1yru Citations

Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin.

EMBO J 24 3190-201 (2005)
Related entries: 1yrt, 1zot, 2col

Cited: 92 times
EuropePMC logo PMID: 16138079

Abstract

CyaA is crucial for colonization by Bordetella pertussis, the etiologic agent of whooping cough. Here we report crystal structures of the adenylyl cyclase domain (ACD) of CyaA with the C-terminal domain of calmodulin. Four discrete regions of CyaA bind calcium-loaded calmodulin with a large buried contact surface. Of those, a tryptophan residue (W242) at an alpha-helix of CyaA makes extensive contacts with the calcium-induced, hydrophobic pocket of calmodulin. Mutagenic analyses show that all four regions of CyaA contribute to calmodulin binding and the calmodulin-induced conformational change of CyaA is crucial for catalytic activation. A crystal structure of CyaA-calmodulin with adefovir diphosphate, the metabolite of an approved antiviral drug, reveals the location of catalytic site of CyaA and how adefovir diphosphate tightly binds CyaA. The ACD of CyaA shares a similar structure and mechanism of activation with anthrax edema factor (EF). However, the interactions of CyaA with calmodulin completely diverge from those of EF. This provides molecular details of how two structurally homologous bacterial toxins evolved divergently to bind calmodulin, an evolutionarily conserved calcium sensor.

Articles - 1yru mentioned but not cited (4)

  1. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. Guo Q, Shen Y, Lee YS, Gibbs CS, Mrksich M, Tang WJ. EMBO J 24 3190-3201 (2005)
  2. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. Omelchenko MV, Galperin MY, Wolf YI, Koonin EV. Biol Direct 5 31 (2010)
  3. Calmodulin fishing with a structurally disordered bait triggers CyaA catalysis. O'Brien DP, Durand D, Voegele A, Hourdel V, Davi M, Chamot-Rooke J, Vachette P, Brier S, Ladant D, Chenal A. PLoS Biol 15 e2004486 (2017)
  4. Crystallization of the class IV adenylyl cyclase from Yersinia pestis. Smith N, Kim SK, Reddy PT, Gallagher DT. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 200-204 (2006)


Reviews citing this publication (27)

  1. RTX proteins: a highly diverse family secreted by a common mechanism. Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. FEMS Microbiol Rev 34 1076-1112 (2010)
  2. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Battesti A, Bouveret E. Methods 58 325-334 (2012)
  3. Molecular details of cAMP generation in mammalian cells: a tale of two systems. Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. J Mol Biol 362 623-639 (2006)
  4. Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Carbonetti NH. Future Microbiol 5 455-469 (2010)
  5. Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Vojtova J, Kamanova J, Sebo P. Curr Opin Microbiol 9 69-75 (2006)
  6. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Gancedo JM. Biol Rev Camb Philos Soc 88 645-668 (2013)
  7. The adenylyl cyclase activity of anthrax edema factor. Tang WJ, Guo Q. Mol Aspects Med 30 423-430 (2009)
  8. Survey of the year 2005 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 19 478-534 (2006)
  9. Virulence factor secretion and translocation by Bordetella species. Shrivastava R, Miller JF. Curr Opin Microbiol 12 88-93 (2009)
  10. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Novak J, Cerny O, Osickova A, Linhartova I, Masin J, Bumba L, Sebo P, Osicka R. Toxins (Basel) 9 E300 (2017)
  11. Targeting bacterial toxins. Ivarsson ME, Leroux JC, Castagner B. Angew Chem Int Ed Engl 51 4024-4045 (2012)
  12. Tau as a potential therapeutic target for ischemic stroke. Chen X, Jiang H. Aging (Albany NY) 11 12827-12843 (2019)
  13. Towards selective inhibitors of adenylyl cyclase toxin from Bordetella pertussis. Seifert R, Dove S. Trends Microbiol 20 343-351 (2012)
  14. Inhibitors of Bacillus anthracis edema factor. Seifert R, Dove S. Pharmacol Ther 140 200-212 (2013)
  15. The Modes of Action of MARTX Toxin Effector Domains. Kim BS. Toxins (Basel) 10 E507 (2018)
  16. Structural Basis of the Pore-Forming Toxin/Membrane Interaction. Li Y, Li Y, Mengist HM, Shi C, Zhang C, Wang B, Li T, Huang Y, Xu Y, Jin T. Toxins (Basel) 13 128 (2021)
  17. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Göttle M, Dove S, Seifert R. Toxins (Basel) 4 505-535 (2012)
  18. Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Antigen-Delivery and Immunotherapy. Chenal A, Ladant D. Toxins (Basel) 10 E302 (2018)
  19. Understanding the Mechanism of Translocation of Adenylate Cyclase Toxin across Biological Membranes. Ostolaza H, Martín C, González-Bullón D, Uribe KB, Etxaniz A. Toxins (Basel) 9 E295 (2017)
  20. Membrane Activity and Channel Formation of the Adenylate Cyclase Toxin (CyaA) of Bordetella pertussis in Lipid Bilayer Membranes. Knapp O, Benz R. Toxins (Basel) 12 E169 (2020)
  21. Block V RTX Domain of Adenylate Cyclase from Bordetella pertussis: A Conformationally Dynamic Scaffold for Protein Engineering Applications. Bulutoglu B, Banta S. Toxins (Basel) 9 E289 (2017)
  22. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Filipi K, Rahman WU, Osickova A, Osicka R. Microorganisms 10 518 (2022)
  23. Molecular Modeling of the Catalytic Domain of CyaA Deepened the Knowledge of Its Functional Dynamics. Malliavin TE. Toxins (Basel) 9 E199 (2017)
  24. Bacterial Nucleotidyl Cyclases Activated by Calmodulin or Actin in Host Cells: Enzyme Specificities and Cytotoxicity Mechanisms Identified to Date. Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L. Int J Mol Sci 23 6743 (2022)
  25. Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes. Ladant D. Toxins (Basel) 13 83 (2021)
  26. Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. Pitard I, Malliavin TE. Toxins (Basel) 11 E369 (2019)
  27. Story of Pore-Forming Proteins from Deadly Disease-Causing Agents to Modern Applications with Evolutionary Significance. Gupta LK, Molla J, Prabhu AA. Mol Biotechnol (2023)

