1z5w Citations

Insights into microtubule nucleation from the crystal structure of human gamma-tubulin.

Nature 435 523-7 (2005)
Cited: 116 times
EuropePMC logo PMID: 15917813

Abstract

Microtubules are hollow polymers of alphabeta-tubulin that show GTP-dependent assembly dynamics and comprise a critical part of the eukaryotic cytoskeleton. Initiation of new microtubules in vivo requires gamma-tubulin, organized as an oligomer within the 2.2-MDa gamma-tubulin ring complex (gamma-TuRC) of higher eukaryotes. Structural insight is lacking regarding gamma-tubulin, its oligomerization and how it promotes microtubule assembly. Here we report the 2.7-A crystal structure of human gamma-tubulin bound to GTP-gammaS (a non-hydrolysable GTP analogue). We observe a 'curved' conformation for gamma-tubulin-GTPgammaS, similar to that seen for GDP-bound, unpolymerized alphabeta-tubulin. Tubulins are thought to represent a distinct class of GTP-binding proteins, and conformational switching in gamma-tubulin might differ from the nucleotide-dependent switching of signalling GTPases. A crystal packing interaction replicates the lateral contacts between alpha- and beta-tubulins in the microtubule, and this association probably forms the basis for gamma-tubulin oligomerization within the gamma-TuRC. Laterally associated gamma-tubulins in the gamma-TuRC might promote microtubule nucleation by providing a template that enhances the intrinsically weak lateral interaction between alphabeta-tubulin heterodimers. Because they are dimeric, alphabeta-tubulins cannot form microtubule-like lateral associations in the curved conformation. The lateral array of gamma-tubulins we observe in the crystal reveals a unique functional property of a monomeric tubulin.

Reviews - 1z5w mentioned but not cited (1)

  1. γ-Tubulin in microtubule nucleation and beyond. Sulimenko V, Dráberová E, Dráber P. Front Cell Dev Biol 10 880761 (2022)

Articles - 1z5w mentioned but not cited (6)

  1. Microtubule Nucleation Properties of Single Human γTuRCs Explained by Their Cryo-EM Structure. Consolati T, Locke J, Roostalu J, Chen ZA, Gannon J, Asthana J, Lim WM, Martino F, Cvetkovic MA, Rappsilber J, Costa A, Surrey T. Dev Cell 53 603-617.e8 (2020)
  2. The transition state and regulation of γ-TuRC-mediated microtubule nucleation revealed by single molecule microscopy. Thawani A, Rale MJ, Coudray N, Bhabha G, Stone HA, Shaevitz JW, Petry S. Elife 9 e54253 (2020)
  3. XMAP215 and γ-tubulin additively promote microtubule nucleation in purified solutions. King BR, Moritz M, Kim H, Agard DA, Asbury CL, Davis TN. Mol Biol Cell 31 2187-2194 (2020)
  4. CM1-driven assembly and activation of yeast γ-tubulin small complex underlies microtubule nucleation. Brilot AF, Lyon AS, Zelter A, Viswanath S, Maxwell A, MacCoss MJ, Muller EG, Sali A, Davis TN, Agard DA. Elife 10 e65168 (2021)
  5. The cryo-EM structure of a γ-TuSC elucidates architecture and regulation of minimal microtubule nucleation systems. Zupa E, Zheng A, Neuner A, Würtz M, Liu P, Böhler A, Schiebel E, Pfeffer S. Nat Commun 11 5705 (2020)
  6. Computational Analysis and Experimental Testing of the Molecular Mode of Action of Gatastatin and Its Derivatives. Vottero P, Wang Q, Michalak M, Aminpour M, Tuszynski JA. Cancers (Basel) 15 1714 (2023)


Reviews citing this publication (22)

