1zbb Citations

X-ray structure of a tetranucleosome and its implications for the chromatin fibre.

Nature 436 138-41 (2005)
Cited: 457 times
EuropePMC logo PMID: 16001076

Abstract

DNA in eukaryotic chromosomes is organized in arrays of nucleosomes compacted into chromatin fibres. This higher-order structure of nucleosomes is the substrate for DNA replication, recombination, transcription and repair. Although the structure of the nucleosome core is known at near-atomic resolution, even the most fundamental information about the organization of nucleosomes in the fibre is controversial. Here we report the crystal structure of an oligonucleosome (a compact tetranucleosome) at 9 A resolution, solved by molecular replacement using the nucleosome core structure. The structure shows that linker DNA zigzags back and forth between two stacks of nucleosome cores, which form a truncated two-start helix, and does not follow a path compatible with a one-start solenoidal helix. The length of linker DNA is most probably buffered by stretching of the DNA contained in the nucleosome cores. We have built continuous fibre models by successively stacking tetranucleosomes one on another. The resulting models are nearly fully compacted and most closely resemble the previously described crossed-linker model. They suggest that the interfaces between nucleosomes along a single helix start are polymorphic.

Reviews - 1zbb mentioned but not cited (11)

  1. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Luger K, Dechassa ML, Tremethick DJ. Nat Rev Mol Cell Biol 13 436-447 (2012)
  2. Nucleosome structure and dynamics are coming of age. Zhou K, Gaullier G, Luger K. Nat Struct Mol Biol 26 3-13 (2019)
  3. Nuclear hormone receptor co-repressors: structure and function. Watson PJ, Fairall L, Schwabe JW. Mol Cell Endocrinol 348 440-449 (2012)
  4. Histones: at the crossroads of peptide and protein chemistry. Müller MM, Muir TW. Chem Rev 115 2296-2349 (2015)
  5. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CA, Weiss S. Elife 10 e60416 (2021)
  6. Heterochromatin protein 1 (HP1): interactions with itself and chromatin components. Kumar A, Kono H. Biophys Rev 12 387-400 (2020)
  7. Yeast HMO1: Linker Histone Reinvented. Panday A, Grove A. Microbiol Mol Biol Rev 81 e00037-16 (2017)
  8. Nucleosomes Regulate Base Excision Repair in Chromatin. Meas R, Wyrick JJ, Smerdon MJ. Mutat Res Rev Mutat Res 780 29-36 (2019)
  9. Touch, act and go: landing and operating on nucleosomes. Speranzini V, Pilotto S, Sixma TK, Mattevi A. EMBO J 35 376-388 (2016)
  10. Histone variants and chromatin structure, update of advances. Sokolova V, Sarkar S, Tan D. Comput Struct Biotechnol J 21 299-311 (2023)
  11. Visualizing Conformational Ensembles of the Nucleosome by NMR. Musselman CA, Kutateladze TG. ACS Chem Biol 17 495-502 (2022)

Articles - 1zbb mentioned but not cited (42)

  1. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. Langelier MF, Planck JL, Roy S, Pascal JM. J Biol Chem 286 10690-10701 (2011)
  2. The octamer is the major form of CENP-A nucleosomes at human centromeres. Hasson D, Panchenko T, Salimian KJ, Salman MU, Sekulic N, Alonso A, Warburton PE, Black BE. Nat Struct Mol Biol 20 687-695 (2013)
  3. Structural Mechanisms of Nucleosome Recognition by Linker Histones. Zhou BR, Jiang J, Feng H, Ghirlando R, Xiao TS, Bai Y. Mol Cell 59 628-638 (2015)
  4. Chromatin Unfolding by Epigenetic Modifications Explained by Dramatic Impairment of Internucleosome Interactions: A Multiscale Computational Study. Collepardo-Guevara R, Portella G, Vendruscolo M, Frenkel D, Schlick T, Orozco M. J Am Chem Soc 137 10205-10215 (2015)
  5. Short nucleosome repeats impose rotational modulations on chromatin fibre folding. Correll SJ, Schubert MH, Grigoryev SA. EMBO J 31 2416-2426 (2012)
  6. Dissecting DNA-histone interactions in the nucleosome by molecular dynamics simulations of DNA unwrapping. Ettig R, Kepper N, Stehr R, Wedemann G, Rippe K. Biophys J 101 1999-2008 (2011)
  7. Distinct Roles of Histone H3 and H2A Tails in Nucleosome Stability. Li Z, Kono H. Sci Rep 6 31437 (2016)
  8. Accessibility of the histone H3 tail in the nucleosome for binding of paired readers. Gatchalian J, Wang X, Ikebe J, Cox KL, Tencer AH, Zhang Y, Burge NL, Di L, Gibson MD, Musselman CA, Poirier MG, Kono H, Hayes JJ, Kutateladze TG. Nat Commun 8 1489 (2017)
  9. H3 Histone Tail Conformation within the Nucleosome and the Impact of K14 Acetylation Studied Using Enhanced Sampling Simulation. Ikebe J, Sakuraba S, Kono H. PLoS Comput Biol 12 e1004788 (2016)
  10. SDA 7: A modular and parallel implementation of the simulation of diffusional association software. Martinez M, Bruce NJ, Romanowska J, Kokh DB, Ozboyaci M, Yu X, Öztürk MA, Richter S, Wade RC. J Comput Chem 36 1631-1645 (2015)
  11. The effect of DNA CpG methylation on the dynamic conformation of a nucleosome. Jimenez-Useche I, Yuan C. Biophys J 103 2502-2512 (2012)
  12. On the structure and dynamics of the complex of the nucleosome and the linker histone. Pachov GV, Gabdoulline RR, Wade RC. Nucleic Acids Res 39 5255-5263 (2011)
  13. Covalent Modifications of Histone H3K9 Promote Binding of CHD3. Tencer AH, Cox KL, Di L, Bridgers JB, Lyu J, Wang X, Sims JK, Weaver TM, Allen HF, Zhang Y, Gatchalian J, Darcy MA, Gibson MD, Ikebe J, Li W, Wade PA, Hayes JJ, Strahl BD, Kono H, Poirier MG, Musselman CA, Kutateladze TG. Cell Rep 21 455-466 (2017)
  14. A Nucleosome Bridging Mechanism for Activation of a Maintenance DNA Methyltransferase. Stoddard CI, Feng S, Campbell MG, Liu W, Wang H, Zhong X, Bernatavichute Y, Cheng Y, Jacobsen SE, Narlikar GJ. Mol Cell 73 73-83.e6 (2019)
  15. The structure of a virus-encoded nucleosome. Valencia-Sánchez MI, Abini-Agbomson S, Wang M, Lee R, Vasilyev N, Zhang J, De Ioannes P, La Scola B, Talbert P, Henikoff S, Nudler E, Erives A, Armache KJ. Nat Struct Mol Biol 28 413-417 (2021)
  16. Revisit of Reconstituted 30-nm Nucleosome Arrays Reveals an Ensemble of Dynamic Structures. Zhou BR, Jiang J, Ghirlando R, Norouzi D, Sathish Yadav KN, Feng H, Wang R, Zhang P, Zhurkin V, Bai Y. J Mol Biol 430 3093-3110 (2018)
  17. Stability and folding pathways of tetra-nucleosome from six-dimensional free energy surface. Ding X, Lin X, Zhang B. Nat Commun 12 1091 (2021)
  18. Nucleosome spacing and chromatin higher-order folding. Grigoryev SA. Nucleus 3 493-499 (2012)
  19. Crystal structure of inhibitor of growth 4 (ING4) dimerization domain reveals functional organization of ING family of chromatin-binding proteins. Culurgioni S, Muñoz IG, Moreno A, Palacios A, Villate M, Palmero I, Montoya G, Blanco FJ. J Biol Chem 287 10876-10884 (2012)
  20. Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether. Grant MJ, Loftus MS, Stoja AP, Kedes DH, Smith MM. Proc Natl Acad Sci U S A 115 4992-4997 (2018)
  21. Dependence of Chromatosome Structure on Linker Histone Sequence and Posttranslational Modification. Öztürk MA, Cojocaru V, Wade RC. Biophys J 114 2363-2375 (2018)
  22. H4 Tails Potentially Produce the Diversity in the Orientation of Two Nucleosomes. Ishida H, Kono H. Biophys J 113 978-990 (2017)
  23. Histone H1 Variants in Arabidopsis Are Subject to Numerous Post-Translational Modifications, Both Conserved and Previously Unknown in Histones, Suggesting Complex Functions of H1 in Plants. Kotliński M, Rutowicz K, Kniżewski Ł, Palusiński A, Olędzki J, Fogtman A, Rubel T, Koblowska M, Dadlez M, Ginalski K, Jerzmanowski A. PLoS One 11 e0147908 (2016)
  24. Cellular uptake of extracellular nucleosomes induces innate immune responses by binding and activating cGMP-AMP synthase (cGAS). Wang H, Zang C, Ren M, Shang M, Wang Z, Peng X, Zhang Q, Wen X, Xi Z, Zhou C. Sci Rep 10 15385 (2020)
  25. Cracking the code: the promise of epigenetics. Dhanak D. ACS Med Chem Lett 3 521-523 (2012)
  26. Nucleosome Crowding in Chromatin Slows the Diffusion but Can Promote Target Search of Proteins. Kanada R, Terakawa T, Kenzaki H, Takada S. Biophys J 116 2285-2295 (2019)
  27. Acetylation of the histone H3 tail domain regulates base excision repair on higher-order chromatin structures. Banerjee DR, Deckard CE, Zeng Y, Sczepanski JT. Sci Rep 9 15972 (2019)
  28. Histone H1 binding to nucleosome arrays depends on linker DNA length and trajectory. Dombrowski M, Engeholm M, Dienemann C, Dodonova S, Cramer P. Nat Struct Mol Biol 29 493-501 (2022)
  29. The role of structural bioinformatics resources in the era of integrative structural biology. Gutmanas A, Oldfield TJ, Patwardhan A, Sen S, Velankar S, Kleywegt GJ. Acta Crystallogr D Biol Crystallogr 69 710-721 (2013)
  30. Nucleosomes determine their own patch size in base excision repair. Meas R, Smerdon MJ. Sci Rep 6 27122 (2016)
  31. Quantification of DNA double-strand breaks using Geant4-DNA. Chatzipapas KP, Papadimitroulas P, Obeidat M, McConnell KA, Kirby N, Loudos G, Papanikolaou N, Kagadis GC. Med Phys 46 405-413 (2019)
  32. 3D Printing of Biomolecular Models for Research and Pedagogy. Da Veiga Beltrame E, Tyrwhitt-Drake J, Roy I, Shalaby R, Suckale J, Pomeranz Krummel D. J Vis Exp (2017)
  33. Design of genetically encoded sensors to detect nucleosome ubiquitination in live cells. Dos Santos Passos C, Choi YS, Snow CD, Yao T, Cohen RE. J Cell Biol 220 e201911130 (2021)
