1yxv Citations

Crystal structures of proto-oncogene kinase Pim1: a target of aberrant somatic hypermutations in diffuse large cell lymphoma.

J Mol Biol 348 183-93 (2005)
Related entries: 1ywv, 1yxs, 1yxt, 1yxu, 1yxx

Cited: 80 times
EuropePMC logo PMID: 15808862

Abstract

Pim1, a serine/threonine kinase, is involved in several biological functions including cell survival, proliferation, and differentiation. While pim1 has been shown to be involved in several hematopoietic cancers, it was also recently identified as a target of aberrant somatic hypermutation in diffuse large cell lymphoma (DLCL), the most common form of non-Hodgkin's lymphoma. The crystal structures of Pim1 in apo form and bound with AMPPNP have been solved and several unique features of Pim1 were identified, including the presence of an extra beta-hairpin in the N-terminal lobe and an unusual conformation of the hinge connecting the two lobes of the enzyme. While the apo Pim1 structure is nearly identical with that reported recently, the structure of AMPPNP bound to Pim1 is significantly different. Pim1 is unique among protein kinases due to the presence of a proline residue at position 123 that precludes the formation of the canonical second hydrogen bond between the hinge backbone and the adenine moiety of ATP. One crystal structure reported here shows that changing P123 to methionine, a common residue that offers the backbone hydrogen bond to ATP, does not restore the ATP binding pocket of Pim1 to that of a typical kinase. These unique structural features in Pim1 result in novel binding modes of AMP and a known kinase inhibitor scaffold, as shown by co-crystallography. In addition, the kinase activities of five Pim1 mutants identified in DLCL patients have been determined. In each case, the observed effects on kinase activity are consistent with the predicted consequences of the mutation on the Pim1 structure. Finally, 70 co-crystal structures of low molecular mass, low-affinity compounds with Pim1 have been solved in order to identify novel chemical classes as potential Pim1 inhibitors. Based on the structural information, opportunities for optimization of one specific example are discussed.

Articles - 1yxv mentioned but not cited (2)

  1. Identification of the first inhibitor of the GBP1:PIM1 interaction. Implications for the development of a new class of anticancer agents against paclitaxel resistant cancer cells. Andreoli M, Persico M, Kumar A, Orteca N, Kumar V, Pepe A, Mahalingam S, Alegria AE, Petrella L, Sevciunaite L, Camperchioli A, Mariani M, Di Dato A, Novellino E, Scambia G, Malhotra SV, Ferlini C, Fattorusso C. J Med Chem 57 7916-7932 (2014)
  2. Potential Stereoselective Binding of Trans-(±)-Kusunokinin and Cis-(±)-Kusunokinin Isomers to CSF1R. Chompunud Na Ayudhya C, Graidist P, Tipmanee V. Molecules 27 4194 (2022)


Reviews citing this publication (21)