  1. Microtubule nucleation by γ-tubulin complexes. Kollman JM, Merdes A, Mourey L, Agard DA. Nat Rev Mol Cell Biol 12 709-721 (2011)
  2. On and around microtubules: an overview. Wade RH. Mol Biotechnol 43 177-191 (2009)
  3. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Nogales E, Wang HW. Curr Opin Struct Biol 16 221-229 (2006)
  4. Gamma-tubulin complexes and microtubule organization. Raynaud-Messina B, Merdes A. Curr Opin Cell Biol 19 24-30 (2007)
  5. Amorphous no more: subdiffraction view of the pericentriolar material architecture. Mennella V, Agard DA, Huang B, Pelletier L. Trends Cell Biol 24 188-197 (2014)
  6. Microtubule nucleation: beyond the template. Roostalu J, Surrey T. Nat Rev Mol Cell Biol 18 702-710 (2017)
  7. A 30-year journey from volume-regulated anion currents to molecular structure of the LRRC8 channel. Strange K, Yamada T, Denton JS. J Gen Physiol 151 100-117 (2019)
  8. Multiple tubulins: evolutionary aspects and biological implications. Breviario D, Gianì S, Morello L. Plant J 75 202-218 (2013)
  9. Regulation of microtubule dynamics, mechanics and function through the growing tip. Gudimchuk NB, McIntosh JR. Nat Rev Mol Cell Biol 22 777-795 (2021)
  10. Insights into photoreceptor ciliogenesis revealed by animal models. Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Prog Retin Eye Res 71 26-56 (2019)
  11. Impact of the Protein Data Bank on antineoplastic approvals. Westbrook JD, Soskind R, Hudson BP, Burley SK. Drug Discov Today 25 837-850 (2020)
  12. Targeting the cytoskeleton against metastatic dissemination. Ruggiero C, Lalli E. Cancer Metastasis Rev 40 89-140 (2021)
  13. γ-tubulin as a signal-transducing molecule and meshwork with therapeutic potential. Alvarado-Kristensson M. Signal Transduct Target Ther 3 24 (2018)
  14. γ-Tubulin⁻γ-Tubulin Interactions as the Basis for the Formation of a Meshwork. Rosselló CA, Lindström L, Eklund G, Corvaisier M, Kristensson MA. Int J Mol Sci 19 E3245 (2018)
  15. Microtubular and Nuclear Functions of γ-Tubulin: Are They LINCed? Chumová J, Kourová H, Trögelová L, Halada P, Binarová P. Cells 8 E259 (2019)
  16. Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Wang J, Miller DD, Li W. Drug Discov Today 27 759-776 (2022)
  17. Dysregulation of Microtubule Nucleating Proteins in Cancer Cells. Dráber P, Dráberová E. Cancers (Basel) 13 5638 (2021)
  18. Non-Canonical Functions of the Gamma-Tubulin Meshwork in the Regulation of the Nuclear Architecture. Corvaisier M, Alvarado-Kristensson M. Cancers (Basel) 12 E3102 (2020)
  19. The Game of Tubulins. Kristensson MA. Cells 10 745 (2021)
  20. Molecular insight into how γ-TuRC makes microtubules. Thawani A, Petry S. J Cell Sci 134 jcs245464 (2021)
  21. Cryo-EM studies of microtubule structural intermediates and kinetochore-microtubule interactions. Nogales E, Ramey VH, Wang HW. Methods Cell Biol 95 129-156 (2010)
  22. γ-Tubulin Complexes and Fibrillar Arrays: Two Conserved High Molecular Forms with Many Cellular Functions. Chumová J, Kourová H, Trögelová L, Daniel G, Binarová P. Cells 10 776 (2021)

Articles citing this publication (87)

  1. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E. Cell 157 1117-1129 (2014)
  2. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Lawo S, Hasegan M, Gupta GD, Pelletier L. Nat Cell Biol 14 1148-1158 (2012)