Articles citing this publication (61)

  1. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Uttenweiler A, Schwarz H, Neumann H, Mayer A. Mol Biol Cell 18 166-175 (2007)
  2. Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Gan N, Zhen X, Liu Y, Xu X, He C, Qiu J, Liu Y, Fujimoto GM, Nakayasu ES, Zhou B, Zhao L, Puvar K, Das C, Ouyang S, Luo ZQ. Nature 572 387-391 (2019)
  3. Cytidylyl and uridylyl cyclase activity of bacillus anthracis edema factor and Bordetella pertussis CyaA. Göttle M, Dove S, Kees F, Schlossmann J, Geduhn J, König B, Shen Y, Tang WJ, Kaever V, Seifert R. Biochemistry 49 5494-5503 (2010)
  4. Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor. Laine E, Goncalves C, Karst JC, Lesnard A, Rault S, Tang WJ, Malliavin TE, Ladant D, Blondel A. Proc Natl Acad Sci U S A 107 11277-11282 (2010)
  5. Vibrio vulnificus biotype 3 multifunctional autoprocessing RTX toxin is an adenylate cyclase toxin essential for virulence in mice. Ziolo KJ, Jeong HG, Kwak JS, Yang S, Lavker RM, Satchell KJ. Infect Immun 82 2148-2157 (2014)
  6. Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. Subrini O, Sotomayor-Pérez AC, Hessel A, Spiaczka-Karst J, Selwa E, Sapay N, Veneziano R, Pansieri J, Chopineau J, Ladant D, Chenal A. J Biol Chem 288 32585-32598 (2013)
  7. Molecular analysis of the interaction of Bordetella pertussis adenylyl cyclase with fluorescent nucleotides. Göttle M, Dove S, Steindel P, Shen Y, Tang WJ, Geduhn J, König B, Seifert R. Mol Pharmacol 72 526-535 (2007)
  8. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Masin J, Osickova A, Sukova A, Fiser R, Halada P, Bumba L, Linhartova I, Osicka R, Sebo P. Sci Rep 6 29137 (2016)
  9. Order-disorder-order transitions mediate the activation of cholera toxin. Ampapathi RS, Creath AL, Lou DI, Craft JW, Blanke SR, Legge GB. J Mol Biol 377 748-760 (2008)
  10. Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach. Valeyev NV, Bates DG, Heslop-Harrison P, Postlethwaite I, Kotov NV, Kotov NV. BMC Syst Biol 2 48 (2008)
  11. Structure of the class IV adenylyl cyclase reveals a novel fold. Gallagher DT, Smith NN, Kim SK, Heroux A, Robinson H, Reddy PT. J Mol Biol 362 114-122 (2006)
  12. Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently. Guo Q, Jureller JE, Warren JT, Solomaha E, Florián J, Tang WJ. J Biol Chem 283 23836-23845 (2008)
  13. Bis-halogen-anthraniloyl-substituted nucleoside 5'-triphosphates as potent and selective inhibitors of Bordetella pertussis adenylyl cyclase toxin. Geduhn J, Dove S, Shen Y, Tang WJ, König B, Seifert R. J Pharmacol Exp Ther 336 104-115 (2011)
  14. Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Holubova J, Kamanova J, Jelinek J, Tomala J, Masin J, Kosova M, Stanek O, Bumba L, Michalek J, Kovar M, Sebo P. Infect Immun 80 1181-1192 (2012)
  15. The Bordetella adenylate cyclase repeat-in-toxin (RTX) domain is immunodominant and elicits neutralizing antibodies. Wang X, Gray MC, Hewlett EL, Maynard JA. J Biol Chem 290 3576-3591 (2015)
  16. Bordetella adenylate cyclase toxin interacts with filamentous haemagglutinin to inhibit biofilm formation in vitro. Hoffman C, Eby J, Gray M, Heath Damron F, Melvin J, Cotter P, Hewlett E. Mol Microbiol 103 214-228 (2017)
  17. Active-site structure of class IV adenylyl cyclase and transphyletic mechanism. Gallagher DT, Kim SK, Robinson H, Reddy PT. J Mol Biol 405 787-803 (2011)
