2009)
  66. Improving a designed photocontrolled DNA-binding protein. Fan HY, Morgan SA, Brechun KE, Chen YY, Jaikaran AS, Woolley GA. Biochemistry 50 1226-1237 (2011)
  67. Quantification of helix-helix binding affinities in micelles and lipid bilayers. Lomize AL, Pogozheva ID, Mosberg HI. Protein Sci 13 2600-2612 (2004)
  68. Identification of a unique "stability control region" that controls protein stability of tropomyosin: A two-stranded alpha-helical coiled-coil. Hodges RS, Mills J, McReynolds S, Kirwan JP, Tripet B, Osguthorpe D. J Mol Biol 392 747-762 (2009)
  69. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain. Drees BL, Grotkopp EK, Nelson HC. J Mol Biol 273 61-74 (1997)
  70. Biophysical and mutational analysis of the putative bZIP domain of Epstein-Barr virus EBNA 3C. West MJ, Webb HM, Sinclair AJ, Woolfson DN. J Virol 78 9431-9445 (2004)
  71. Side-chain pairing preferences in the parallel coiled-coil dimer motif: insight on ion pairing between core and flanking sites. Steinkruger JD, Woolfson DN, Gellman SH. J Am Chem Soc 132 7586-7588 (2010)
  72. Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function. Merritt HI, Sawyer N, Arora PS. Pept Sci (Hoboken) 112 e24145 (2020)
  73. Conformational transition between four and five-stranded phenylalanine zippers determined by a local packing interaction. Liu J, Zheng Q, Deng Y, Kallenbach NR, Lu M. J Mol Biol 361 168-179 (2006)
  74. Cooperativity and specificity of association of a designed transmembrane peptide. Gratkowski H, Dai QH, Wand AJ, DeGrado WF, Lear JD. Biophys J 83 1613-1619 (2002)
  75. Investigating the tolerance of coiled-coil peptides to nonheptad sequence inserts. Hicks MR, Walshaw J, Woolfson DN. J Struct Biol 137 73-81 (2002)
  76. Conformational Dynamics of Asparagine at Coiled-Coil Interfaces. Thomas F, Niitsu A, Oregioni A, Bartlett GJ, Woolfson DN. Biochemistry 56 6544-6554 (2017)
  77. The d'--d--d' vertical triad is less discriminating than the a'--a--a' vertical triad in the antiparallel coiled-coil dimer motif. Steinkruger JD, Bartlett GJ, Hadley EB, Fay L, Woolfson DN, Gellman SH. J Am Chem Soc 134 2626-2633 (2012)
  78. Rotamer strain as a determinant of protein structural specificity. Lazar GA, Johnson EC, Desjarlais JR, Handel TM. Protein Sci 8 2598-2610 (1999)
  79. Sequence-based design of a peptide probe for the APC tumor suppressor protein. Sharma VA, Logan J, King DS, White R, Alber T. Curr Biol 8 823-830 (1998)
  80. A universal trend among proteomes indicates an oily last common ancestor. Mannige RV, Brooks CL, Shakhnovich EI. PLoS Comput Biol 8 e1002839 (2012)
  81. Molecular dynamics guided study of salt bridge length dependence in both fluorinated and non-fluorinated parallel dimeric coiled-coils. Pendley SS, Yu YB, Cheatham TE. Proteins 74 612-629 (2009)
  82. Molecular insights into the self-assembly mechanism of dystrophia myotonica kinase. Garcia P, Ucurum Z, Bucher R, Svergun DI, Huber T, Lustig A, Konarev PV, Marino M, Mayans O. FASEB J 20 1142-1151 (2006)
  83. The C-terminal domain of matrilin-2 assembles into a three-stranded alpha-helical coiled coil. Pan OH, Beck K. J Biol Chem 273 14205-14209 (1998)
  84. X-ray structure of a water-soluble analog of the membrane protein phospholamban: sequence determinants defining the topology of tetrameric and pentameric coiled coils. Slovic AM, Stayrook SE, North B, Degrado WF. J Mol Biol 348 777-787 (2005)
  85. An engineered leucine zipper a position mutant with an unusual three-state unfolding pathway. Zhu H, Celinski SA, Scholtz JM, Hu JC. Protein Sci 10 24-33 (2001)