  34. On the use of logarithmic scales for analysis of diffraction data. Urzhumtsev A, Afonine PV, Adams PD. Acta Crystallogr D Biol Crystallogr 65 1283-1291 (2009)
  35. Structural basis of chromatin regulation by histone variant H2A.Z. Lewis TS, Sokolova V, Jung H, Ng H, Tan D. Nucleic Acids Res 49 11379-11391 (2021)
  36. The effect of epigenetic modifications on the secondary structures and possible binding positions of the N-terminal tail of histone H3 in the nucleosome: a computational study. du Preez LL, Patterton HG. J Mol Model 23 137 (2017)
  37. New insights into the helical structure of 30-nm chromatin fibers. Chen P, Zhu P, Li G. Protein Cell 5 489-491 (2014)
  38. Global dynamics of newly constructed oligonucleosomes of conventional and variant H2A.Z histone. Ramaswamy A, Ioshikhes I. BMC Struct Biol 7 76 (2007)
  39. Hodge theory-based biomolecular data analysis. Wei RKJ, Wee J, Laurent VE, Xia K. Sci Rep 12 9699 (2022)
  40. Editorial Chromatin Molecular Complexes-Functional Organization, Protection and Regulation of the Genome. Hofr C. Int J Mol Sci 23 7516 (2022)
  41. Combining molecular dynamics simulations and scoring method to computationally model ubiquitylated linker histones in chromatosomes. Sawade K, Marx A, Peter C, Kukharenko O. PLoS Comput Biol 19 e1010531 (2023)
  42. research-article Explicit Ion Modeling Predicts Physicochemical Interactions for Chromatin Organization. Lin X, Zhang B. bioRxiv 2023.05.16.541030 (2023)


Reviews citing this publication (133)

  1. Pioneer transcription factors: establishing competence for gene expression. Zaret KS, Carroll JS. Genes Dev 25 2227-2241 (2011)
  2. Organization and function of the 3D genome. Bonev B, Cavalli G. Nat Rev Genet 17 661-678 (2016)
  3. Signals and combinatorial functions of histone modifications. Suganuma T, Workman JL. Annu Rev Biochem 80 473-499 (2011)
  4. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Woodcock CL, Skoultchi AI, Fan Y. Chromosome Res 14 17-25 (2006)
  5. Chromatin higher-order structures and gene regulation. Li G, Reinberg D. Curr Opin Genet Dev 21 175-186 (2011)
  6. What controls nucleosome positions? Segal E, Widom J. Trends Genet 25 335-343 (2009)
  7. Histone H1 and its isoforms: contribution to chromatin structure and function. Happel N, Doenecke D. Gene 431 1-12 (2009)
  8. Nucleosome structure and function. McGinty RK, Tan S. Chem Rev 115 2255-2273 (2015)
  9. Higher-order structures of chromatin: the elusive 30 nm fiber. Tremethick DJ. Cell 128 651-654 (2007)
  10. Emerging roles of linker histones in regulating chromatin structure and function. Fyodorov DV, Zhou BR, Skoultchi AI, Bai Y. Nat Rev Mol Cell Biol 19 192-206 (2018)
  11. Chromatin higher-order structure and dynamics. Woodcock CL, Ghosh RP, Ghosh RP. Cold Spring Harb Perspect Biol 2 a000596 (2010)
  12. Pioneer transcription factors, chromatin dynamics, and cell fate control. Zaret KS, Mango SE. Curr Opin Genet Dev 37 76-81 (2016)
  13. Structure of the '30 nm' chromatin fibre: a key role for the linker histone. Robinson PJ, Rhodes D. Curr Opin Struct Biol 16 336-343 (2006)
  14. Nucleosome structure(s) and stability: variations on a theme. Andrews AJ, Luger K. Annu Rev Biophys 40 99-117 (2011)
  15. Chromatin structure: does the 30-nm fibre exist in vivo? Maeshima K, Hihara S, Eltsov M. Curr Opin Cell Biol 22 291-297 (2010)
  16. H1 histones: current perspectives and challenges. Harshman SW, Young NL, Parthun MR, Freitas MA. Nucleic Acids Res 41 9593-9609 (2013)
  17. Histone structure and nucleosome stability. Mariño-Ramírez L, Kann MG, Shoemaker BA, Landsman D. Expert Rev Proteomics 2 719-729 (2005)
  18. Dynamic nucleosomes. Luger K. Chromosome Res 14 5-16 (2006)
  19. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Mersfelder EL, Parthun MR. Nucleic Acids Res 34 2653-2662 (2006)
  20. Chromatin organization and transcriptional regulation. Hübner MR, Eckersley-Maslin MA, Spector DL. Curr Opin Genet Dev 23 89-95 (2013)
  21. Chromatin as dynamic 10-nm fibers. Maeshima K, Imai R, Tamura S, Nozaki T. Chromosoma 123 225-237 (2014)
  22. Chromatin assembly: a basic recipe with various flavours. Polo SE, Almouzni G. Curr Opin Genet Dev 16 104-111 (2006)
  23. Chromatin architecture and the generation of antigen receptor diversity. Jhunjhunwala S, van Zelm MC, Peak MM, Murre C. Cell 138 435-448 (2009)
  24. Dosage compensation in Drosophila. Lucchesi JC, Kuroda MI. Cold Spring Harb Perspect Biol 7 a019398 (2015)
  25. Chromatin architecture. Woodcock CL. Curr Opin Struct Biol 16 213-220 (2006)
  26. Nucleosome structural studies. Tan S, Davey CA. Curr Opin Struct Biol 21 128-136 (2011)
  27. Epigenetic aberrations and cancer. Ducasse M, Brown MA. Mol Cancer 5 60 (2006)
  28. Visualizing transcription factor dynamics in living cells. Liu Z, Tjian R. J Cell Biol 217 1181-1191 (2018)
  29. Micromechanical studies of mitotic chromosomes. Marko JF. Chromosome Res 16 469-497 (2008)
  30. Transcriptional control thrown for a loop. Fraser P. Curr Opin Genet Dev 16 490-495 (2006)
  31. Toward convergence of experimental studies and theoretical modeling of the chromatin fiber. Schlick T, Hayes J, Grigoryev S. J Biol Chem 287 5183-5191 (2012)
  32. Structure and function of active chromatin and DNase I hypersensitive sites. Cockerill PN. FEBS J 278 2182-2210 (2011)
  33. Recognition of the nucleosome by chromatin factors and enzymes. McGinty RK, Tan S. Curr Opin Struct Biol 37 54-61 (2016)
  34. Liquid-like behavior of chromatin. Maeshima K, Ide S, Hibino K, Sasai M. Curr Opin Genet Dev 37 36-45 (2016)
  35. Chromatin domains, insulators, and the regulation of gene expression. Ghirlando R, Giles K, Gowher H, Xiao T, Xu Z, Yao H, Felsenfeld G. Biochim Biophys Acta 1819 644-651 (2012)
  36. Role of histone modifications in defining chromatin structure and function. Gelato KA, Fischle W. Biol Chem 389 353-363 (2008)
  37. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms. Kschonsak M, Haering CH. Bioessays 37 755-766 (2015)
  38. Multifunctionality of the linker histones: an emerging role for protein-protein interactions. McBryant SJ, Lu X, Hansen JC. Cell Res 20 519-528 (2010)
  39. From nucleosome to chromosome: a dynamic organization of genetic information. Fransz P, de Jong H. Plant J 66 4-17 (2011)
  40. Genome organization: balancing stability and plasticity. Wachsmuth M, Caudron-Herger M, Rippe K. Biochim Biophys Acta 1783 2061-2079 (2008)
  41. Chromatin fiber structure: Where is the problem now? van Holde K, Zlatanova J. Semin Cell Dev Biol 18 651-658 (2007)
  42. Nucleosome distribution and linker DNA: connecting nuclear function to dynamic chromatin structure. Szerlong HJ, Hansen JC. Biochem Cell Biol 89 24-34 (2011)
  43. Biomolecularmodeling and simulation: a field coming of age. Schlick T, Collepardo-Guevara R, Halvorsen LA, Jung S, Xiao X. Q Rev Biophys 44 191-228 (2011)
  44. Methods for identifying higher-order chromatin structure. Sajan SA, Hawkins RD. Annu Rev Genomics Hum Genet 13 59-82 (2012)
  45. Biophysics of Chromatin Dynamics. Fierz B, Poirier MG. Annu Rev Biophys 48 321-345 (2019)
  46. Gene regulation and large-scale chromatin organization in the nucleus. Dillon N. Chromosome Res 14 117-126 (2006)
  47. The chromatin fiber: multiscale problems and approaches. Ozer G, Luque A, Schlick T. Curr Opin Struct Biol 31 124-139 (2015)
  48. Understanding the molecular machinery of genetics through 3D structures. Laskowski RA, Thornton JM. Nat Rev Genet 9 141-151 (2008)
  49. The folding and unfolding of eukaryotic chromatin. Bassett A, Cooper S, Wu C, Travers A. Curr Opin Genet Dev 19 159-165 (2009)
  50. The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Fakan S, van Driel R. Semin Cell Dev Biol 18 676-681 (2007)
  51. Diversity and evolution of chromatin proteins encoded by DNA viruses. de Souza RF, Iyer LM, Aravind L. Biochim Biophys Acta 1799 302-318 (2010)
  52. Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Mora-Bermúdez F, Ellenberg J. Methods 41 158-167 (2007)
  53. Revisiting higher-order and large-scale chromatin organization. Bian Q, Belmont AS. Curr Opin Cell Biol 24 359-366 (2012)
  54. Spreading chromatin into chemical biology. Allis CD, Muir TW. Chembiochem 12 264-279 (2011)
  55. Computational modeling of the chromatin fiber. Langowski J, Heermann DW. Semin Cell Dev Biol 18 659-667 (2007)
  56. Epigenetic virtues of chromodomains. Blus BJ, Wiggins K, Khorasanizadeh S. Crit Rev Biochem Mol Biol 46 507-526 (2011)
  57. Nucleosome dynamics: Sequence matters. Eslami-Mossallam B, Schiessel H, van Noort J. Adv Colloid Interface Sci 232 101-113 (2016)
  58. Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Cuvier O, Fierz B. Nat Rev Genet 18 457-472 (2017)
  59. Perfect timing: epigenetic regulation of the circadian clock. Ripperger JA, Merrow M. FEBS Lett 585 1406-1411 (2011)
  60. The end adjusts the means: heterochromatin remodelling during terminal cell differentiation. Grigoryev SA, Bulynko YA, Popova EY. Chromosome Res 14 53-69 (2006)
  61. Chromatin without the 30-nm fiber: constrained disorder instead of hierarchical folding. Razin SV, Gavrilov AA. Epigenetics 9 653-657 (2014)
  62. A structural perspective on the where, how, why, and what of nucleosome positioning. Arya G, Maitra A, Grigoryev SA. J Biomol Struct Dyn 27 803-820 (2010)
  63. Chance, genetics, and the heterogeneity of disease and pathogenesis in systemic lupus erythematosus. Marion TN, Postlethwaite AE. Semin Immunopathol 36 495-517 (2014)