  3. Microtubule nucleating gamma-TuSC assembles structures with 13-fold microtubule-like symmetry. Kollman JM, Polka JK, Zelter A, Davis TN, Agard DA. Nature 466 879-882 (2010)
  4. The lattice as allosteric effector: structural studies of alphabeta- and gamma-tubulin clarify the role of GTP in microtubule assembly. Rice LM, Montabana EA, Agard DA. Proc Natl Acad Sci U S A 105 5378-5383 (2008)
  5. A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Ayaz P, Ye X, Huddleston P, Brautigam CA, Rice LM. Science 337 857-860 (2012)
  6. Structural insights into the conformational variability of FtsZ. Oliva MA, Trambaiolo D, Löwe J. J Mol Biol 373 1229-1242 (2007)
  7. Distinct roles of doublecortin modulating the microtubule cytoskeleton. Moores CA, Perderiset M, Kappeler C, Kain S, Drummond D, Perkins SJ, Chelly J, Cross R, Houdusse A, Francis F. EMBO J 25 4448-4457 (2006)
  8. Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination. Sankaran S, Starita LM, Groen AC, Ko MJ, Parvin JD. Mol Cell Biol 25 8656-8668 (2005)
  9. Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Kollman JM, Greenberg CH, Li S, Moritz M, Zelter A, Fong KK, Fernandez JJ, Sali A, Kilmartin J, Davis TN, Agard DA. Nat Struct Mol Biol 22 132-137 (2015)
  10. The structure of the gamma-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Kollman JM, Zelter A, Muller EG, Fox B, Rice LM, Davis TN, Agard DA. Mol Biol Cell 19 207-215 (2008)
  11. γ-Tubulin complexes in microtubule nucleation and beyond. Oakley BR, Paolillo V, Zheng Y. Mol Biol Cell 26 2957-2962 (2015)
  12. Asymmetric Molecular Architecture of the Human γ-Tubulin Ring Complex. Wieczorek M, Urnavicius L, Ti SC, Molloy KR, Chait BT, Kapoor TM. Cell 180 165-175.e16 (2020)
  13. SADB phosphorylation of gamma-tubulin regulates centrosome duplication. Alvarado-Kristensson M, Rodríguez MJ, Silió V, Valpuesta JM, Carrera AC. Nat Cell Biol 11 1081-1092 (2009)
  14. Stathmin and interfacial microtubule inhibitors recognize a naturally curved conformation of tubulin dimers. Barbier P, Dorléans A, Devred F, Sanz L, Allegro D, Alfonso C, Knossow M, Peyrot V, Andreu JM. J Biol Chem 285 31672-31681 (2010)
  15. Crystal structure of γ-tubulin complex protein GCP4 provides insight into microtubule nucleation. Guillet V, Knibiehler M, Gregory-Pauron L, Remy MH, Chemin C, Raynaud-Messina B, Bon C, Kollman JM, Agard DA, Merdes A, Mourey L. Nat Struct Mol Biol 18 915-919 (2011)
  16. Allosteric models for cooperative polymerization of linear polymers. Miraldi ER, Thomas PJ, Romberg L. Biophys J 95 2470-2486 (2008)
  17. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy. Yajima H, Ogura T, Nitta R, Okada Y, Sato C, Hirokawa N. J Cell Biol 198 315-322 (2012)
  18. Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Liu P, Zupa E, Neuner A, Böhler A, Loerke J, Flemming D, Ruppert T, Rudack T, Peter C, Spahn C, Gruss OJ, Pfeffer S, Schiebel E. Nature 578 467-471 (2020)
  19. Class III beta-tubulin and gamma-tubulin are co-expressed and form complexes in human glioblastoma cells. Katsetos CD, Dráberová E, Smejkalová B, Reddy G, Bertrand L, de Chadarévian JP, Legido A, Nissanov J, Baas PW, Dráber P. Neurochem Res 32 1387-1398 (2007)
  20. NME7 is a functional component of the γ-tubulin ring complex. Liu P, Choi YK, Qi RZ. Mol Biol Cell 25 2017-2025 (2014)