  86. Evolutionary patterns in coiled-coils. Surkont J, Pereira-Leal JB. Genome Biol Evol 7 545-556 (2015)
  87. Removal of kinetic traps and enhanced protein folding by strategic substitution of amino acids in a model alpha-helical hairpin peptide. Chapagain PP, Gerstman BS. Biopolymers 81 167-178 (2006)
  88. Synthesis, physicochemical characterization, and crystallization of a putative retro-coiled coil. Liu N, Deillon C, Klauser S, Gutte B, Thomas RM. Protein Sci 7 1214-1220 (1998)
  89. Your personalized protein structure: Andrei N. Lupas fused to GCN4 adaptors. Deiss S, Hernandez Alvarez B, Bär K, Ewers CP, Coles M, Albrecht R, Hartmann MD. J Struct Biol 186 380-385 (2014)
  90. Binding of the CYK-4 subunit of the centralspindlin complex induces a large scale conformational change in the kinesin subunit. White EA, Raghuraman H, Perozo E, Glotzer M. J Biol Chem 288 19785-19795 (2013)
  91. Engineering protein filaments with enhanced thermostability for nanomaterials. Glover DJ, Giger L, Kim JR, Clark DS. Biotechnol J 8 228-236 (2013)
  92. Synergistic interactions between aqueous and membrane domains of a designed protein determine its fold and stability. Cristian L, Nanda V, Lear JD, DeGrado WF. J Mol Biol 348 1225-1233 (2005)
  93. Deriving Heterospecific Self-Assembling Protein-Protein Interactions Using a Computational Interactome Screen. Crooks RO, Baxter D, Panek AS, Lubben AT, Mason JM. J Mol Biol 428 385-398 (2016)
  94. Nach Is a Novel Subgroup at an Early Evolutionary Stage of the CNC-bZIP Subfamily Transcription Factors from the Marine Bacteria to Humans. Zhu YP, Wang M, Xiang Y, Qiu L, Hu S, Zhang Z, Mattjus P, Zhu X, Zhang Y. Int J Mol Sci 19 E2927 (2018)
  95. The effects of pK(a) tuning on the thermodynamics and kinetics of folding: design of a solvent-shielded carboxylate pair at the a-position of a coiled-coil. Lau WL, Degrado WF, Roder H. Biophys J 99 2299-2308 (2010)
  96. Two-dimensional replica exchange approach for peptide-peptide interactions. Gee J, Shell MS. J Chem Phys 134 064112 (2011)
  97. New structural determinants for c-Myc specific heterodimerization with Max and development of a novel homodimeric c-Myc b-HLH-LZ. Beaulieu ME, McDuff FO, Frappier V, Montagne M, Naud JF, Lavigne P. J Mol Recognit 25 414-426 (2012)
  98. Protein grafting of p53TAD onto a leucine zipper scaffold generates a potent HDM dual inhibitor. Lee JH, Kang E, Lee J, Kim J, Lee KH, Han J, Kang HY, Ahn S, Oh Y, Shin D, Hur K, Chae SY, Song PH, Kim YI, Park JC, Lee JI. Nat Commun 5 3814 (2014)
  99. Binding of small molecules to cavity forming mutants of a de novo designed protein. Das A, Wei Y, Pelczer I, Hecht MH. Protein Sci 20 702-711 (2011)
  100. Crystal structure of the DUF16 domain of MPN010 from Mycoplasma pneumoniae. Shin DH, Kim JS, Yokota H, Kim R, Kim SH. Protein Sci 15 921-928 (2006)
  101. Discrimination of driver and passenger mutations in epidermal growth factor receptor in cancer. Anoosha P, Huang LT, Sakthivel R, Karunagaran D, Gromiha MM. Mutat Res 780 24-34 (2015)
  102. The coiled-coil domain of Escherichia coli FtsLB is a structurally detuned element critical for modulating its activation in bacterial cell division. Craven SJ, Condon SGF, Díaz Vázquez G, Cui Q, Senes A. J Biol Chem 298 101460 (2022)
  103. An implementation of hydrophobic force in implicit solvent molecular dynamics simulation for packed proteins. Duan LL, Zhu T, Mei Y, Zhang QG, Tang B, Zhang JZ. J Mol Model 19 2605-2612 (2013)