  64. Histone Tail Conformations: A Fuzzy Affair with DNA. Ghoneim M, Fuchs HA, Musselman CA. Trends Biochem Sci 46 564-578 (2021)
  65. Organization of interphase chromatin. Horowitz-Scherer RA, Woodcock CL. Chromosoma 115 1-14 (2006)
  66. A variable topology for the 30-nm chromatin fibre. Wu C, Bassett A, Travers A. EMBO Rep 8 1129-1134 (2007)
  67. Recent advances in single molecule studies of nucleosomes. Killian JL, Li M, Sheinin MY, Wang MD. Curr Opin Struct Biol 22 80-87 (2012)
  68. Genome reprogramming during sporulation. Govin J, Berger SL. Int J Dev Biol 53 425-432 (2009)
  69. Mechanistic modeling of chromatin folding to understand function. Brackey CA, Marenduzzo D, Gilbert N. Nat Methods 17 767-775 (2020)
  70. SIR-nucleosome interactions: structure-function relationships in yeast silent chromatin. Oppikofer M, Kueng S, Gasser SM. Gene 527 10-25 (2013)
  71. Weak interactions in higher-order chromatin organization. Kantidze OL, Razin SV. Nucleic Acids Res 48 4614-4626 (2020)
  72. Three-dimensional structured illumination microscopy and its application to chromosome structure. Carlton PM. Chromosome Res 16 351-365 (2008)
  73. Lysine-specific demethylase 1 as a potential therapeutic target. Stavropoulos P, Hoelz A. Expert Opin Ther Targets 11 809-820 (2007)
  74. Structural insights of nucleosome and the 30-nm chromatin fiber. Zhu P, Li G. Curr Opin Struct Biol 36 106-115 (2016)
  75. Structure and organization of chromatin fiber in the nucleus. Li G, Zhu P. FEBS Lett 589 2893-2904 (2015)
  76. Effects of DNA supercoiling on chromatin architecture. Corless S, Gilbert N, Gilbert N. Biophys Rev 8 245-258 (2016)
  77. Chromatin modulation and the DNA damage response. Costelloe T, Fitzgerald J, Murphy NJ, Flaus A, Lowndes NF. Exp Cell Res 312 2677-2686 (2006)
  78. Effects of DNA supercoiling on chromatin architecture. Corless S, Gilbert N, Gilbert N. Biophys Rev 8 51-64 (2016)
  79. How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization. Parmar JJ, Woringer M, Zimmer C. Annu Rev Biophys 48 231-253 (2019)
  80. Current progress on structural studies of nucleosomes containing histone H3 variants. Kurumizaka H, Horikoshi N, Tachiwana H, Kagawa W. Curr Opin Struct Biol 23 109-115 (2013)
  81. Gene functioning and storage within a folded genome. Razin SV, Ulianov SV. Cell Mol Biol Lett 22 18 (2017)
  82. Contributions of Sequence to the Higher-Order Structures of DNA. Todolli S, Perez PJ, Clauvelin N, Olson WK. Biophys J 112 416-426 (2017)
  83. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis. Zhao Y, Zhan Q. Theor Biol Med Model 9 26 (2012)
  84. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  85. Linking signaling pathways to histone acetylation dynamics in plants. Jiang J, Ding AB, Liu F, Zhong X. J Exp Bot 71 5179-5190 (2020)
  86. Chromosome dynamics and folding in eukaryotes: Insights from live cell microscopy. Bystricky K. FEBS Lett 589 3014-3022 (2015)
  87. Effects of histone acetylation and CpG methylation on the structure of nucleosomes. Lee JY, Lee TH. Biochim Biophys Acta 1824 974-982 (2012)
  88. Linker histones: novel insights into structure-specific recognition of the nucleosome. Cutter AR, Hayes JJ. Biochem Cell Biol 95 171-178 (2017)
  89. The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Muskhelishvili G, Travers A. Biophys Rev 8 5-22 (2016)
  90. Generalized electrostatic model of the wrapping of DNA around oppositely charged proteins. Arcesi L, La Penna G, Perico A. Biopolymers 86 127-135 (2007)
  91. ATP-dependent chromatin remodeling factors and their roles in affecting nucleosome fiber composition. Piatti P, Zeilner A, Lusser A. Int J Mol Sci 12 6544-6565 (2011)
  92. Liquid-like interactions in heterochromatin: Implications for mechanism and regulation. Sanulli S, J Narlikar G. Curr Opin Cell Biol 64 90-96 (2020)
  93. Physical Nature of Chromatin in the Nucleus. Maeshima K, Iida S, Tamura S. Cold Spring Harb Perspect Biol 13 a040675 (2021)
  94. Towards quantitative analysis of gene regulation by enhancers. Nizovtseva EV, Todolli S, Olson WK, Studitsky VM. Epigenomics 9 1219-1231 (2017)
  95. Chromatin Compaction Multiscale Modeling: A Complex Synergy Between Theory, Simulation, and Experiment. Bendandi A, Dante S, Zia SR, Diaspro A, Rocchia W. Front Mol Biosci 7 15 (2020)
  96. Nucleosome-level 3D organization of the genome. Ohno M, Priest DG, Taniguchi Y. Biochem Soc Trans 46 491-501 (2018)
  97. 3D chromatin architecture and transcription regulation in cancer. Deng S, Feng Y, Pauklin S. J Hematol Oncol 15 49 (2022)
  98. Archaea: The Final Frontier of Chromatin. Laursen SP, Bowerman S, Luger K. J Mol Biol 433 166791 (2021)
  99. Chromatin compaction in terminally differentiated avian blood cells: the role of linker histone H5 and non-histone protein MENT. Kowalski A, Pałyga J. Chromosome Res 19 579-590 (2011)
  100. DNA self-assembly: from chirality to evolution. Timsit Y. Int J Mol Sci 14 8252-8270 (2013)
  101. Experimental approaches to the study of epigenomic dysregulation in ageing. Thompson RF, Fazzari MJ, Greally JM. Exp Gerontol 45 255-268 (2010)
  102. Multiscale coarse-grained modelling of chromatin components: DNA and the nucleosome. Korolev N, Nordenskiöld L, Lyubartsev AP. Adv Colloid Interface Sci 232 36-48 (2016)
  103. The problem of the eukaryotic genome size. Patrushev LI, Minkevich IG. Biochemistry (Mosc) 73 1519-1552 (2008)
  104. The shades of gray of the chromatin fiber: recent literature provides new insights into the structure of chromatin. Ausió J. Bioessays 37 46-51 (2015)
  105. Chromatin fibers: from classical descriptions to modern interpretation. Kuznetsova MA, Sheval EV. Cell Biol Int 40 1140-1151 (2016)
  106. Chromatin structure in the genomics era. Rando OJ. Trends Genet 23 67-73 (2007)
  107. Chromatin-modifying drugs and metabolites in cell fate control. Yao Z, Chen Y, Cao W, Shyh-Chang N. Cell Prolif 53 e12898 (2020)
  108. The controversial 30 nm chromatin fibre. Staynov DZ. Bioessays 30 1003-1009 (2008)
  109. Chemical and semisynthesis of modified histones. Maity SK, Jbara M, Brik A. J Pept Sci 22 252-259 (2016)
  110. Chromatin under mechanical stress: from single 30 nm fibers to single nucleosomes. Bednar J, Dimitrov S. FEBS J 278 2231-2243 (2011)
  111. 3D genomics imposes evolution of the domain model of eukaryotic genome organization. Razin SV, Vassetzky YS. Chromosoma 126 59-69 (2017)
  112. Higher-order structure of the 30-nm chromatin fiber revealed by cryo-EM. Zhu P, Li G. IUBMB Life 68 873-878 (2016)
  113. On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function. Krajewski WA. Biochem Biophys Rep 5 492-501 (2016)
  114. The role of maintenance proteins in the preservation of epithelial cell identity during mammary gland remodeling and breast cancer initiation. Coradini D, Oriana S. Chin J Cancer 33 51-67 (2014)
  115. Topological polymorphism of nucleosome fibers and folding of chromatin. Zhurkin VB, Norouzi D. Biophys J 120 577-585 (2021)
  116. Biology and Physics of Heterochromatin-Like Domains/Complexes. Singh PB, Belyakin SN, Laktionov PP. Cells 9 E1881 (2020)
  117. Structure and Functions of Linker Histones. Lyubitelev AV, Nikitin DV, Shaytan AK, Studitsky VM, Kirpichnikov MP. Biochemistry (Mosc) 81 213-223 (2016)
  118. DNA-directed base pair opening. Timsit Y. Molecules 17 11947-11964 (2012)
  119. [Pioneer Transcription Factors in Normal Development and in Carcinogenesis]. Kuzmich AI, Tyulkina DV, Vinogradova TV, Sverdlov ED. Bioorg Khim 41 636-643 (2015)
  120. How does chromatin package DNA within nucleus and regulate gene expression? Fazary AE, Ju YH, Abd-Rabboh HSM. Int J Biol Macromol 101 862-881 (2017)
  121. Nuclear location and the control of developmental progression. Lin YC, Murre C. Curr Opin Genet Dev 23 104-108 (2013)
  122. Orchestrating epigenetic roles targeting ocular tumors. Wen X, Lu L, He Z, Fan X. Onco Targets Ther 9 1001-1009 (2016)
  123. Signaling in the crowded cell. Nussinov R, Tsai CJ, Jang H. Curr Opin Struct Biol 71 43-50 (2021)
  124. The proto-chromatosome: A fundamental subunit of chromatin? Ocampo J, Cui F, Zhurkin VB, Clark DJ. Nucleus 7 382-387 (2016)
  125. Use of 3D imaging for providing insights into high-order structure of mitotic chromosomes. Yusuf M, Kaneyoshi K, Fukui K, Robinson I. Chromosoma 128 7-13 (2019)
  126. Cryo-nanoscale chromosome imaging-future prospects. Yusuf M, Farooq S, Robinson I, Lalani EN. Biophys Rev 12 1257-1263 (2020)
  127. Genome modeling: From chromatin fibers to genes. Portillo-Ledesma S, Li Z, Schlick T. Curr Opin Struct Biol 78 102506 (2023)
  128. Chromatin fiber structural motifs as regulatory hubs of genome function? Moraru M, Schalch T. Essays Biochem 63 123-132 (2019)
  129. Chromatin: the dynamic link between structure and function. Tremethick D. Chromosome Res 14 1-4 (2006)
  130. Biophysics is reshaping our perception of the epigenome: from DNA-level to high-throughput studies. Kanapeckaitė A, Burokienė N, Mažeikienė A, Cottrell GS, Widera D. Biophys Rep (N Y) 1 100028 (2021)
  131. Minor structural changes, major functional impacts: posttranslational modifications and drug targets. Kim HJ. Arch Pharm Res 45 693-703 (2022)
  132. Studies of the Mechanism of Nucleosome Dynamics: A Review on Multifactorial Regulation from Computational and Experimental Cases. Shi D, Huang Y, Bai C. Polymers (Basel) 15 1763 (2023)