  21. Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells. Olmsted ZT, Colliver AG, Riehlman TD, Paluh JL. Nat Commun 5 5339 (2014)
  22. Fission yeast MOZART1/Mzt1 is an essential γ-tubulin complex component required for complex recruitment to the microtubule organizing center, but not its assembly. Masuda H, Mori R, Yukawa M, Toda T. Mol Biol Cell 24 2894-2906 (2013)
  23. An extended γ-tubulin ring functions as a stable platform in microtubule nucleation. Erlemann S, Neuner A, Gombos L, Gibeaux R, Antony C, Schiebel E. J Cell Biol 197 59-74 (2012)
  24. Detection of primary cilia in human glioblastoma. Sarkisian MR, Siebzehnrubl D, Hoang-Minh L, Deleyrolle L, Silver DJ, Siebzehnrubl FA, Guadiana SM, Srivinasan G, Semple-Rowland S, Harrison JK, Steindler DA, Reynolds BA. J Neurooncol 117 15-24 (2014)
  25. Gamma-tubulin is required for proper recruitment and assembly of Kar9-Bim1 complexes in budding yeast. Cuschieri L, Miller R, Vogel J. Mol Biol Cell 17 4420-4434 (2006)
  26. Conformational changes of FtsZ reported by tryptophan mutants. Chen Y, Erickson HP. Biochemistry 50 4675-4684 (2011)
  27. Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. Lin TC, Gombos L, Neuner A, Sebastian D, Olsen JV, Hrle A, Benda C, Schiebel E. PLoS One 6 e19700 (2011)
  28. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy. Yan S, Guo C, Hou G, Zhang H, Lu X, Williams JC, Polenova T. Proc Natl Acad Sci U S A 112 14611-14616 (2015)
  29. Intrinsic bending of microtubule protofilaments. Grafmüller A, Voth GA. Structure 19 409-417 (2011)
  30. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Chinen T, Liu P, Shioda S, Pagel J, Cerikan B, Lin TC, Gruss O, Hayashi Y, Takeno H, Shima T, Okada Y, Hayakawa I, Hayashi Y, Kigoshi H, Usui T, Schiebel E. Nat Commun 6 8722 (2015)
  31. Formation of extra centrosomal structures is dependent on beta-catenin. Bahmanyar S, Guiney EL, Hatch EM, Nelson WJ, Barth AI. J Cell Sci 123 3125-3135 (2010)
  32. Comparative modelling of human β tubulin isotypes and implications for drug binding. Torin Huzil J, Ludueña RF, Tuszynski J. Nanotechnology 17 S90-S100 (2006)
  33. Fluorescence recovery kinetic analysis of gamma-tubulin binding to the mitotic spindle. Hallen MA, Ho J, Yankel CD, Endow SA. Biophys J 95 3048-3058 (2008)
  34. Mutational analyses reveal a novel function of the nucleotide-binding domain of gamma-tubulin in the regulation of basal body biogenesis. Shang Y, Tsao CC, Gorovsky MA. J Cell Biol 171 1035-1044 (2005)
  35. Structure of a GDP:AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of a peripheral nucleotide interaction site. Focia PJ, Gawronski-Salerno J, Coon JS, Freymann DM. J Mol Biol 360 631-643 (2006)
  36. Nucleotide-dependent lateral and longitudinal interactions in microtubules. Grafmüller A, Noya EG, Voth GA. J Mol Biol 425 2232-2246 (2013)
  37. Bacterial tubulin distinct loop sequences and primitive assembly properties support its origin from a eukaryotic tubulin ancestor. Martin-Galiano AJ, Oliva MA, Sanz L, Bhattacharyya A, Serna M, Yebenes H, Valpuesta JM, Andreu JM. J Biol Chem 286 19789-19803 (2011)
  38. Discovery of small molecule inhibitors that interact with γ-tubulin. Friesen DE, Barakat KH, Semenchenko V, Perez-Pineiro R, Fenske BW, Mane J, Wishart DS, Tuszynski JA. Chem Biol Drug Des 79 639-652 (2012)