  1. Fuel feeds function: energy metabolism and the T-cell response. Fox CJ, Hammerman PS, Thompson CB. Nat Rev Immunol 5 844-852 (2005)
  2. Vemurafenib: the first drug approved for BRAF-mutant cancer. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P. Nat Rev Drug Discov 11 873-886 (2012)
  3. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nawijn MC, Alendar A, Berns A. Nat Rev Cancer 11 23-34 (2011)
  4. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. Haematologica 95 1004-1015 (2010)
  5. The PIM family of serine/threonine kinases in cancer. Narlik-Grassow M, Blanco-Aparicio C, Carnero A. Med Res Rev 34 136-159 (2014)
  6. Potential roles for the PIM1 kinase in human cancer - a molecular and therapeutic appraisal. Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly MB, Salto-Tellez M. Eur J Cancer 44 2144-2151 (2008)
  7. Fragment-based screening using X-ray crystallography and NMR spectroscopy. Jhoti H, Cleasby A, Verdonk M, Williams G. Curr Opin Chem Biol 11 485-493 (2007)
  8. Why target PIM1 for cancer diagnosis and treatment? Magnuson NS, Wang Z, Ding G, Reeves R. Future Oncol 6 1461-1478 (2010)
  9. PIM1 kinase as a target for cancer therapy. Merkel AL, Meggers E, Ocker M. Expert Opin Investig Drugs 21 425-436 (2012)
  10. The PIM kinases in hematological cancers. Alvarado Y, Giles FJ, Swords RT. Expert Rev Hematol 5 81-96 (2012)
  11. Pim kinase inhibitors: a survey of the patent literature. Morwick T. Expert Opin Ther Pat 20 193-212 (2010)
  12. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression. Li YY, Mukaida N. World J Gastroenterol 20 9392-9404 (2014)
  13. Targeting Pim kinases for cancer treatment: opportunities and challenges. Le BT, Kumarasiri M, Adams JR, Yu M, Milne R, Sykes MJ, Wang S. Future Med Chem 7 35-53 (2015)
  14. Small molecule inhibitors of PIM1 kinase: July 2009 to February 2013 patent update. Arunesh GM, Shanthi E, Krishna MH, Sooriya Kumar J, Viswanadhan VN. Expert Opin Ther Pat 24 5-17 (2014)
  15. Diffuse large B-cell lymphoma: can genomics improve treatment options for a curable cancer? Amin AD, Peters TL, Li L, Rajan SS, Choudhari R, Puvvada SD, Schatz JH. Cold Spring Harb Mol Case Stud 3 a001719 (2017)
  16. The antiapoptotic RBM5/LUCA-15/H37 gene and its role in apoptosis and human cancer: research update. Maarabouni MM, Williams GT. ScientificWorldJournal 6 1705-1712 (2006)
  17. Insights from Pim1 structure for anti-cancer drug design. Ogawa N, Yuki H, Tanaka A. Expert Opin Drug Discov 7 1177-1192 (2012)
  18. Scaffold-based design of kinase inhibitors for cancer therapy. Zhang C, Bollag G. Curr Opin Genet Dev 20 79-86 (2010)
  19. Approved Small-Molecule ATP-Competitive Kinases Drugs Containing Indole/Azaindole/Oxindole Scaffolds: R&D and Binding Patterns Profiling. Zhang H, He F, Gao G, Lu S, Wei Q, Hu H, Wu Z, Fang M, Wang X. Molecules 28 943 (2023)
  20. Pim Kinases: Important Regulators of Cardiovascular Disease. Nock S, Karim E, Unsworth AJ. Int J Mol Sci 24 11582 (2023)
  21. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Nitulescu GM, Stancov G, Seremet OC, Nitulescu G, Mihai DP, Duta-Bratu CG, Barbuceanu SF, Olaru OT. Molecules 28 5359 (2023)

Articles citing this publication (57)