  133. The engagement of histone lysine methyltransferases with nucleosomes: structural basis, regulatory mechanisms, and therapeutic implications. Li Y, Ge K, Li T, Cai R, Chen Y. Protein Cell 14 165-179 (2023)

Articles citing this publication (271)

  1. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD, Coonrod SA. J Cell Biol 184 205-213 (2009)
  2. Organization of Chromatin by Intrinsic and Regulated Phase Separation. Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK. Cell 179 470-484.e21 (2019)
  3. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O'Shea CC. Science 357 eaag0025 (2017)
  4. Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C. Hsieh TH, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. Cell 162 108-119 (2015)
  5. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G. Science 344 376-380 (2014)
  6. EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure. Robinson PJ, Fairall L, Huynh VA, Rhodes D. Proc Natl Acad Sci U S A 103 6506-6511 (2006)
  7. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW. Nat Chem Biol 7 113-119 (2011)
  8. Crystal structure of the human centromeric nucleosome containing CENP-A. Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, Hayashi-Takanaka Y, Oda T, Sato M, Park SY, Kimura H, Kurumizaka H. Nature 476 232-235 (2011)
  9. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, Yenamandra A, Locke K, Yuan JL, Bonine-Summers AR, Wells CE, Kaiser JF, Washington MK, Zhao Z, Wagner FF, Sun ZW, Xia F, Holson EB, Khabele D, Hiebert SW. Cancer Cell 18 436-447 (2010)
  10. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, Wang Y. Front Immunol 3 307 (2012)
  11. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Routh A, Sandin S, Rhodes D. Proc Natl Acad Sci U S A 105 8872-8877 (2008)
  12. 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. Robinson PJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D. J Mol Biol 381 816-825 (2008)
  13. Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding. Hsieh TS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ, Tjian R, Darzacq X. Mol Cell 78 539-553.e8 (2020)
  14. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Ulianov SV, Khrameeva EE, Gavrilov AA, Flyamer IM, Kos P, Mikhaleva EA, Penin AA, Logacheva MD, Imakaev MV, Chertovich A, Gelfand MS, Shevelyov YY, Razin SV. Genome Res 26 70-84 (2016)
  15. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, Yang AS, Jones PA, Liang G. PLoS Genet 6 e1000917 (2010)
  16. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S, Frangakis AS, Imamoto N, Ishikawa T, Maeshima K. EMBO J 31 1644-1653 (2012)
  17. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Kruithof M, Chien FT, Routh A, Logie C, Rhodes D, van Noort J. Nat Struct Mol Biol 16 534-540 (2009)
  18. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Grigoryev SA, Arya G, Correll S, Woodcock CL, Schlick T. Proc Natl Acad Sci U S A 106 13317-13322 (2009)
  19. Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with LEM-2. Ikegami K, Egelhofer TA, Strome S, Lieb JD. Genome Biol 11 R120 (2010)
  20. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo. Brown DT, Izard T, Misteli T. Nat Struct Mol Biol 13 250-255 (2006)
  21. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Allahverdi A, Yang R, Korolev N, Fan Y, Davey CA, Liu CF, Nordenskiöld L. Nucleic Acids Res 39 1680-1691 (2011)
  22. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Sen P, Dang W, Donahue G, Dai J, Dorsey J, Cao X, Liu W, Cao K, Perry R, Lee JY, Wasko BM, Carr DT, He C, Robison B, Wagner J, Gregory BD, Kaeberlein M, Kennedy BK, Boeke JD, Berger SL. Genes Dev 29 1362-1376 (2015)
  23. Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Onishi M, Liou GG, Buchberger JR, Walz T, Moazed D. Mol Cell 28 1015-1028 (2007)
  24. Structural insights into the histone H1-nucleosome complex. Zhou BR, Feng H, Kato H, Dai L, Yang Y, Zhou Y, Bai Y. Proc Natl Acad Sci U S A 110 19390-19395 (2013)
  25. Living without 30nm chromatin fibers. Fussner E, Ching RW, Bazett-Jones DP. Trends Biochem Sci 36 1-6 (2011)
  26. A predictive computational model of the dynamic 3D interphase yeast nucleus. Wong H, Marie-Nelly H, Herbert S, Carrivain P, Blanc H, Koszul R, Fabre E, Zimmer C. Curr Biol 22 1881-1890 (2012)
  27. A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments. Arya G, Schlick T. J Phys Chem A 113 4045-4059 (2009)
  28. Structural plasticity of single chromatin fibers revealed by torsional manipulation. Bancaud A, Conde e Silva N, Barbi M, Wagner G, Allemand JF, Mozziconacci J, Lavelle C, Croquette V, Victor JM, Prunell A, Viovy JL. Nat Struct Mol Biol 13 444-450 (2006)
  29. Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. Bentley ML, Corn JE, Dong KC, Phung Q, Cheung TK, Cochran AG. EMBO J 30 3285-3297 (2011)
  30. Spontaneous access to DNA target sites in folded chromatin fibers. Poirier MG, Bussiek M, Langowski J, Widom J. J Mol Biol 379 772-786 (2008)
  31. DNA stretching and extreme kinking in the nucleosome core. Ong MS, Richmond TJ, Davey CA. J Mol Biol 368 1067-1074 (2007)
  32. Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. Dekker J. J Biol Chem 283 34532-34540 (2008)
  33. Bromodomain protein Brd4 associated with acetylated chromatin is important for maintenance of higher-order chromatin structure. Wang R, Li Q, Helfer CM, Jiao J, You J. J Biol Chem 287 10738-10752 (2012)
  34. Dynamics and function of compact nucleosome arrays. Poirier MG, Oh E, Tims HS, Widom J. Nat Struct Mol Biol 16 938-944 (2009)
  35. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. Maeshima K, Rogge R, Tamura S, Joti Y, Hikima T, Szerlong H, Krause C, Herman J, Seidel E, DeLuca J, Ishikawa T, Hansen JC. EMBO J 35 1115-1132 (2016)
  36. An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length. Wong H, Victor JM, Mozziconacci J. PLoS One 2 e877 (2007)
  37. Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei. Scheffer MP, Eltsov M, Frangakis AS. Proc Natl Acad Sci U S A 108 16992-16997 (2011)
  38. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Risca VI, Denny SK, Straight AF, Greenleaf WJ. Nature 541 237-241 (2017)
  39. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes. Grigoryev SA, Bascom G, Buckwalter JM, Schubert MB, Woodcock CL, Schlick T. Proc Natl Acad Sci U S A 113 1238-1243 (2016)
  40. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. Clausell J, Happel N, Hale TK, Doenecke D, Beato M. PLoS One 4 e0007243 (2009)
  41. Nucleosomes can invade DNA territories occupied by their neighbors. Engeholm M, de Jager M, Flaus A, Brenk R, van Noort J, Owen-Hughes T. Nat Struct Mol Biol 16 151-158 (2009)
  42. Uncovering the forces between nucleosomes using DNA origami. Funke JJ, Ketterer P, Lieleg C, Schunter S, Korber P, Dietz H. Sci Adv 2 e1600974 (2016)
  43. Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice. Krishnan MR, Wang C, Marion TN. Kidney Int 82 184-192 (2012)
  44. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Ghosh RP, Ghosh RP, Horowitz-Scherer RA, Nikitina T, Shlyakhtenko LS, Woodcock CL. Mol Cell Biol 30 4656-4670 (2010)
  45. Electrostatic interactions in biological DNA-related systems. Cherstvy AG. Phys Chem Chem Phys 13 9942-9968 (2011)
  46. Modeling studies of chromatin fiber structure as a function of DNA linker length. Perišić O, Collepardo-Guevara R, Schlick T. J Mol Biol 403 777-802 (2010)
  47. Chromatin fiber polymorphism triggered by variations of DNA linker lengths. Collepardo-Guevara R, Schlick T. Proc Natl Acad Sci U S A 111 8061-8066 (2014)
  48. Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter-nucleosome Interaction. Zhang R, Erler J, Langowski J. Biophys J 112 450-459 (2017)
  49. Corecognition of DNA and a methylated histone tail by the MSL3 chromodomain. Kim D, Blus BJ, Chandra V, Huang P, Rastinejad F, Khorasanizadeh S. Nat Struct Mol Biol 17 1027-1029 (2010)
  50. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Kepper N, Foethke D, Stehr R, Wedemann G, Rippe K. Biophys J 95 3692-3705 (2008)
  51. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini. Panchenko T, Sorensen TC, Woodcock CL, Kan ZY, Wood S, Resch MG, Luger K, Englander SW, Hansen JC, Black BE. Proc Natl Acad Sci U S A 108 16588-16593 (2011)
  52. Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α. Kilic S, Felekyan S, Doroshenko O, Boichenko I, Dimura M, Vardanyan H, Bryan LC, Arya G, Seidel CAM, Fierz B. Nat Commun 9 235 (2018)
  53. Complex of linker histone H5 with the nucleosome and its implications for chromatin packing. Fan L, Roberts VA. Proc Natl Acad Sci U S A 103 8384-8389 (2006)
  54. Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair. Odell ID, Barbour JE, Murphy DL, Della-Maria JA, Sweasy JB, Tomkinson AE, Wallace SS, Pederson DS. Mol Cell Biol 31 4623-4632 (2011)
  55. Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets. Cole HA, Tabor-Godwin JM, Hayes JJ. J Biol Chem 285 2876-2885 (2010)
  56. Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn. Ghirlando R, Felsenfeld G. J Mol Biol 376 1417-1425 (2008)
  57. Histone H2A C-terminus regulates chromatin dynamics, remodeling, and histone H1 binding. Vogler C, Huber C, Waldmann T, Ettig R, Braun L, Izzo A, Daujat S, Chassignet I, Lopez-Contreras AJ, Fernandez-Capetillo O, Dundr M, Rippe K, Längst G, Schneider R. PLoS Genet 6 e1001234 (2010)