  18. Bordetella Adenylate Cyclase Toxin Inhibits Monocyte-to-Macrophage Transition and Dedifferentiates Human Alveolar Macrophages into Monocyte-like Cells. Ahmad JN, Holubova J, Benada O, Kofronova O, Stehlik L, Vasakova M, Sebo P. mBio 10 e01743-19 (2019)
  19. A 1.3-A structure of zinc-bound N-terminal domain of calmodulin elucidates potential early ion-binding step. Warren JT, Guo Q, Tang WJ. J Mol Biol 374 517-527 (2007)
  20. Bisamidate Prodrugs of 2-Substituted 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as Selective Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis. Česnek M, Jansa P, Šmídková M, Mertlíková-Kaiserová H, Dračínský M, Brust TF, Pávek P, Trejtnar F, Watts VJ, Janeba Z. ChemMedChem 10 1351-1364 (2015)
  21. Structural and mechanistic basis for protein glutamylation by the kinase fold. Osinski A, Black MH, Pawłowski K, Chen Z, Li Y, Tagliabracci VS. Mol Cell 81 4527-4539.e8 (2021)
  22. A general strategy to characterize calmodulin-calcium complexes involved in CaM-target recognition: DAPK and EGFR calmodulin binding domains interact with different calmodulin-calcium complexes. Dagher R, Peng S, Gioria S, Fève M, Zeniou M, Zimmermann M, Pigault C, Haiech J, Kilhoffer MC. Biochim Biophys Acta 1813 1059-1067 (2011)
  23. Amidate prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine as inhibitors of adenylate cyclase toxin from Bordetella pertussis. Šmídková M, Dvoráková A, Tloust'ová E, Česnek M, Janeba Z, Mertlíková-Kaiserová H. Antimicrob Agents Chemother 58 664-671 (2014)
  24. Allosteric activation of Bordetella pertussis adenylyl cyclase by calmodulin: molecular dynamics and mutagenesis studies. Selwa E, Davi M, Chenal A, Sotomayor-Pérez AC, Ladant D, Malliavin TE. J Biol Chem 289 21131-21141 (2014)
  25. Crystal-structure and biochemical characterization of recombinant human calcyphosine delineates a novel EF-hand-containing protein family. Dong H, Li X, Lou Z, Xu X, Su D, Zhou X, Zhou W, Bartlam M, Rao Z. J Mol Biol 383 455-464 (2008)
  26. Functional and structural studies on different forms of the adenylate cyclase toxin of Bordetella pertussis. Cheung GY, Kelly SM, Jess TJ, Prior S, Price NC, Parton R, Coote JG. Microb Pathog 46 36-42 (2009)
  27. Bacillus anthracis edema toxin activates nuclear glycogen synthase kinase 3beta. Larabee JL, DeGiusti K, Regens JL, Ballard JD. Infect Immun 76 4895-4904 (2008)
  28. Bacterial pore-forming toxins. Ulhuq FR, Mariano G. Microbiology (Reading) 168 (2022)
  29. Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Selwa E, Laine E, Malliavin TE. Proteins 80 1028-1040 (2012)
  30. Inhibition of the adenylyl cyclase toxin, edema factor, from Bacillus anthracis by a series of 18 mono- and bis-(M)ANT-substituted nucleoside 5'-triphosphates. Taha H, Dove S, Geduhn J, König B, Shen Y, Tang WJ, Seifert R. Naunyn Schmiedebergs Arch Pharmacol 385 57-68 (2012)
  31. A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Alphonse N, Wanford JJ, Voak AA, Gay J, Venkhaya S, Burroughs O, Mathew S, Lee T, Evans SL, Zhao W, Frowde K, Alrehaili A, Dickenson RE, Munk M, Panina S, Mahmood IF, Llorian M, Stanifer ML, Boulant S, Berchtold MW, Bergeron JRC, Wack A, Lesser CF, Odendall C. Cell 185 2354-2369.e17 (2022)