  1. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS, Fong D, Zhu YL, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim SH, Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G. Proc Natl Acad Sci U S A 105 3041-3046 (2008)
  2. Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V. Blood 114 4150-4157 (2009)
  3. Genomic characterization of primary central nervous system lymphoma. Fukumura K, Kawazu M, Kojima S, Ueno T, Sai E, Soda M, Ueda H, Yasuda T, Yamaguchi H, Lee J, Shishido-Hara Y, Sasaki A, Shirahata M, Mishima K, Ichimura K, Mukasa A, Narita Y, Saito N, Aburatani H, Nishikawa R, Nagane M, Mano H. Acta Neuropathol 131 865-875 (2016)
  4. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. Xia Z, Knaak C, Ma J, Beharry ZM, McInnes C, Wang W, Kraft AS, Smith CD. J Med Chem 52 74-86 (2009)
  5. Identification and structure-activity relationships of substituted pyridones as inhibitors of Pim-1 kinase. Cheney IW, Yan S, Appleby T, Walker H, Vo T, Yao N, Hamatake R, Hong Z, Wu JZ. Bioorg Med Chem Lett 17 1679-1683 (2007)
  6. Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65. Nihira K, Ando Y, Yamaguchi T, Kagami Y, Miki Y, Yoshida K. Cell Death Differ 17 689-698 (2010)
  7. PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Gu JJ, Wang Z, Reeves R, Magnuson NS. Oncogene 28 4261-4271 (2009)
  8. New principles in medicinal organometallic chemistry. Schatzschneider U, Metzler-Nolte N. Angew Chem Int Ed Engl 45 1504-1507 (2006)
  9. Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Artis DR, Lin JJ, Zhang C, Wang W, Mehra U, Perreault M, Erbe D, Krupka HI, England BP, Arnold J, Plotnikov AN, Marimuthu A, Nguyen H, Will S, Signaevsky M, Kral J, Cantwell J, Settachatgull C, Yan DS, Fong D, Oh A, Shi S, Womack P, Powell B, Habets G, West BL, Zhang KY, Milburn MV, Vlasuk GP, Hirth KP, Nolop K, Bollag G, Ibrahim PN, Tobin JF. Proc Natl Acad Sci U S A 106 262-267 (2009)
  10. Novel benzylidene-thiazolidine-2,4-diones inhibit Pim protein kinase activity and induce cell cycle arrest in leukemia and prostate cancer cells. Beharry Z, Zemskova M, Mahajan S, Zhang F, Ma J, Xia Z, Lilly M, Smith CD, Kraft AS. Mol Cancer Ther 8 1473-1483 (2009)
  11. Pim-1 kinase as cancer drug target: An update. Tursynbay Y, Zhang J, Li Z, Tokay T, Zhumadilov Z, Wu D, Xie Y. Biomed Rep 4 140-146 (2016)
  12. Crystal structure of the PIM2 kinase in complex with an organoruthenium inhibitor. Bullock AN, Russo S, Amos A, Pagano N, Bregman H, Debreczeni JE, Lee WH, von Delft F, Meggers E, Knapp S. PLoS One 4 e7112 (2009)
  13. Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor. Zhang C, Ibrahim PN, Zhang J, Burton EA, Habets G, Zhang Y, Powell B, West BL, Matusow B, Tsang G, Shellooe R, Carias H, Nguyen H, Marimuthu A, Zhang KY, Oh A, Bremer R, Hurt CR, Artis DR, Wu G, Nespi M, Spevak W, Lin P, Nolop K, Hirth P, Tesch GH, Bollag G. Proc Natl Acad Sci U S A 110 5689-5694 (2013)
  14. PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Kim W, Youn H, Kwon T, Kang J, Kim E, Son B, Yang HJ, Jung Y, Youn B. Pharmacol Res 70 90-101 (2013)