  58. Expansion of the lysine acylation landscape. Olsen CA. Angew Chem Int Ed Engl 51 3755-3756 (2012)
  59. Histone H3 and H4 N-terminal tails in nucleosome arrays at cellular concentrations probed by magic angle spinning NMR spectroscopy. Gao M, Nadaud PS, Bernier MW, North JA, Hammel PC, Poirier MG, Jaroniec CP. J Am Chem Soc 135 15278-15281 (2013)
  60. Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae. Wang JP, Fondufe-Mittendorf Y, Xi L, Tsai GF, Segal E, Widom J. PLoS Comput Biol 4 e1000175 (2008)
  61. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers. Meng H, Andresen K, van Noort J. Nucleic Acids Res 43 3578-3590 (2015)
  62. Cryo-EM study of the Pseudomonas bacteriophage phiKZ. Fokine A, Battisti AJ, Bowman VD, Efimov AV, Kurochkina LP, Chipman PR, Mesyanzhinov VV, Rossmann MG. Structure 15 1099-1104 (2007)
  63. Histone H4 K16Q mutation, an acetylation mimic, causes structural disorder of its N-terminal basic patch in the nucleosome. Zhou BR, Feng H, Ghirlando R, Kato H, Gruschus J, Bai Y. J Mol Biol 421 30-37 (2012)
  64. Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila. Ulianov SV, Doronin SA, Khrameeva EE, Kos PI, Luzhin AV, Starikov SS, Galitsyna AA, Nenasheva VV, Ilyin AA, Flyamer IM, Mikhaleva EA, Logacheva MD, Gelfand MS, Chertovich AV, Gavrilov AA, Razin SV, Shevelyov YY. Nat Commun 10 1176 (2019)
  65. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions. Farr SE, Woods EJ, Joseph JA, Garaizar A, Collepardo-Guevara R. Nat Commun 12 2883 (2021)
  66. Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. Liu Y, Lu C, Yang Y, Fan Y, Yang R, Liu CF, Korolev N, Nordenskiöld L. J Mol Biol 414 749-764 (2011)
  67. The effect of internucleosomal interaction on folding of the chromatin fiber. Stehr R, Kepper N, Rippe K, Wedemann G. Biophys J 95 3677-3691 (2008)
  68. Partial Unwrapping and Histone Tail Dynamics in Nucleosome Revealed by Coarse-Grained Molecular Simulations. Kenzaki H, Takada S. PLoS Comput Biol 11 e1004443 (2015)
  69. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster. Chereji RV, Kan TW, Grudniewska MK, Romashchenko AV, Berezikov E, Zhimulev IF, Guryev V, Morozov AV, Moshkin YM. Nucleic Acids Res 44 1036-1051 (2016)
  70. Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation. Wakamori M, Fujii Y, Suka N, Shirouzu M, Sakamoto K, Umehara T, Yokoyama S. Sci Rep 5 17204 (2015)
  71. Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure––a FRET study. Gansen A, Tóth K, Schwarz N, Langowski J. Nucleic Acids Res 43 1433-1443 (2015)
  72. RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119ub1 during cell division. Zhao J, Wang M, Chang L, Yu J, Song A, Liu C, Huang W, Zhang T, Wu X, Shen X, Zhu B, Li G. Nat Cell Biol 22 439-452 (2020)
  73. Role of direct interactions between the histone H4 Tail and the H2A core in long range nucleosome contacts. Sinha D, Shogren-Knaak MA. J Biol Chem 285 16572-16581 (2010)
  74. Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N. Fang J, Liu Y, Wei Y, Deng W, Yu Z, Huang L, Teng Y, Yao T, You Q, Ruan H, Chen P, Xu RM, Li G. Genes Dev 29 1058-1073 (2015)
  75. Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation. Yang D, Arya G. Phys Chem Chem Phys 13 2911-2921 (2011)
  76. Nucleosome-nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity. Shimamoto Y, Tamura S, Masumoto H, Maeshima K. Mol Biol Cell 28 1580-1589 (2017)
  77. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Chen C, Lim HH, Shi J, Tamura S, Maeshima K, Surana U, Gan L. Mol Biol Cell 27 3357-3368 (2016)
  78. The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. König P, Braunfeld MB, Sedat JW, Agard DA. Chromosoma 116 349-372 (2007)
  79. Compensatory interactions between Sir3p and the nucleosomal LRS surface imply their direct interaction. Norris A, Bianchet MA, Boeke JD. PLoS Genet 4 e1000301 (2008)
  80. Internucleosomal interactions mediated by histone tails allow distant communication in chromatin. Kulaeva OI, Zheng G, Polikanov YS, Colasanti AV, Clauvelin N, Mukhopadhyay S, Sengupta AM, Studitsky VM, Olson WK. J Biol Chem 287 20248-20257 (2012)
  81. Electrostatic origin of salt-induced nucleosome array compaction. Korolev N, Allahverdi A, Yang Y, Fan Y, Lyubartsev AP, Nordenskiöld L. Biophys J 99 1896-1905 (2010)
  82. Robust methods for purification of histones from cultured mammalian cells with the preservation of their native modifications. Rodriguez-Collazo P, Leuba SH, Zlatanova J. Nucleic Acids Res 37 e81 (2009)
  83. Local geometry and elasticity in compact chromatin structure. Koslover EF, Fuller CJ, Straight AF, Spakowitz AJ. Biophys J 99 3941-3950 (2010)
  84. Nucleosome shape dictates chromatin fiber structure. Depken M, Schiessel H. Biophys J 96 777-784 (2009)
  85. Protein-protein Förster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z. Hoch DA, Stratton JJ, Gloss LM. J Mol Biol 371 971-988 (2007)
  86. Regulation of Nucleosome Stacking and Chromatin Compaction by the Histone H4 N-Terminal Tail-H2A Acidic Patch Interaction. Chen Q, Yang R, Korolev N, Liu CF, Nordenskiöld L. J Mol Biol 429 2075-2092 (2017)
  87. The in situ structures of mono-, di-, and trinucleosomes in human heterochromatin. Cai S, Böck D, Pilhofer M, Gan L. Mol Biol Cell 29 2450-2457 (2018)
  88. Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor. Mivelaz M, Cao AM, Kubik S, Zencir S, Hovius R, Boichenko I, Stachowicz AM, Kurat CF, Shore D, Fierz B. Mol Cell 77 488-500.e9 (2020)
  89. Mesoscale simulations of two nucleosome-repeat length oligonucleosomes. Schlick T, Perisić O. Phys Chem Chem Phys 11 10729-10737 (2009)
  90. Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails. Korolev N, Lyubartsev AP, Nordenskiöld L. Biophys J 90 4305-4316 (2006)
  91. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. Farnung L, Ochmann M, Cramer P. Elife 9 e56178 (2020)
  92. Topological polymorphism of the two-start chromatin fiber. Norouzi D, Zhurkin VB. Biophys J 108 2591-2600 (2015)
  93. X-ray crystal structure of MENT: evidence for functional loop-sheet polymers in chromatin condensation. McGowan S, Buckle AM, Irving JA, Ong PC, Bashtannyk-Puhalovich TA, Kan WT, Henderson KN, Bulynko YA, Popova EY, Smith AI, Bottomley SP, Rossjohn J, Grigoryev SA, Pike RN, Whisstock JC. EMBO J 25 3144-3155 (2006)
  94. EGFP-tagged core and linker histones diffuse via distinct mechanisms within living cells. Bhattacharya D, Mazumder A, Miriam SA, Shivashankar GV. Biophys J 91 2326-2336 (2006)
  95. The silent information regulator 3 protein, SIR3p, binds to chromatin fibers and assembles a hypercondensed chromatin architecture in the presence of salt. McBryant SJ, Krause C, Woodcock CL, Hansen JC. Mol Cell Biol 28 3563-3572 (2008)
  96. Chromatin fibers stabilize nucleosomes under torsional stress. Kaczmarczyk A, Meng H, Ordu O, Noort JV, Dekker NH. Nat Commun 11 126 (2020)
  97. Cross-talk between histone H3 tails produces cooperative nucleosome acetylation. Li S, Li S, Shogren-Knaak MA. Proc Natl Acad Sci U S A 105 18243-18248 (2008)
  98. DNA stretching in the nucleosome facilitates alkylation by an intercalating antitumour agent. Davey GE, Wu B, Dong Y, Surana U, Davey CA. Nucleic Acids Res 38 2081-2088 (2010)
  99. Differential stability of DNA crossovers in solution mediated by divalent cations. Várnai P, Timsit Y. Nucleic Acids Res 38 4163-4172 (2010)
  100. Hinge and chromoshadow of HP1α participate in recognition of K9 methylated histone H3 in nucleosomes. Mishima Y, Watanabe M, Kawakami T, Jayasinghe CD, Otani J, Kikugawa Y, Shirakawa M, Kimura H, Nishimura O, Aimoto S, Tajima S, Suetake I. J Mol Biol 425 54-70 (2013)
  101. Single-pair fluorescence resonance energy transfer of nucleosomes in free diffusion: optimizing stability and resolution of subpopulations. Gansen A, Hauger F, Tóth K, Langowski J. Anal Biochem 368 193-204 (2007)
  102. Exploring the conformational space of chromatin fibers and their stability by numerical dynamic phase diagrams. Stehr R, Schöpflin R, Ettig R, Kepper N, Rippe K, Wedemann G. Biophys J 98 1028-1037 (2010)
  103. Mouse Dnmt3a preferentially methylates linker DNA and is inhibited by histone H1. Takeshima H, Suetake I, Tajima S. J Mol Biol 383 810-821 (2008)
  104. Site-specific binding affinities within the H2B tail domain indicate specific effects of lysine acetylation. Wang X, Hayes JJ. J Biol Chem 282 32867-32876 (2007)
  105. Super-resolution microscopy reveals decondensed chromatin structure at transcription sites. Wang Y, Maharana S, Wang MD, Shivashankar GV. Sci Rep 4 4477 (2014)
  106. A novel DNA sequence periodicity decodes nucleosome positioning. Chen K, Meng Q, Ma L, Liu Q, Tang P, Chiu C, Hu S, Yu J. Nucleic Acids Res 36 6228-6236 (2008)
  107. Characterization of the N-terminal tail domain of histone H3 in condensed nucleosome arrays by hydrogen exchange and NMR. Kato H, Gruschus J, Ghirlando R, Tjandra N, Bai Y. J Am Chem Soc 131 15104-15105 (2009)
  108. Cryo-EM of nucleosome core particle interactions in trans. Bilokapic S, Strauss M, Halic M. Sci Rep 8 7046 (2018)
  109. Effects of histone acetylation by Piccolo NuA4 on the structure of a nucleosome and the interactions between two nucleosomes. Lee JY, Wei S, Lee TH. J Biol Chem 286 11099-11109 (2011)