  32. Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor. Lübker C, Seifert R. PLoS One 10 e0124017 (2015)
  33. Residues 529 to 549 participate in membrane penetration and pore-forming activity of the Bordetella adenylate cyclase toxin. Roderova J, Osickova A, Sukova A, Mikusova G, Fiser R, Sebo P, Osicka R, Masin J. Sci Rep 9 5758 (2019)
  34. Temperature-accelerated molecular dynamics gives insights into globular conformations sampled in the free state of the AC catalytic domain. Selwa E, Huynh T, Ciccotti G, Maragliano L, Malliavin TE. Proteins 82 2483-2496 (2014)
  35. The extreme C terminus of the Pseudomonas aeruginosa effector ExoY is crucial for binding to its eukaryotic activator, F-actin. Belyy A, Santecchia I, Renault L, Bourigault B, Ladant D, Mechold U. J Biol Chem 293 19785-19796 (2018)
  36. A High-Affinity Calmodulin-Binding Site in the CyaA Toxin Translocation Domain is Essential for Invasion of Eukaryotic Cells. Voegele A, Sadi M, O'Brien DP, Gehan P, Raoux-Barbot D, Davi M, Hoos S, Brûlé S, Raynal B, Weber P, Mechaly A, Haouz A, Rodriguez N, Vachette P, Durand D, Brier S, Ladant D, Chenal A. Adv Sci (Weinh) 8 2003630 (2021)
  37. Membranous adenylyl cyclase 1 activation is regulated by oxidation of N- and C-terminal methionine residues in calmodulin. Lübker C, Urbauer RJ, Moskovitz J, Dove S, Weisemann J, Fedorova M, Urbauer JL, Seifert R. Biochem Pharmacol 93 196-209 (2015)
  38. Design and Synthesis of Fluorescent Acyclic Nucleoside Phosphonates as Potent Inhibitors of Bacterial Adenylate Cyclases. Břehová P, Šmídková M, Skácel J, Dračínský M, Mertlíková-Kaiserová H, Velasquez MP, Watts VJ, Janeba Z. ChemMedChem 11 2534-2546 (2016)
  39. Interaction with adenylate cyclase toxin from Bordetella pertussis affects the metal binding properties of calmodulin. Springer TI, Emerson CC, Johns CW, Finley NL. FEBS Open Bio 7 25-34 (2017)
  40. Mechanism of actin-dependent activation of nucleotidyl cyclase toxins from bacterial human pathogens. Belyy A, Merino F, Mechold U, Raunser S. Nat Commun 12 6628 (2021)
  41. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin. Springer TI, Goebel E, Hariraju D, Finley NL. Biochem Biophys Res Commun 453 43-48 (2014)
  42. Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis. Scanlon K, Skerry C, Carbonetti N. Adv Exp Med Biol 1183 35-51 (2019)
  43. Sensor-response regulator interactions in a cross-regulated signal transduction network. Huynh TN, Chen LL, Stewart V. Microbiology (Reading) 161 1504-1515 (2015)
  44. Pseudomonas aeruginosa exoenzyme Y directly bundles actin filaments. Mancl JM, Suarez C, Liang WG, Kovar DR, Tang WJ. J Biol Chem 295 3506-3517 (2020)
  45. Dynamics and structural changes of calmodulin upon interaction with the antagonist calmidazolium. Léger C, Pitard I, Sadi M, Carvalho N, Brier S, Mechaly A, Raoux-Barbot D, Davi M, Hoos S, Weber P, Vachette P, Durand D, Haouz A, Guijarro JI, Ladant D, Chenal A. BMC Biol 20 176 (2022)
  46. Interactions of Bordetella pertussis adenylyl cyclase toxin CyaA with calmodulin mutants and calmodulin antagonists: comparison with membranous adenylyl cyclase I. Schuler D, Lübker C, Lushington GH, Tang WJ, Shen Y, Richter M, Seifert R. Biochem Pharmacol 83 839-848 (2012)