  39. GTP regulates the microtubule nucleation activity of γ-tubulin. Gombos L, Neuner A, Berynskyy M, Fava LL, Wade RC, Sachse C, Schiebel E. Nat Cell Biol 15 1317-1327 (2013)
  40. Structure-function analysis of the C-terminal domain of CNM67, a core component of the Saccharomyces cerevisiae spindle pole body. Klenchin VA, Frye JJ, Jones MH, Winey M, Rayment I. J Biol Chem 286 18240-18250 (2011)
  41. A statistical-mechanical theory of fibril formation in dilute protein solutions. van Gestel J, de Leeuw SW. Biophys J 90 3134-3145 (2006)
  42. Interaction of CK1δ with γTuSC ensures proper microtubule assembly and spindle positioning. Peng Y, Moritz M, Han X, Giddings TH, Lyon A, Kollman J, Winey M, Yates J, Agard DA, Drubin DG, Barnes G. Mol Biol Cell 26 2505-2518 (2015)
  43. TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes. Singh P, Thomas GE, Gireesh KK, Manna TK. J Biol Chem 289 31719-31735 (2014)
  44. The nuclear localization of γ-tubulin is regulated by SadB-mediated phosphorylation. Eklund G, Lang S, Glindre J, Ehlén Å, Alvarado-Kristensson M. J Biol Chem 289 21360-21373 (2014)
  45. Different roles of two gamma-tubulin isotypes in the cytoskeleton of the Antarctic ciliate Euplotes focardii: remodelling of interaction surfaces may enhance microtubule nucleation at low temperature. Marziale F, Pucciarelli S, Ballarini P, Melki R, Uzun A, Ilyin VA, Detrich HW, Miceli C. FEBS J 275 5367-5382 (2008)
  46. The GTPase domain of gamma-tubulin is required for normal mitochondrial function and spatial organization. Lindström L, Li T, Malycheva D, Kancharla A, Nilsson H, Vishnu N, Mulder H, Johansson M, Rosselló CA, Alvarado-Kristensson M. Commun Biol 1 37 (2018)
  47. Distinct Dgrip84 isoforms correlate with distinct gamma-tubulins in Drosophila. Wiese C. Mol Biol Cell 19 368-377 (2008)
  48. Homology modeling of tubulin: influence predictions for microtubule's biophysical properties. Carpenter EJ, Huzil JT, Ludueña RF, Tuszynski JA. Eur Biophys J 36 35-43 (2006)
  49. Tubulinopathies continued: refining the phenotypic spectrum associated with variants in TUBG1. Brock S, Stouffs K, Scalais E, D'Hooghe M, Keymolen K, Guerrini R, Dobyns WB, Di Donato N, Jansen AC. Eur J Hum Genet 26 1132-1142 (2018)
  50. Soluble tubulin complexes, gamma-tubulin, and their changing distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo. Liu J, Lessman CA. Comp Biochem Physiol B Biochem Mol Biol 147 56-73 (2007)
  51. Anastral spindle assembly and γ-tubulin in Drosophila oocytes. Endow SA, Hallen MA. BMC Cell Biol 12 1 (2011)
  52. Microtubule Simulations Provide Insight into the Molecular Mechanism Underlying Dynamic Instability. Tong D, Voth GA. Biophys J 118 2938-2951 (2020)
  53. The tubulin mutation database: A resource for the cytoskeleton community. Pham CL, Morrissette NS. Cytoskeleton (Hoboken) 76 186-191 (2019)
  54. Virtual and biophysical screening targeting the γ-tubulin complex--a new target for the inhibition of microtubule nucleation. Cala O, Remy MH, Guillet V, Merdes A, Mourey L, Milon A, Czaplicki G. PLoS One 8 e63908 (2013)
  55. A structure-based design of new C2- and C13-substituted taxanes: tubulin binding affinities and extended quantitative structure-activity relationships using comparative binding energy (COMBINE) analysis. Coderch C, Tang Y, Klett J, Zhang SE, Ma YT, Shaorong W, Matesanz R, Pera B, Canales A, Jiménez-Barbero J, Morreale A, Díaz JF, Fang WS, Gago F. Org Biomol Chem 11 3046-3056 (2013)