  110. Force spectroscopy of chromatin fibers: extracting energetics and structural information from Monte Carlo simulations. Kepper N, Ettig R, Stehr R, Marnach S, Wedemann G, Rippe K. Biopolymers 95 435-447 (2011)
  111. Histone depletion facilitates chromatin loops on the kilobasepair scale. Diesinger PM, Kunkel S, Langowski J, Heermann DW. Biophys J 99 2995-3001 (2010)
  112. Human cytomegalovirus IE1 protein alters the higher-order chromatin structure by targeting the acidic patch of the nucleosome. Fang Q, Chen P, Wang M, Fang J, Yang N, Li G, Xu RM. Elife 5 e11911 (2016)
  113. Nucleosome interaction surface of linker histone H1c is distinct from that of H1(0). George EM, Izard T, Anderson SD, Brown DT. J Biol Chem 285 20891-20896 (2010)
  114. Solution scattering and FRET studies on nucleosomes reveal DNA unwrapping effects of H3 and H4 tail removal. Andresen K, Jimenez-Useche I, Howell SC, Yuan C, Qiu X. PLoS One 8 e78587 (2013)
  115. Chromatin fiber functional organization: some plausible models. Lesne A, Victor JM. Eur Phys J E Soft Matter 19 279-290 (2006)
  116. Selective association between nucleosomes with identical DNA sequences. Nishikawa J, Ohyama T. Nucleic Acids Res 41 1544-1554 (2013)
  117. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions. Fan Y, Korolev N, Lyubartsev AP, Nordenskiöld L. PLoS One 8 e54228 (2013)
  118. Dynamics of the nucleosomal histone H3 N-terminal tail revealed by high precision single-molecule FRET. Lehmann K, Felekyan S, Kühnemuth R, Dimura M, Tóth K, Seidel CAM, Langowski J. Nucleic Acids Res 48 1551-1571 (2020)
  119. Nucleosome interactions and stability in an ordered nucleosome array model system. Blacketer MJ, Feely SJ, Shogren-Knaak MA. J Biol Chem 285 34597-34607 (2010)
  120. A systematic analysis of nucleosome core particle and nucleosome-nucleosome stacking structure. Korolev N, Lyubartsev AP, Nordenskiöld L. Sci Rep 8 1543 (2018)
  121. Geometry of the nucleosomal DNA superhelix. Bishop TC. Biophys J 95 1007-1017 (2008)
  122. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes. Estandarte AK, Botchway S, Lynch C, Yusuf M, Robinson I. Sci Rep 6 31417 (2016)
  123. DNA topology in chromatin is defined by nucleosome spacing. Nikitina T, Norouzi D, Grigoryev SA, Zhurkin VB. Sci Adv 3 e1700957 (2017)
  124. Depletion effects massively change chromatin properties and influence genome folding. Diesinger PM, Heermann DW. Biophys J 97 2146-2153 (2009)
  125. Nucleosomes stacked with aligned dyad axes are found in native compact chromatin in vitro. Scheffer MP, Eltsov M, Bednar J, Frangakis AS. J Struct Biol 178 207-214 (2012)
  126. Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome. Öztürk MA, Pachov GV, Wade RC, Cojocaru V. Nucleic Acids Res 44 6599-6613 (2016)
  127. Helical chirality: a link between local interactions and global topology in DNA. Timsit Y, Várnai P. PLoS One 5 e9326 (2010)
  128. Multiscale modeling of genome organization with maximum entropy optimization. Lin X, Qi Y, Latham AP, Zhang B. J Chem Phys 155 010901 (2021)
  129. Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST). Aronova MA, Kim YC, Harmon R, Sousa AA, Zhang G, Leapman RD. J Struct Biol 160 35-48 (2007)
  130. Characterizing the nuclease accessibility of DNA in human cells to map higher order structures of chromatin. Schwartz U, Németh A, Diermeier S, Exler JH, Hansch S, Maldonado R, Heizinger L, Merkl R, Längst G. Nucleic Acids Res 47 1239-1254 (2019)
  131. Histone H2B mutations in inner region affect ubiquitination, centromere function, silencing and chromosome segregation. Maruyama T, Nakamura T, Hayashi T, Yanagida M. EMBO J 25 2420-2431 (2006)
  132. Mitotic phosphorylation of histone H3 threonine 80. Hammond SL, Byrum SD, Namjoshi S, Graves HK, Dennehey BK, Tackett AJ, Tyler JK. Cell Cycle 13 440-452 (2014)
  133. Single-molecule force spectroscopy on histone H4 tail-cross-linked chromatin reveals fiber folding. Kaczmarczyk A, Allahverdi A, Brouwer TB, Nordenskiöld L, Dekker NH, van Noort J. J Biol Chem 292 17506-17513 (2017)
  134. Structure and Dynamics in the Nucleosome Revealed by Solid-State NMR. Shi X, Prasanna C, Nagashima T, Yamazaki T, Pervushin K, Nordenskiöld L. Angew Chem Int Ed Engl 57 9734-9738 (2018)
  135. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct atomic force microscopy visualization of variant chromatin. Montel F, Menoni H, Castelnovo M, Bednar J, Dimitrov S, Angelov D, Faivre-Moskalenko C. Biophys J 97 544-553 (2009)
  136. A physical model for the condensation and decondensation of eukaryotic chromosomes. Mozziconacci J, Lavelle C, Barbi M, Lesne A, Victor JM. FEBS Lett 580 368-372 (2006)
  137. Highly compact folding of chromatin induced by cellular cation concentrations. Evidence from atomic force microscopy studies in aqueous solution. Caño S, Caravaca JM, Martín M, Daban JR. Eur Biophys J 35 495-501 (2006)
  138. X-ray structure of the MMTV-A nucleosome core. Frouws TD, Duda SC, Richmond TJ. Proc Natl Acad Sci U S A 113 1214-1219 (2016)
  139. Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA. Rogge RA, Kalashnikova AA, Muthurajan UM, Porter-Goff ME, Luger K, Hansen JC. J Vis Exp (2013)
  140. Characterization of nucleosome unwrapping within chromatin fibers using magnetic tweezers. Chien FT, van der Heijden T. Biophys J 107 373-383 (2014)
  141. DNA nanomechanics in the nucleosome. Becker NB, Everaers R. Structure 17 579-589 (2009)
  142. In Vitro and in Vivo nucleosome positioning on the ovine beta-lactoglobulin gene are related. Gencheva M, Boa S, Fraser R, Simmen MW, A Whitelaw CB, Allan J. J Mol Biol 361 216-230 (2006)
  143. Insights into chromatin structure and dynamics in plants. Rosa S, Shaw P. Biology (Basel) 2 1378-1410 (2013)
  144. The Influence of Ionic Environment and Histone Tails on Columnar Order of Nucleosome Core Particles. Berezhnoy NV, Liu Y, Allahverdi A, Yang R, Su CJ, Liu CF, Korolev N, Nordenskiöld L. Biophys J 110 1720-1731 (2016)
  145. 1CPN: A coarse-grained multi-scale model of chromatin. Lequieu J, Córdoba A, Moller J, de Pablo JJ. J Chem Phys 150 215102 (2019)
  146. Distinct contributions of MSL complex subunits to the transcriptional enhancement responsible for dosage compensation in Drosophila. Dunlap D, Yokoyama R, Ling H, Sun HY, McGill K, Cugusi S, Lucchesi JC. Nucleic Acids Res 40 11281-11291 (2012)
  147. Near-atomic resolution structures of interdigitated nucleosome fibres. Adhireksan Z, Sharma D, Lee PL, Davey CA. Nat Commun 11 4747 (2020)
  148. Topological diversity of chromatin fibers: Interplay between nucleosome repeat length, DNA linking number and the level of transcription. Norouzi D, Katebi A, Cui F, Zhurkin VB. AIMS Biophys 2 613-629 (2015)
  149. Analysis of protein-DNA interactions in chromatin by UV induced cross-linking and mass spectrometry. Stützer A, Welp LM, Raabe M, Sachsenberg T, Kappert C, Wulf A, Lau AM, David SS, Chernev A, Kramer K, Politis A, Kohlbacher O, Fischle W, Urlaub H. Nat Commun 11 5250 (2020)
  150. Biomolecular Modeling and Simulation: A Prospering Multidisciplinary Field. Schlick T, Portillo-Ledesma S, Myers CG, Beljak L, Chen J, Dakhel S, Darling D, Ghosh S, Hall J, Jan M, Liang E, Saju S, Vohr M, Wu C, Xu Y, Xue E. Annu Rev Biophys 50 267-301 (2021)
  151. Effects of HMGN1 on chromatin structure and SWI/SNF-mediated chromatin remodeling. Hill DA, Peterson CL, Imbalzano AN. J Biol Chem 280 41777-41783 (2005)
  152. Regulation of chromatin folding by conformational variations of nucleosome linker DNA. Buckwalter JM, Norouzi D, Harutyunyan A, Zhurkin VB, Grigoryev SA. Nucleic Acids Res 45 9372-9387 (2017)
  153. Changing chromatin fiber conformation by nucleosome repositioning. Müller O, Kepper N, Schöpflin R, Ettig R, Rippe K, Wedemann G. Biophys J 107 2141-2150 (2014)
  154. Chromatin structure revealed by X-ray scattering analysis and computational modeling. Maeshima K, Imai R, Hikima T, Joti Y. Methods 70 154-161 (2014)
  155. Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry. Sridhar A, Farr SE, Portella G, Schlick T, Orozco M, Collepardo-Guevara R. Proc Natl Acad Sci U S A 117 7216-7224 (2020)
  156. Miniseries: Illustrating the machinery of life: Eukaryotic cell panorama. Goodsell DS. Biochem Mol Biol Educ 39 91-101 (2011)
  157. Monte Carlo simulation of chromatin stretching. Aumann F, Lankas F, Caudron M, Langowski J. Phys Rev E Stat Nonlin Soft Matter Phys 73 041927 (2006)
  158. Structural features of nucleosomes in interphase and metaphase chromosomes. Arimura Y, Shih RM, Froom R, Funabiki H. Mol Cell 81 4377-4397.e12 (2021)
  159. CENP-N promotes the compaction of centromeric chromatin. Zhou K, Gebala M, Woods D, Sundararajan K, Edwards G, Krzizike D, Wereszczynski J, Straight AF, Luger K. Nat Struct Mol Biol 29 403-413 (2022)
  160. Chromatin structure outside and inside the nucleus. Ghirlando R, Felsenfeld G. Biopolymers 99 225-232 (2013)
  161. Helical structure determines different susceptibilities of dsDNA, dsRNA, and tsDNA to counterion-induced condensation. Kornyshev AA, Leikin S. Biophys J 104 2031-2041 (2013)
  162. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens. Reynolds SM, Bilmes JA, Noble WS. PLoS Comput Biol 6 e1000834 (2010)
  163. Novel nucleosomal particles containing core histones and linker DNA but no histone H1. Cole HA, Cui F, Ocampo J, Burke TL, Nikitina T, Nagarajavel V, Kotomura N, Zhurkin VB, Clark DJ. Nucleic Acids Res 44 573-581 (2016)