  47. Differential regulation of actin-activated nucleotidyl cyclase virulence factors by filamentous and globular actin. Raoux-Barbot D, Belyy A, Worpenberg L, Montluc S, Deville C, Henriot V, Velours C, Ladant D, Renault L, Mechold U. PLoS One 13 e0206133 (2018)
  48. Nucleobase Modified Adefovir (PMEA) Analogues as Potent and Selective Inhibitors of Adenylate Cyclases from Bordetella pertussis and Bacillus anthracis. Česnek M, Skácel J, Jansa P, Dračínský M, Šmídková M, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z. ChemMedChem 13 1779-1796 (2018)
  49. The Eukaryotic Host Factor 14-3-3 Inactivates Adenylate Cyclase Toxins of Bordetella bronchiseptica and B. parapertussis, but Not B. pertussis. Fukui-Miyazaki A, Toshima H, Hiramatsu Y, Okada K, Nakamura K, Ishigaki K, Shinzawa N, Abe H, Horiguchi Y. mBio 9 e00628-18 (2018)
  50. Two triphosphate tunnel metalloenzymes from apple exhibit adenylyl cyclase activity. Yuan Y, Liu Z, Wang L, Wang L, Chen S, Niu Y, Zhao X, Liu P, Liu M. Front Plant Sci 13 992488 (2022)
  51. Synthesis of α-Branched Acyclic Nucleoside Phosphonates as Potential Inhibitors of Bacterial Adenylate Cyclases. Frydrych J, Skácel J, Šmídková M, Mertlíková-Kaiserová H, Dračínský M, Gnanasekaran R, Lepšík M, Soto-Velasquez M, Watts VJ, Janeba Z. ChemMedChem 13 199-206 (2018)
  52. Acyclic nucleoside phosphonates with 2-aminothiazole base as inhibitors of bacterial and mammalian adenylate cyclases. Břehová P, Chaloupecká E, Česnek M, Skácel J, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z. Eur J Med Chem 222 113581 (2021)
  53. Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor. Lübker C, Dove S, Tang WJ, Urbauer RJ, Moskovitz J, Urbauer JL, Seifert R. Toxins (Basel) 7 2598-2614 (2015)
  54. Halogen-Dance-Based Synthesis of Phosphonomethoxyethyl (PME) Substituted 2-Aminothiazoles as Potent Inhibitors of Bacterial Adenylate Cyclases. Česnek M, Šafránek M, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Hayes MP, Watts VJ, Janeba Z. ChemMedChem 17 e202100568 (2022)
  55. Site I Inactivation Impacts Calmodulin Calcium Binding and Activation of Bordetella pertussis Adenylate Cyclase Toxin. Johns CW, Finley NL. Toxins (Basel) 9 E389 (2017)
  56. A fortunate journey on uneven grounds. Ullmann A. Annu Rev Microbiol 66 1-24 (2012)
  57. Kinetic regulation of multi-ligand binding proteins. Salakhieva DV, Sadreev II, Chen MZ, Umezawa Y, Evstifeev AI, Welsh GI, Kotov NV. BMC Syst Biol 10 32 (2016)
  58. Revealing how an adenylate cyclase toxin uses bait and switch tactics in its activation. Finley NL. PLoS Biol 16 e2005356 (2018)
  59. A Bacterial Two-Hybrid System for In Vivo Assays of Protein-Protein Interactions and Drug Discovery. Ladant D. Methods Mol Biol 2548 145-167 (2022)
  60. A conserved tryptophan in the acylated segment of RTX toxins controls their β2 integrin-independent cell penetration. Osickova A, Knoblochova S, Bumba L, Man P, Kalaninova Z, Lepesheva A, Jurnecka D, Cizkova M, Biedermannova L, Goldsmith JA, Maynard JA, McLellan JS, Osicka R, Sebo P, Masin J. J Biol Chem 299 104978 (2023)
  61. Functional and structural insights into the multi-step activation and catalytic mechanism of bacterial ExoY nucleotidyl cyclase toxins bound to actin-profilin. Teixeira Nunes M, Retailleau P, Raoux-Barbot D, Comisso M, Missinou AA, Velours C, Plancqueel S, Ladant D, Mechold U, Renault L. PLoS Pathog 19 e1011654 (2023)