  15. The role of PIM1 in the ibrutinib-resistant ABC subtype of diffuse large B-cell lymphoma. Kuo HP, Ezell SA, Hsieh S, Schweighofer KJ, Cheung LW, Wu S, Apatira M, Sirisawad M, Eckert K, Liang Y, Hsu J, Chen CT, Beaupre D, Chang BY. Am J Cancer Res 6 2489-2501 (2016)
  16. Candidate tumor suppressor LUCA-15/RBM5/H37 modulates expression of apoptosis and cell cycle genes. Mourtada-Maarabouni M, Keen J, Clark J, Cooper CS, Williams GT. Exp Cell Res 312 1745-1752 (2006)
  17. Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate. Harrington L, Cheley S, Alexander LT, Knapp S, Bayley H. Proc Natl Acad Sci U S A 110 E4417-26 (2013)
  18. Isoxazolo[3,4-b]quinoline-3,4(1H,9H)-diones as unique, potent and selective inhibitors for Pim-1 and Pim-2 kinases: chemistry, biological activities, and molecular modeling. Tong Y, Stewart KD, Thomas S, Przytulinska M, Johnson EF, Klinghofer V, Leverson J, McCall O, Soni NB, Luo Y, Lin NH, Sowin TJ, Giranda VL, Penning TD. Bioorg Med Chem Lett 18 5206-5208 (2008)
  19. Blocking UV-induced eIF2alpha phosphorylation with small molecule inhibitors of GCN2. Robert F, Williams C, Yan Y, Donohue E, Cencic R, Burley SK, Pelletier J. Chem Biol Drug Des 74 57-67 (2009)
  20. Regulation of Skp2 levels by the Pim-1 protein kinase. Cen B, Mahajan S, Zemskova M, Beharry Z, Lin YW, Cramer SD, Lilly MB, Kraft AS. J Biol Chem 285 29128-29137 (2010)
  21. Structure-based design of 3-aryl-6-amino-triazolo[4,3-b]pyridazine inhibitors of Pim-1 kinase. Grey R, Pierce AC, Bemis GW, Jacobs MD, Moody CS, Jajoo R, Mohal N, Green J. Bioorg Med Chem Lett 19 3019-3022 (2009)
  22. Comprehensive identification of proteins in Hodgkin lymphoma-derived Reed-Sternberg cells by LC-MS/MS. Wallentine JC, Kim KK, Seiler CE, Vaughn CP, Crockett DK, Tripp SR, Elenitoba-Johnson KS, Lim MS. Lab Invest 87 1113-1124 (2007)
  23. Crystal structure of checkpoint kinase 2 in complex with NSC 109555, a potent and selective inhibitor. Lountos GT, Tropea JE, Zhang D, Jobson AG, Pommier Y, Shoemaker RH, Waugh DS. Protein Sci 18 92-100 (2009)
  24. PIM-1 kinase expression in adipocytic neoplasms: diagnostic and biological implications. Nga ME, Swe NN, Chen KT, Shen L, Lilly MB, Chan SP, Salto-Tellez M, Das K. Int J Exp Pathol 91 34-43 (2010)
  25. Loss of PIM2 enhances the anti-proliferative effect of the pan-PIM kinase inhibitor AZD1208 in non-Hodgkin lymphomas. Kreuz S, Holmes KB, Tooze RM, Lefevre PF. Mol Cancer 14 205 (2015)
  26. A novel Pim-1 kinase inhibitor targeting residues that bind the substrate peptide. Tsuganezawa K, Watanabe H, Parker L, Yuki H, Taruya S, Nakagawa Y, Kamei D, Mori M, Ogawa N, Tomabechi Y, Handa N, Honma T, Yokoyama S, Kojima H, Okabe T, Nagano T, Tanaka A. J Mol Biol 417 240-252 (2012)
  27. Mutational profile of primary breast diffuse large B-cell lymphoma. Franco F, González-Rincón J, Lavernia J, García JF, Martín P, Bellas C, Piris MA, Pedrosa L, Miramón J, Gómez-Codina J, Rodríguez-Abreu D, Machado I, Illueca C, Alfaro J, Provencio M, Sánchez-Beato M. Oncotarget 8 102888-102897 (2017)
  28. Initial testing (stage 1) of SGI-1776, a PIM1 kinase inhibitor, by the pediatric preclinical testing program. Batra V, Maris JM, Kang MH, Reynolds CP, Houghton PJ, Alexander D, Kolb EA, Gorlick R, Keir ST, Carol H, Lock R, Billups CA, Smith MA. Pediatr Blood Cancer 59 749-752 (2012)