  164. Nucleosome spacing periodically modulates nucleosome chain folding and DNA topology in circular nucleosome arrays. Bass MV, Nikitina T, Norouzi D, Zhurkin VB, Grigoryev SA. J Biol Chem 294 4233-4246 (2019)
  165. Prediction of nucleosome DNA formation potential and nucleosome positioning using increment of diversity combined with quadratic discriminant analysis. Zhao X, Pei Z, Liu J, Qin S, Cai L. Chromosome Res 18 777-785 (2010)
  166. Single-molecule compaction of megabase-long chromatin molecules by multivalent cations. Zinchenko A, Berezhnoy NV, Wang S, Rosencrans WM, Korolev N, van der Maarel JRC, Nordenskiöld L. Nucleic Acids Res 46 635-649 (2018)
  167. Through thick and thin: the conundrum of chromatin fibre folding in vivo. Quénet D, McNally JG, Dalal Y. EMBO Rep 13 943-944 (2012)
  168. DNA/polymeric micelle self-assembly mimicking chromatin compaction. Zhang K, Jiang M, Chen D. Angew Chem Int Ed Engl 51 8744-8747 (2012)
  169. Dynamics of the higher-order structure of chromatin. Chen P, Li G. Protein Cell 1 967-971 (2010)
  170. Comment Genomics: predictable packaging. Richmond TJ. Nature 442 750-752 (2006)
  171. Rigid Basepair Monte Carlo Simulations of One-Start and Two-Start Chromatin Fiber Unfolding by Force. de Jong BE, Brouwer TB, Kaczmarczyk A, Visscher B, van Noort J. Biophys J 115 1848-1859 (2018)
  172. A bi-terminal protein ligation strategy to probe chromatin structure during DNA damage. Kilic S, Boichenko I, Lechner CC, Fierz B. Chem Sci 9 3704-3709 (2018)
  173. Binding of DNA-bending non-histone proteins destabilizes regular 30-nm chromatin structure. Bajpai G, Jain I, Inamdar MM, Das D, Padinhateeri R. PLoS Comput Biol 13 e1005365 (2017)
  174. Flexibility of short DNA helices under mechanical stretching. Zoli M. Phys Chem Chem Phys 18 17666-17677 (2016)
  175. Modeling interactions between adjacent nucleosomes improves genome-wide predictions of nucleosome occupancy. Lubliner S, Segal E. Bioinformatics 25 i348-55 (2009)
  176. The EZH2 SANT1 domain is a histone reader providing sensitivity to the modification state of the H4 tail. Weaver TM, Liu J, Connelly KE, Coble C, Varzavand K, Dykhuizen EC, Musselman CA. Sci Rep 9 987 (2019)
  177. A metastable structure for the compact 30-nm chromatin fibre. Wu C, McGeehan JE, Travers A. FEBS Lett 590 935-942 (2016)
  178. News A milestone in the odyssey of higher-order chromatin structure. Woodcock CL. Nat Struct Mol Biol 12 639-640 (2005)
  179. A new fractionation assay, based on the size of formaldehyde-crosslinked, mildly sheared chromatin, delineates the chromatin structure at promoter regions. Ishihara S, Varma R, Schwartz RH. Nucleic Acids Res 38 e124 (2010)
  180. Dense chromatin plates in metaphase chromosomes. Gállego I, Castro-Hartmann P, Caravaca JM, Caño S, Daban JR. Eur Biophys J 38 503-522 (2009)
  181. Direct measurement of local chromatin fluidity using optical trap modulation force spectroscopy. Roopa T, Shivashankar GV. Biophys J 91 4632-4637 (2006)
  182. Exploring DNA dynamics within oligonucleosomes with coarse-grained simulations: SIRAH force field extension for protein-DNA complexes. Brandner A, Schüller A, Melo F, Pantano S. Biochem Biophys Res Commun 498 319-326 (2018)
  183. Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure. Chicano A, Crosas E, Otón J, Melero R, Engel BD, Daban JR. EMBO J 38 e99769 (2019)
  184. Functional nanofibrous scaffolds for bone reconstruction. Burger C, Chu B. Colloids Surf B Biointerfaces 56 134-141 (2007)
  185. Local chromatin fiber folding represses transcription and loop extrusion in quiescent cells. Swygert SG, Lin D, Portillo-Ledesma S, Lin PY, Hunt DR, Kao CF, Schlick T, Noble WS, Tsukiyama T. Elife 10 e72062 (2021)
  186. Micro- and nanofluidic technologies for epigenetic profiling. Matsuoka T, Choul Kim B, Moraes C, Han M, Takayama S. Biomicrofluidics 7 41301 (2013)
  187. Mutations that probe the cooperative assembly of O⁶-alkylguanine-DNA alkyltransferase complexes. Adams CA, Fried MG. Biochemistry 50 1590-1598 (2011)
  188. Sequence signatures of nucleosome positioning in Caenorhabditis elegans. Chen K, Wang L, Yang M, Liu J, Xin C, Hu S, Yu J. Genomics Proteomics Bioinformatics 8 92-102 (2010)
  189. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array. Woods DC, Rodríguez-Ropero F, Wereszczynski J. J Mol Biol 433 166902 (2021)
  190. A critical role for linker DNA in higher-order folding of chromatin fibers. Brouwer T, Pham C, Kaczmarczyk A, de Voogd WJ, Botto M, Vizjak P, Mueller-Planitz F, van Noort J. Nucleic Acids Res 49 2537-2551 (2021)
  191. Choreography for nucleosomes: the conformational freedom of the nucleosomal filament and its limitations. Engelhardt M. Nucleic Acids Res 35 e106 (2007)
  192. Effect of DNA groove binder distamycin A upon chromatin structure. Majumder P, Dasgupta D. PLoS One 6 e26486 (2011)
  193. Predicting protein-DNA interactions by full search computational docking. Roberts VA, Pique ME, Ten Eyck LF, Li S. Proteins 81 2106-2118 (2013)
  194. The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin. Diesinger PM, Heermann DW. Biophys J 94 4165-4172 (2008)
  195. Topological constraints on the possible structures of the 30 nm chromatin fibre. Staynov DZ, Proykova YG. Chromosoma 117 67-76 (2008)
  196. Analysis of distant communication on defined chromatin templates in vitro. Polikanov YS, Studitsky VM. Methods Mol Biol 543 563-576 (2009)
  197. Computational strategies to address chromatin structure problems. Perišić O, Schlick T. Phys Biol 13 035006 (2016)
  198. In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo. Fraser RM, Allan J, Simmen MW. J Mol Biol 364 582-598 (2006)
  199. Nucleosome positioning and nucleosome stacking: two faces of the same coin. Riposo J, Mozziconacci J. Mol Biosyst 8 1172-1178 (2012)
  200. Reversible chromatin condensation by the DNA repair and demethylation factor thymine DNA glycosylase. Deckard CE, Sczepanski JT. Nucleic Acids Res 49 2450-2459 (2021)
  201. Salt-modulated structure of polyelectrolyte-macroion complex fibers. Boroudjerdi H, Naji A, Netz RR. Eur Phys J E Soft Matter 34 72 (2011)
  202. Structural biology. The 30-nm fiber redux. Travers A. Science 344 370-372 (2014)
  203. Tetranucleosome Interactions Drive Chromatin Folding. Alvarado W, Moller J, Ferguson AL, de Pablo JJ. ACS Cent Sci 7 1019-1027 (2021)
  204. DNA methylation effects on tetra-nucleosome compaction and aggregation. Jimenez-Useche I, Nurse NP, Tian Y, Kansara BS, Shim D, Yuan C. Biophys J 107 1629-1636 (2014)
  205. Electric oscillation and coupling of chromatin regulate chromosome packaging and transcription in eukaryotic cells. Zhao Y, Zhan Q. Theor Biol Med Model 9 27 (2012)
  206. Evolution of histone 2A for chromatin compaction in eukaryotes. Macadangdang BR, Oberai A, Spektor T, Campos OA, Sheng F, Carey MF, Vogelauer M, Kurdistani SK. Elife 3 (2014)
  207. Hierarchies in eukaryotic genome organization: Insights from polymer theory and simulations. Iyer BV, Kenward M, Arya G. BMC Biophys 4 8 (2011)
  208. Modeling H3 histone N-terminal tail and linker DNA interactions. La Penna G, Furlan S, Perico A. Biopolymers 83 135-147 (2006)
  209. The energy components of stacked chromatin layers explain the morphology, dimensions and mechanical properties of metaphase chromosomes. Daban JR. J R Soc Interface 11 20131043 (2014)
  210. The higher structure of chromatin in the LCR of the beta-globin locus changes during development. Fang X, Yin W, Xiang P, Han H, Stamatoyannopoulos G, Li Q. J Mol Biol 394 197-208 (2009)
  211. Track-event theory of cell survival with second-order repair. Besserer J, Schneider U. Radiat Environ Biophys 54 167-174 (2015)
  212. Changes in the genome-wide localization pattern of Sir3 in Saccharomyces cerevisiae during different growth stages. Tung SY, Lee KW, Hong JY, Lee SP, Shen HH, Liou GG. Comput Struct Biotechnol J 7 e201304001 (2013)
  213. Chromatin dynamics of unfolding and refolding controlled by the nucleosome repeat length and the linker and core histones. Kobori T, Iwamoto S, Takeyasu K, Ohtani T. Biopolymers 85 295-307 (2007)
  214. Chromatin fiber breaks into clutches under tension and crowding. Liu S, Lin X, Zhang B. Nucleic Acids Res 50 9738-9747 (2022)
  215. Cis and trans internucleosomal interactions of H3 and H4 tails in tetranucleosomes. Nurse NP, Yuan C. Biopolymers 103 33-40 (2015)
  216. Histone Modifications, Internucleosome Dynamics, and DNA Stresses: How They Cooperate to "Functionalize" Nucleosomes. Krajewski WA. Front Genet 13 873398 (2022)
  217. Histone octamer helical tubes suggest that an internucleosomal four-helix bundle stabilizes the chromatin fiber. Frouws TD, Patterton HG, Sewell BT. Biophys J 96 3363-3371 (2009)
  218. Molecular organization of the early stages of nucleosome phase separation visualized by cryo-electron tomography. Zhang M, Díaz-Celis C, Onoa B, Cañari-Chumpitaz C, Requejo KI, Liu J, Vien M, Nogales E, Ren G, Bustamante C. Mol Cell 82 3000-3014.e9 (2022)
  219. Monte Carlo simulation algorithm for B-DNA. Howell SC, Qiu X, Curtis JE. J Comput Chem 37 2553-2563 (2016)
  220. Reprint of "Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST)" [J. Struct. Biol. 160 (2007) 35-48]. Aronova MA, Kim YC, Harmon R, Sousa AA, Zhang G, Leapman RD. J Struct Biol 161 322-335 (2008)
