1yml Citations

Structural mechanism of oxidative regulation of the phosphatase Cdc25B via an intramolecular disulfide bond.

Biochemistry 44 5307-16 (2005)
Related entries: 1ym9, 1ymd, 1ymk, 1ys0

Cited: 58 times
EuropePMC logo PMID: 15807524

Abstract

Cdc25B phosphatase, an important regulator of the cell cycle, forms an intramolecular disulfide bond in response to oxidation leading to reversible inactivation of phosphatase activity. We have obtained a crystallographic time course revealing the structural rearrangements that occur in the P-loop as the enzyme goes from its apo state, through the sulfenic (Cys-SO(-)) intermediate, to the stable disulfide. We have also obtained the structures of the irreversibly oxidized sulfinic (Cys-SO(2)(-)) and sulfonic (Cys-SO(3)(-)) Cdc25B. The active site P-loop is found in three conformations. In the apoenzyme, the P-loop is in the active conformation. In the sulfenic intermediate, the P-loop partially obstructs the active site cysteine, poised to undergo the conformational changes that accompany disulfide bond formation. In the disulfide form, the P-loop is closed over the active site cysteine, resulting in an enzyme that is unable to bind substrate. The structural changes that occur in the sulfenic intermediate of Cdc25B are distinctly different from those seen in protein tyrosine phosphatase 1B where a five-membered sulfenyl amide ring is generated as the stable end product. This work elucidates the mechanism by which chemistry and structure are coupled in the regulation of Cdc25B by reactive oxygen species.

Reviews - 1yml mentioned but not cited (2)

  1. Sulfenic acid chemistry, detection and cellular lifetime. Gupta V, Carroll KS. Biochim Biophys Acta 1840 847-875 (2014)
  2. Chemical approaches to detect and analyze protein sulfenic acids. Furdui CM, Poole LB. Mass Spectrom Rev 33 126-146 (2014)


Reviews citing this publication (20)

  1. Hydrogen peroxide: a signaling messenger. Stone JR, Yang S. Antioxid Redox Signal 8 243-270 (2006)
  2. Redox redux: revisiting PTPs and the control of cell signaling. Tonks NK. Cell 121 667-670 (2005)
  3. Basic principles and emerging concepts in the redox control of transcription factors. Brigelius-Flohé R, Flohé L. Antioxid Redox Signal 15 2335-2381 (2011)
  4. Mitochondrial dysfunction in cancer. Boland ML, Chourasia AH, Macleod KF. Front Oncol 3 292 (2013)
  5. Protein sulfenic acid formation: from cellular damage to redox regulation. Roos G, Messens J. Free Radic Biol Med 51 314-326 (2011)
  6. Disulfides as redox switches: from molecular mechanisms to functional significance. Wouters MA, Fan SW, Haworth NL. Antioxid Redox Signal 12 53-91 (2010)
  7. Redox characteristics of the eukaryotic cytosol. López-Mirabal HR, Winther JR. Biochim Biophys Acta 1783 629-640 (2008)
  8. Redox Signaling by Reactive Electrophiles and Oxidants. Parvez S, Long MJC, Poganik JR, Aye Y. Chem Rev 118 8798-8888 (2018)
  9. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Antioxid Redox Signal 15 77-97 (2011)
  10. Arsenate reduction: thiol cascade chemistry with convergent evolution. Messens J, Silver S. J Mol Biol 362 1-17 (2006)
  11. Protein tyrosine phosphatases: structure, function, and implication in human disease. Tautz L, Critton DA, Grotegut S. Methods Mol Biol 1053 179-221 (2013)
  12. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Spencer NY, Engelhardt JF. Biochemistry 53 1551-1564 (2014)
  13. Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Bakan A, Lazo JS, Wipf P, Brummond KM, Bahar I. Curr Med Chem 15 2536-2544 (2008)
  14. VHR/DUSP3 phosphatase: structure, function and regulation. Pavic K, Duan G, Köhn M. FEBS J 282 1871-1890 (2015)
  15. Cellular biochemistry methods for investigating protein tyrosine phosphatases. Stanford SM, Ahmed V, Barrios AM, Bottini N. Antioxid Redox Signal 20 2160-2178 (2014)
  16. Thiol redox biochemistry: insights from computer simulations. Zeida A, Guardia CM, Lichtig P, Perissinotti LL, Defelipe LA, Turjanski A, Radi R, Trujillo M, Estrin DA. Biophys Rev 6 27-46 (2014)
  17. Redox regulation of DUBs and its therapeutic implications in cancer. Tyagi A, Haq S, Ramakrishna S. Redox Biol 48 102194 (2021)
  18. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Hobiger K, Friedrich T. Front Pharmacol 6 20 (2015)
  19. The Plant V-ATPase. Seidel T. Front Plant Sci 13 931777 (2022)
  20. Analysis of the oxido-redox status of plasma proteins. Technology advances for clinical applications. Bruschi M, Candiano G, Della Ciana L, Petretto A, Santucci L, Prunotto M, Camilla R, Coppo R, Ghiggeri GM. J Chromatogr B Analyt Technol Biomed Life Sci 879 1338-1344 (2011)

Articles citing this publication (36)