  29. A review on PIM kinases in tumors. Arrouchi H, Lakhlili W, Ibrahimi A. Bioinformation 15 40-45 (2019)
  30. Discovery and optimization of pyrrolo[1,2-a]pyrazinones leads to novel and selective inhibitors of PIM kinases. Casuscelli F, Ardini E, Avanzi N, Casale E, Cervi G, D'Anello M, Donati D, Faiardi D, Ferguson RD, Fogliatto G, Galvani A, Marsiglio A, Mirizzi DG, Montemartini M, Orrenius C, Papeo G, Piutti C, Salom B, Felder ER. Bioorg Med Chem 21 7364-7380 (2013)
  31. Identification of PIM1 substrates reveals a role for NDRG1 phosphorylation in prostate cancer cellular migration and invasion. Ledet RJ, Ruff SE, Wang Y, Nayak S, Schneider JA, Ueberheide B, Logan SK, Garabedian MJ. Commun Biol 4 36 (2021)
  32. PIM-1 kinase: a potential biomarker of triple-negative breast cancer. Chen J, Tang G. Onco Targets Ther 12 6267-6273 (2019)
  33. Selective bisubstrate inhibitors with sub-nanomolar affinity for protein kinase Pim-1. Ekambaram R, Enkvist E, Vaasa A, Kasari M, Raidaru G, Knapp S, Uri A. ChemMedChem 8 909-913 (2013)
  34. Structure-based design of low-nanomolar PIM kinase inhibitors. Ishchenko A, Zhang L, Le Brazidec JY, Fan J, Chong JH, Hingway A, Raditsis A, Singh L, Elenbaas B, Hong VS, Marcotte D, Silvian L, Enyedy I, Chao J. Bioorg Med Chem Lett 25 474-480 (2015)
  35. Accelerated evolution of PAK3- and PIM1-like kinase gene families in the zebra finch, Taeniopygia guttata. Kong L, Lovell PV, Heger A, Mello CV, Ponting CP. Mol Biol Evol 27 1923-1934 (2010)
  36. Control of translational activation by PIM kinase in activated B-cell diffuse large B-cell lymphoma confers sensitivity to inhibition by PIM447. Peters TL, Li L, Tula-Sanchez AA, Pongtornpipat P, Schatz JH. Oncotarget 7 63362-63373 (2016)
  37. Indolyl-pyrrolone as a new scaffold for Pim1 inhibitors. Olla S, Manetti F, Crespan E, Maga G, Angelucci A, Schenone S, Bologna M, Botta M. Bioorg Med Chem Lett 19 1512-1516 (2009)
  38. PIM kinase inhibitor, AZD1208, inhibits protein translation and induces autophagy in primary chronic lymphocytic leukemia cells. Cervantes-Gomez F, Stellrecht CM, Ayres ML, Keating MJ, Wierda WG, Gandhi V. Oncotarget 10 2793-2809 (2019)
  39. Structural analysis of PIM1 kinase complexes with ATP-competitive inhibitors. Bogusz J, Zrubek K, Rembacz KP, Grudnik P, Golik P, Romanowska M, Wladyka B, Dubin G. Sci Rep 7 13399 (2017)
  40. Understanding PIM-1 kinase inhibitor interactions with free energy simulation. Wang X, Sun Z. Phys Chem Chem Phys 21 7544-7558 (2019)
  41. Crystal structure of pim1 kinase in complex with a pyrido[4,3-d]pyrimidine derivative suggests a unique binding mode. Lee SJ, Han BG, Cho JW, Choi JS, Lee J, Song HJ, Koh JS, Lee BI. PLoS One 8 e70358 (2013)
  42. Design and Synthesis of Potent and Selective PIM Kinase Inhibitors by Targeting Unique Structure of ATP-Binding Pocket. Nakano H, Hasegawa T, Kojima H, Okabe T, Nagano T. ACS Med Chem Lett 8 504-509 (2017)
  43. Identification of quinones as novel PIM1 kinase inhibitors. Schroeder RL, Goyal N, Bratton M, Townley I, Pham NA, Tram P, Stone T, Geathers J, Nguyen K, Sridhar J. Bioorg Med Chem Lett 26 3187-3191 (2016)