  221. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing. Lesne A, Bécavin C, Victor JM. Phys Biol 9 013001 (2012)
  222. Two-State Reactivity of Histone Demethylases Containing Jumonji-C Active Sites: Different Mechanisms for Different Methylation Degrees. Alberro N, Torrent-Sucarrat M, Arrastia I, Arrieta A, Cossío FP. Chemistry 23 137-148 (2017)
  223. Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium. Ma J, Metrick M, Ghirlando R, Zhao H, Schuck P. Biophys J 109 827-837 (2015)
  224. Characterization of nucleosome sediments for protein interaction studies by solid-state NMR spectroscopy. le Paige UB, Xiang S, Hendrix MMRM, Zhang Y, Folkers GE, Weingarth M, Bonvin AMJJ, Kutateladze TG, Voets IK, Baldus M, van Ingen H. Magn Reson (Gott) 2 187-202 (2021)
  225. DNA topology in chromosomes: a quantitative survey and its physiological implications. Barbi M, Mozziconacci J, Wong H, Victor JM. J Math Biol 68 145-179 (2014)
  226. Divalent metal- and high mobility group N protein-dependent nucleosome stability and conformation. Ong MS, Vasudevan D, Davey CA. J Nucleic Acids 2010 143890 (2010)
  227. Human metaphase chromosome consists of randomly arranged chromatin fibres with up to 30-nm diameter. Wako T, Yoshida A, Kato J, Otsuka Y, Ogawa S, Kaneyoshi K, Takata H, Fukui K. Sci Rep 10 8948 (2020)
  228. PR-DUB preserves Polycomb repression by preventing excessive accumulation of H2Aub1, an antagonist of chromatin compaction. Bonnet J, Boichenko I, Kalb R, Le Jeune M, Maltseva S, Pieropan M, Finkl K, Fierz B, Müller J. Genes Dev 36 1046-1061 (2022)
  229. Physical origin of the contact frequency in chromosome conformation capture data. Hahn S, Kim D. Biophys J 105 1786-1795 (2013)
  230. Predicting nucleosome positions in yeast: using the absolute frequency. Zhang Z, Zhang Y, Gutman I. J Biomol Struct Dyn 29 1081-1088 (2012)
  231. Sequence information encoded in DNA that may influence long-range chromatin structure correlates with human chromosome functions. Takasuka TE, Cioffi A, Stein A. PLoS One 3 e2643 (2008)
  232. The Impact of the Geometrical Structure of the DNA on Parameters of the Track-Event Theory for Radiation Induced Cell Kill. Schneider U, Vasi F, Besserer J. PLoS One 11 e0164929 (2016)
  233. The effect of linker DNA on the structure and interaction of nucleosome core particles. Huang YC, Su CJ, Korolev N, Berezhnoy NV, Wang S, Soman A, Chen CY, Chen HL, Jeng US, Nordenskiöld L. Soft Matter 14 9096-9106 (2018)
  234. The electronic structure of the four nucleotide bases in DNA, of their stacks, and of their homopolynucleotides in the absence and presence of water. Ladik J, Bende A, Bogár F. J Chem Phys 128 105101 (2008)
  235. Wrapping transition and wrapping-mediated interactions for discrete binding along an elastic filament: an exact solution. Dean DS, Hammant TC, Horgan RR, Naji A, Podgornik R. J Chem Phys 137 144904 (2012)
  236. Analysis of chromatin fibers in Hela cells with electron tomography. Li X, Feng H, Zhang J, Sun L, Zhu P. Biophys Rep 1 51-60 (2015)
  237. Comparative analysis and prediction of nucleosome positioning using integrative feature representation and machine learning algorithms. Han GS, Li Q, Li Y. BMC Bioinformatics 22 129 (2021)
  238. Cooperation between bHLH transcription factors and histones for DNA access. Michael AK, Stoos L, Crosby P, Eggers N, Nie XY, Makasheva K, Minnich M, Healy KL, Weiss J, Kempf G, Cavadini S, Kater L, Seebacher J, Vecchia L, Chakraborty D, Isbel L, Grand RS, Andersch F, Fribourgh JL, Schübeler D, Zuber J, Liu AC, Becker PB, Fierz B, Partch CL, Menet JS, Thomä NH. Nature 619 385-393 (2023)
  239. Comment Getting under wraps: alkylating DNA in the nucleosome. Gates KS. Nat Chem Biol 2 64-66 (2006)
  240. Editorial Higher order chromatin structures are taking shape. Schalch T. Z Med Phys 27 75-77 (2017)
  241. Histone variant H2A.Z modulates nucleosome dynamics to promote DNA accessibility. Li S, Wei T, Panchenko AR. Nat Commun 14 769 (2023)
  242. Hyperthermal (1-100 eV) nitrogen ion scattering damage to D-ribose and 2-deoxy-D-ribose films. Deng Z, Bald I, Illenberger E, Huels MA. J Chem Phys 127 144715 (2007)
  243. Mechanical properties of nucleoprotein complexes determined by nanoindentation spectroscopy. Rakshit T, Melters DP, Dimitriadis EK, Dalal Y. Nucleus 11 264-282 (2020)
  244. Minor groove binder distamycin remodels chromatin but inhibits transcription. Majumder P, Banerjee A, Shandilya J, Senapati P, Chatterjee S, Kundu TK, Dasgupta D. PLoS One 8 e57693 (2013)
  245. Modelling and DNA topology of compact 2-start and 1-start chromatin fibres. Wu C, Travers A. Nucleic Acids Res 47 9902-9924 (2019)
  246. Nucleosome recognition and spacing by chromatin remodelling factor ISW1a. Richmond TJ. Biochem Soc Trans 40 347-350 (2012)
  247. The role of alphoid higher order repeats (HORs) in the centromere folding. Rosandić M, Gluncić M, Paar V, Basar I. J Theor Biol 254 555-560 (2008)
  248. Chromatin alterations in leukocytes of first-episode schizophrenic patients. Kloukina-Pantazidou I, Havaki S, Chrysanthou-Piterou M, Kontaxakis VP, Papadimitriou GN, Issidorides MR. Ultrastruct Pathol 34 106-116 (2010)
  249. Engineering nucleosomes for generating diverse chromatin assemblies. Adhireksan Z, Sharma D, Lee PL, Bao Q, Padavattan S, Shum WK, Davey GE, Davey CA. Nucleic Acids Res 49 e52 (2021)
  250. In diverse conditions, intrinsic chromatin condensates have liquid-like material properties. Gibson BA, Blaukopf C, Lou T, Chen L, Doolittle LK, Finkelstein I, Narlikar GJ, Gerlich DW, Rosen MK. Proc Natl Acad Sci U S A 120 e2218085120 (2023)
  251. Projected [(1)H, (15)N]-HMQC-[ (1)H, (1)H]-NOESY for large molecular systems: application to a 121 kDa protein-DNA complex. Galius V, Leontiou C, Richmond T, Wider G. J Biomol NMR 40 175-181 (2008)
  252. Role of nucleosome positioning in 3D chromatin organization and loop formation. Kharerin H, Bhat PJ, Padinhateeri R. J Biosci 45 14 (2020)
  253. Solution structure(s) of trinucleosomes from contrast variation SAXS. Mauney AW, Muthurajan UM, Luger K, Pollack L. Nucleic Acids Res 49 5028-5037 (2021)
  254. Stochastic chromatin packing of 3D mitotic chromosomes revealed by coherent X-rays. Sung D, Lim C, Takagi M, Jung C, Lee H, Cho DH, Shin JY, Ahn K, Hwang J, Nam D, Kohmura Y, Ishikawa T, Noh DY, Imamoto N, Jeon JH, Song C. Proc Natl Acad Sci U S A 118 e2109921118 (2021)
  255. The sequentiallity of nucleosomes in the 30 nm chromatin fibre. Staynov DZ, Proykova YG. FEBS J 275 3761-3771 (2008)
  256. Chromatin transitions triggered by LH density as epigenetic regulators of the genome. Portillo-Ledesma S, Wagley M, Schlick T. Nucleic Acids Res 50 10328-10342 (2022)
  257. Cis- and trans-regulation by histone H4 basic patch R17/R19 in metazoan development. Zhang X, Wu X, Peng J, Sun A, Guo Y, Fu P, Gao G. Open Biol 12 220066 (2022)
  258. Comment on "Chromatin fiber functional organization: some plausible models" by A. Lesne and J.-M. Victor. Schiessel H. Eur Phys J E Soft Matter 19 291-292 (2006)
  259. Monte Carlo Simulations indicate that Chromati: Nanostructure is accessible by Light Microscopy. Diesinger PM, Heermann DW. PMC Biophys 3 11 (2010)
  260. CENP-A and CENP-B collaborate to create an open centromeric chromatin state. Nagpal H, Ali-Ahmad A, Hirano Y, Cai W, Halic M, Fukagawa T, Sekulić N, Fierz B. Nat Commun 14 8227 (2023)
  261. Capturing and Stabilizing Folded Proteins in Lattices Formed with Branched Oligonucleotide Hybrids. Schwenger A, Jurkowski TP, Richert C. Chembiochem 19 1523-1530 (2018)
  262. Correlating histone acetylation with nucleosome core particle dynamics and function. Kim TH, Nosella ML, Bolik-Coulon N, Harkness RW, Huang SK, Kay LE. Proc Natl Acad Sci U S A 120 e2301063120 (2023)
  263. Critical adsorption of multiple polyelectrolytes onto a nanosphere: splitting the adsorption-desorption transition boundary. Caetano DLZ, de Carvalho SJ, Metzler R, Cherstvy AG. J R Soc Interface 17 20200199 (2020)
  264. Cryoelectron tomography reveals the multiplex anatomy of condensed native chromatin and its unfolding by histone citrullination. Jentink N, Purnell C, Kable B, Swulius MT, Grigoryev SA. Mol Cell 83 3236-3252.e7 (2023)
  265. Denoising Autoencoder Trained on Simulation-Derived Structures for Noise Reduction in Chromatin Scanning Transmission Electron Microscopy. Alvarado W, Agrawal V, Li WS, Dravid VP, Backman V, de Pablo JJ, Ferguson AL. ACS Cent Sci 9 1200-1212 (2023)
  266. Structural basis of RNA polymerase II transcription on the chromatosome containing linker histone H1. Hirano R, Ehara H, Kujirai T, Uejima T, Takizawa Y, Sekine SI, Kurumizaka H. Nat Commun 13 7287 (2022)
  267. Structure and Epigenetic Regulation of Chromatin Fibers. Chen P, Li G. Cold Spring Harb Symp Quant Biol 82 25-35 (2017)
  268. Structure of native chromatin fibres revealed by Cryo-ET in situ. Hou Z, Nightingale F, Zhu Y, MacGregor-Chatwin C, Zhang P. Nat Commun 14 6324 (2023)
  269. Structure of the ISW1a complex bound to the dinucleosome. Li L, Chen K, Sia Y, Hu P, Ye Y, Chen Z. Nat Struct Mol Biol (2024)
  270. The effects of RNA.DNA-DNA triple helices on nucleosome structures and dynamics. Kohestani H, Wereszczynski J. Biophys J 122 1229-1239 (2023)
  271. Unnatural Amino Acid Crosslinking for Increased Spatiotemporal Resolution of Chromatin Dynamics. Moleri P, Wilkins BJ. Int J Mol Sci 24 12879 (2023)