  56. All tubulins are not alike: Heterodimer dissociation differs among different biological sources. Montecinos-Franjola F, Chaturvedi SK, Schuck P, Sackett DL. J Biol Chem 294 10315-10324 (2019)
  57. Brine shrimp lethality assay 'an effective prescreen': microwave-assisted synthesis, BSL toxicity and 3DQSAR studies-based designing, docking and antitumor evaluation of potent chalcones. Nazir S, Ansari FL, Hussain T, Mazhar K, Muazzam AG, Qasmi ZU, Makhmoor T, Noureen H, Mirza B. Pharm Biol 51 1091-1103 (2013)
  58. Cdk1 and BRCA1 target γ-tubulin to microtubule domains. Hubert T, Vandekerckhove J, Gettemans J. Biochem Biophys Res Commun 414 240-245 (2011)
  59. Relating nucleotide-dependent conformational changes in free tubulin dimers to tubulin assembly. Natarajan K, Mohan J, Senapati S. Biopolymers 99 282-291 (2013)
  60. gammaTub23C interacts genetically with brahma chromatin-remodeling complexes in Drosophila melanogaster. Vázquez M, Cooper MT, Zurita M, Kennison JA. Genetics 180 835-843 (2008)
  61. Cullin 4A and 4B ubiquitin ligases interact with γ-tubulin and induce its polyubiquitination. Thirunavukarasou A, Govindarajalu G, Singh P, Bandi V, Muthu K, Baluchamy S. Mol Cell Biochem 401 219-228 (2015)
  62. Cell cycle-dependent expression of gamma-tubulin in the amicronuclear ciliate Tetrahymena pyriformis. Joachimiak E, Pucciarelli S, Barchetta S, Ballarini P, Kaczanowska J, Miceli C. Protist 158 39-50 (2007)
  63. Letter Human TUBG2 gene is expressed as two splice variant mRNA and involved in cell growth. Ohashi T, Yamamoto T, Yamanashi Y, Ohsugi M. FEBS Lett 590 1053-1063 (2016)
  64. Meiotic spindle: sculpted by severing. Ribbeck K, Mitchison TJ. Curr Biol 16 R923-5 (2006)
  65. Modular assembly of the principal microtubule nucleator γ-TuRC. Würtz M, Zupa E, Atorino ES, Neuner A, Böhler A, Rahadian AS, Vermeulen BJA, Tonon G, Eustermann S, Schiebel E, Pfeffer S. Nat Commun 13 473 (2022)
  66. Molecular modeling of the axial and circumferential elastic moduli of tubulin. Zeiger AS, Layton BE. Biophys J 95 3606-3618 (2008)
  67. Specific coiled-coil interactions contribute to a global model of the structure of the spindle pole body. Zizlsperger N, Keating AE. J Struct Biol 170 246-256 (2010)
  68. Case reports: novel TUBG1 mutations with milder neurodevelopmental presentations. Yuen YTK, Guella I, Roland E, Sargent M, Boelman C. BMC Med Genet 20 95 (2019)
  69. Functional significance may underlie the taxonomic utility of single amino acid substitutions in conserved proteins. Tyler KM, Wagner GK, Wu Q, Huber KT. J Mol Evol 70 395-402 (2010)
  70. Primary cilia in rat mature Müller glia: downregulation of IFT20 expression reduces sonic hedgehog-mediated proliferation and dedifferentiation potential of Müller glia primary cultures. Ferraro S, Gomez-Montalvo AI, Olmos R, Ramirez M, Lamas M. Cell Mol Neurobiol 35 533-542 (2015)
  71. Reconstitution of the recombinant human γ-tubulin ring complex. Würtz M, Böhler A, Neuner A, Zupa E, Rohland L, Liu P, Vermeulen BJA, Pfeffer S, Eustermann S, Schiebel E. Open Biol 11 200325 (2021)
  72. Molecular modeling reveals binding interface of γ-tubulin with GCP4 and interactions with noscapinoids. Suri C, Joshi HC, Naik PK. Proteins 83 827-843 (2015)