  104. Extremely Thermostabilizing Core Mutations in Coiled-Coil Mimetic Proteins of HIV-1 gp41 Produce Diverse Effects on Target Binding but Do Not Affect Their Inhibitory Activity. Cano-Muñoz M, Cesaro S, Morel B, Lucas J, Moog C, Conejero-Lara F. Biomolecules 11 566 (2021)
  105. MiniVIPER Is a Peptide Tag for Imaging and Translocating Proteins in Cells. Doh JK, Tobin SJ, Beatty KE. Biochemistry 59 3051-3059 (2020)
  106. Nonpolar contributions to conformational specificity in assemblies of designed short helical peptides. Boon CL, Chakrabartty A. Protein Sci 9 1011-1023 (2000)
  107. Soluble expression, purification and characterization of the full length IS2 Transposase. Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J. Mob DNA 2 14 (2011)
  108. Bidirectional protein-protein interactions control liquid-liquid phase separation of PSD-95 and its interaction partners. Christensen NR, Pedersen CP, Sereikaite V, Pedersen JN, Vistrup-Parry M, Sørensen AT, Otzen D, Teilum K, Madsen KL, Strømgaard K. iScience 25 103808 (2022)
  109. Selection of a buried salt bridge by phage display. Vagt T, Jäckel C, Samsonov S, Teresa Pisabarro M, Koksch B. Bioorg Med Chem Lett 19 3924-3927 (2009)
  110. Using molecular visualization to explore protein structure and function and enhance student facility with computational tools. Terrell CR, Listenberger LL. Biochem Mol Biol Educ 45 318-328 (2017)
  111. Complementary interhelical interactions between three buried Glu-Lys pairs within three heptad repeats are essential for Hec1-Nuf2 heterodimerization and mitotic progression. Ngo B, Hu CM, Guo XE, Ngo B, Wei R, Zhu J, Lee WH. J Biol Chem 288 34403-34413 (2013)
  112. Crystal structure of a super leucine zipper, an extended two-stranded super long coiled coil. Diao J. Protein Sci 19 319-326 (2010)
  113. Electrostatic contacts in the activator protein-1 coiled coil enhance stability predominantly by decreasing the unfolding rate. Mason JM. FEBS J 276 7305-7318 (2009)
  114. A split ligand for lanthanide binding: facile evaluation of dimerizing proteins. Zhao Y, Gao J. Chem Commun (Camb) 48 2997-2999 (2012)
  115. Self-assembly of the bZIP transcription factor ΔFosB. Yin Z, Venkannagari H, Lynch H, Aglyamova G, Bhandari M, Machius M, Nestler EJ, Robison AJ, Rudenko G. Curr Res Struct Biol 2 1-13 (2020)
  116. The leucine zipper domain of the transcriptional repressor Opi1 underlies a signal transduction mechanism regulating lipid synthesis. Fernández-Murray JP, Tavasoli M, Williams J, McMaster CR. J Biol Chem 299 105417 (2023)
  117. Illuminating the inner workings of a natural protein switch: Blue-light sensing in LOV-activated diguanylate cyclases. Vide U, Kasapović D, Fuchs M, Heimböck MP, Totaro MG, Zenzmaier E, Winkler A. Sci Adv 9 eadh4721 (2023)
  118. Orthogonal Versatile Interacting Peptide Tags for Imaging Cellular Proteins. Suyama A, Devlin KL, Macias-Contreras M, Doh JK, Shinde U, Beatty KE. Biochemistry 62 1735-1743 (2023)


Related citations provided by authors (4)

  1. An Engineered Allosteric Switch in Leucine-Zipper Oligomerization. Gonzalez Junior L, Plecs JJ, Alber T Nat. Struct. Biol. 3 510- (1996)
  2. Crystal Structure of an Isoleucine-Zipper Trimer. Harbury PB, Kim PS, Alber T Nature 371 80- (1994)
  3. A Switch between Two-, Three-, and Four-Stranded Coiled Coils in GCN4 Leucine Zipper Mutants. Harbury PB, Zhang T, Kim PS, Alber T Science 262 1401- (1993)
  4. X-Ray Structure of the GCN4 Leucine Zipper, a Two-Stranded, Parallel Coiled Coil. O'Shea EK, Klemm JD, Kim PS, Alber T Science 254 539- (1991)