  44. Discovery of N-substituted 7-azaindoles as PIM1 kinase inhibitors - Part I. Barberis C, Moorcroft N, Arendt C, Levit M, Moreno-Mazza S, Batchelor J, Mechin I, Majid T. Bioorg Med Chem Lett 27 4730-4734 (2017)
  45. A genetic predictive model for precision treatment of diffuse large B-cell lymphoma with early progression. Ma J, Yan Z, Zhang J, Zhou W, Yao Z, Wang H, Chu J, Yao S, Zhao S, Zhang P, Xu Y, Xia Q, Ma J, Wei B, Yang S, Liu K, Guo Y, Liu Y. Biomark Res 8 33 (2020)
  46. Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes. Poston RG, Murphy L, Rejepova A, Ghaninejad-Esfahani M, Segales J, Mulligan K, Saha RN. J Biol Chem 295 6120-6137 (2020)
  47. Highly Antiproliferative Latonduine and Indolo[2,3-c]quinoline Derivatives: Complex Formation with Copper(II) Markedly Changes the Kinase Inhibitory Profile. Wittmann C, Bacher F, Enyedy EA, Dömötör O, Spengler G, Madejski C, Reynisson J, Arion VB. J Med Chem 65 2238-2261 (2022)
  48. Non-ATP-Mimetic Organometallic Protein Kinase Inhibitor. Wähler K, Kräling K, Steuber H, Meggers E. ChemistryOpen 2 180-185 (2013)
  49. T-18, a stemonamide synthetic intermediate inhibits Pim kinase activity and induces cell apoptosis, acting as a potent anticancer drug. Wang Z, Li XM, Shang K, Zhang P, Wang CF, Xin YH, Zhou L, Li YY. Oncol Rep 29 1245-1251 (2013)
  50. Discovery and identification of PIM-1 kinase inhibitors through a hybrid screening approach. Shao M, Yuan Y, Yu K, Lei K, Zhu G, Chen L, Xiang M. Mol Divers 18 335-344 (2014)
  51. New Quinoxaline Derivatives as Dual Pim-1/2 Kinase Inhibitors: Design, Synthesis and Biological Evaluation. Oyallon B, Brachet-Botineau M, Logé C, Robert T, Bach S, Ibrahim S, Raoul W, Croix C, Berthelot P, Guillon J, Pinaud N, Gouilleux F, Viaud-Massuard MC, Denevault-Sabourin C. Molecules 26 867 (2021)
  52. Genomic Mutation Landscape of Primary Breast Lymphoma: Next-Generation Sequencing Analysis. Zhang W, Huang C, Liu J, Wu L, Zhang H, Wu X, Wang L, Li W, Liu W, Liu L. Dis Markers 2022 6441139 (2022)
  53. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining. Zhang T, Jiang S, Li T, Liu Y, Zhang Y. ACS Omega 8 25165-25184 (2023)
  54. PIM1 controls GBP1 activity to limit self-damage and to guard against pathogen infection. Fisch D, Pfleiderer MM, Anastasakou E, Mackie GM, Wendt F, Liu X, Clough B, Lara-Reyna S, Encheva V, Snijders AP, Bando H, Yamamoto M, Beggs AD, Mercer J, Shenoy AR, Wollscheid B, Maslowski KM, Galej WP, Frickel EM. Science 382 eadg2253 (2023)
  55. A PIM-1 Kinase Inhibitor Docking Optimization Study Based on Logistic Regression Models and Interaction Analysis. Ion GND, Nitulescu GM, Mihai DP. Life (Basel) 13 1635 (2023)
  56. Discovery of N-substituted 7-azaindoles as Pan-PIM kinase inhibitors - Lead series identification - Part II. Barberis C, Moorcroft N, Pribish J, Tserlin E, Gross A, Czekaj M, Barrague M, Erdman P, Majid T, Batchelor J, Levit M, Hebert A, Shen L, Moreno-Mazza S, Wang A. Bioorg Med Chem Lett 27 4735-4740 (2017)
  57. Structure and Function of a Class III Metal-Independent Lanthipeptide Synthetase. Hernandez Garcia A, Nair SK. ACS Cent Sci 9 1944-1956 (2023)