  73. γ-Tubulin localizes at actin-based membrane protrusions and inhibits formation of stress-fibers. Hubert T, Perdu S, Vandekerckhove J, Gettemans J. Biochem Biophys Res Commun 408 248-252 (2011)
  74. Macroscopic simulations of microtubule dynamics predict two steady-state processes governing array morphology. Mourão M, Schnell S, Shaw SL. Comput Biol Chem 35 269-281 (2011)
  75. NMR secondary structure and interactions of recombinant human MOZART1 protein, a component of the gamma-tubulin complex. Cukier CD, Tourdes A, El-Mazouni D, Guillet V, Nomme J, Mourey L, Milon A, Merdes A, Gervais V. Protein Sci 26 2240-2248 (2017)
  76. Structural variations in protein superfamilies: actin and tubulin. Wade RH, Garcia-Saez I, Kozielski F. Mol Biotechnol 42 49-60 (2009)
  77. Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution. Akıl C, Ali S, Tran LT, Gaillard J, Li W, Hayashida K, Hirose M, Kato T, Oshima A, Fujishima K, Blanchoin L, Narita A, Robinson RC. Sci Adv 8 eabm2225 (2022)
  78. Concerted millisecond timescale dynamics in the intrinsically disordered carboxyl terminus of γ-tubulin induced by mutation of a conserved tyrosine residue. Harris J, Shadrina M, Oliver C, Vogel J, Mittermaier A. Protein Sci 27 531-545 (2018)
  79. Multiple phosphorylation sites on γ-tubulin are essential and contribute to the biogenesis of basal bodies in Tetrahymena. Joachimiak E, Jerka-Dziadosz M, Krzemień-Ojak Ł, Wacławek E, Jedynak K, Urbanska P, Brutkowski W, Sas-Nowosielska H, Fabczak H, Gaertig J, Wloga D. J Cell Physiol 233 8648-8665 (2018)
  80. Probing the Catalytic Mechanism and Inhibition of SAMHD1 Using the Differential Properties of Rp- and Sp-dNTPαS Diastereomers. Morris ER, Kunzelmann S, Caswell SJ, Purkiss AG, Kelly G, Taylor IA. Biochemistry 60 1682-1698 (2021)
  81. Side chain electrostatic interactions and pH-dependent expansion of the intrinsically disordered, highly acidic carboxyl-terminus of γ-tubulin. Payliss BJ, Vogel J, Mittermaier AK. Protein Sci 28 1095-1105 (2019)
  82. Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT. Gestaut D, Zhao Y, Park J, Ma B, Leitner A, Collier M, Pintilie G, Roh SH, Chiu W, Frydman J. Cell 185 4770-4787.e20 (2022)
  83. Mammalian orthoreovirus core protein μ2 reorganizes host microtubule-organizing center components. Eichwald C, Ackermann M, Fraefel C. Virology 549 13-24 (2020)
  84. Reconstitution of microtubule into GTP-responsive nanocapsules. Uchida N, Kohata A, Okuro K, Cardellini A, Lionello C, Zizzi EA, Deriu MA, Pavan GM, Tomishige M, Hikima T, Aida T. Nat Commun 13 5424 (2022)
  85. A nucleotide binding-independent role for γ-tubulin in microtubule capping and cell division. Berman AY, Wieczorek M, Aher A, Olinares PDB, Chait BT, Kapoor TM. J Cell Biol 222 e202204102 (2023)
  86. Catching the Conformational Wave: Measuring the Working Strokes of Protofilaments as They Curl Outward from Disassembling Microtubule Tips. Murray LE, Kim H, Rice LM, Asbury CL. Methods Mol Biol 2478 653-676 (2022)
  87. The tubulin database: Linking mutations, modifications, ligands and local interactions. Abbaali I, Truong D, Day SD, Mushayeed F, Ganesh B, Haro-Ramirez N, Isles J, Nag H, Pham C, Shah P, Tomar I, Manel-Romero C, Morrissette NS. PLoS One 18 e0295279 (2023)