  1. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Kulathu Y, Garcia FJ, Mevissen TE, Busch M, Arnaudo N, Carroll KS, Barford D, Komander D. Nat Commun 4 1569 (2013)
  2. ROS and Oxidative Stress Are Elevated in Mitosis during Asynchronous Cell Cycle Progression and Are Exacerbated by Mitotic Arrest. Patterson JC, Joughin BA, van de Kooij B, Lim DC, Lauffenburger DA, Yaffe MB. Cell Syst 8 163-167.e2 (2019)
  3. Redox regulation of Cdc25B by cell-active quinolinediones. Brisson M, Nguyen T, Wipf P, Joo B, Day BW, Skoko JS, Schreiber EM, Foster C, Bansal P, Lazo JS. Mol Pharmacol 68 1810-1820 (2005)
  4. Crystal structure of the cytoplasmic phosphatase and tensin homolog (PTEN)-like region of Ciona intestinalis voltage-sensing phosphatase provides insight into substrate specificity and redox regulation of the phosphoinositide phosphatase activity. Matsuda M, Takeshita K, Kurokawa T, Sakata S, Suzuki M, Yamashita E, Okamura Y, Nakagawa A. J Biol Chem 286 23368-23377 (2011)
  5. Crystal structure of the human lymphoid tyrosine phosphatase catalytic domain: insights into redox regulation . Tsai SJ, Sen U, Zhao L, Greenleaf WB, Dasgupta J, Fiorillo E, Orrú V, Bottini N, Chen XS. Biochemistry 48 4838-4845 (2009)
  6. Characterization of oxidation end product of plasma albumin 'in vivo'. Musante L, Bruschi M, Candiano G, Petretto A, Dimasi N, Del Boccio P, Urbani A, Rialdi G, Ghiggeri GM. Biochem Biophys Res Commun 349 668-673 (2006)
  7. Modeling of Cdc25B dual specifity protein phosphatase inhibitors: docking of ligands and enzymatic inhibition mechanism. Lavecchia A, Cosconati S, Limongelli V, Novellino E. ChemMedChem 1 540-550 (2006)
  8. Conformational changes in redox pairs of protein structures. Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA. Protein Sci 18 1745-1765 (2009)
  9. Oxidized albumin. The long way of a protein of uncertain function. Bruschi M, Candiano G, Santucci L, Ghiggeri GM. Biochim Biophys Acta 1830 5473-5479 (2013)
  10. Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase. Puhl AA, Gruninger RJ, Greiner R, Janzen TW, Mosimann SC, Selinger LB. Protein Sci 16 1368-1378 (2007)
  11. Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases. Chen YY, Huang YF, Khoo KH, Meng TC. Methods 42 243-249 (2007)
  12. Redox Modulation of PTEN Phosphatase Activity by Hydrogen Peroxide and Bisperoxidovanadium Complexes. Lee CU, Hahne G, Hanske J, Bange T, Bier D, Rademacher C, Hennig S, Grossmann TN. Angew Chem Int Ed Engl 54 13796-13800 (2015)
  13. Discovery and characterization of novel imidazopyridine derivative CHEQ-2 as a potent CDC25 inhibitor and promising anticancer drug candidate. Song Y, Lin X, Kang D, Li X, Zhan P, Liu X, Zhang Q. Eur J Med Chem 82 293-307 (2014)
  14. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families. Defelipe LA, Lanzarotti E, Gauto D, Marti MA, Turjanski AG. PLoS Comput Biol 11 e1004051 (2015)
  15. Unique GMP-binding site in Mycobacterium tuberculosis guanosine monophosphate kinase. Hible G, Christova P, Renault L, Seclaman E, Thompson A, Girard E, Munier-Lehmann H, Cherfils J. Proteins 62 489-500 (2006)
  16. Crystal structure of the Geobacillus stearothermophilus carboxylesterase Est55 and its activation of prodrug CPT-11. Liu P, Ewis HE, Tai PC, Lu CD, Weber IT. J Mol Biol 367 212-223 (2007)
  17. Structural characterization of the As/Sb reductase LmACR2 from Leishmania major. Mukhopadhyay R, Bisacchi D, Zhou Y, Armirotti A, Bordo D. J Mol Biol 386 1229-1239 (2009)
  18. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death. Bana E, Sibille E, Valente S, Cerella C, Chaimbault P, Kirsch G, Dicato M, Diederich M, Bagrel D. Mol Carcinog 54 229-241 (2015)
  19. Dual-Specificity Phosphatase CDC25A/B Inhibitor Identified from a Focused Library with Nonelectrophilic Core Structure. Tsuchiya A, Hirai G, Koyama Y, Oonuma K, Otani Y, Osada H, Sodeoka M. ACS Med Chem Lett 3 294-298 (2012)
  20. A novel structural mechanism for redox regulation of uridine phosphorylase 2 activity. Roosild TP, Castronovo S, Villoso A, Ziemba A, Pizzorno G. J Struct Biol 176 229-237 (2011)
  21. The activation of electrophile, nucleophile and leaving group during the reaction catalysed by pI258 arsenate reductase. Roos G, Loverix S, Brosens E, Van Belle K, Wyns L, Geerlings P, Messens J. Chembiochem 7 981-989 (2006)
  22. Interplay between ion binding and catalysis in the thioredoxin-coupled arsenate reductase family. Roos G, Buts L, Van Belle K, Brosens E, Geerlings P, Loris R, Wyns L, Messens J. J Mol Biol 360 826-838 (2006)
  23. Effect of ionic strength and oxidation on the P-loop conformation of the protein tyrosine phosphatase-like phytase, PhyAsr. Gruninger RJ, Selinger LB, Mosimann SC. FEBS J 275 3783-3792 (2008)
  24. Next-Generation Cell-Active Inhibitors of the Undrugged Oncogenic PTP4A3 Phosphatase. Lazo JS, Blanco IK, Tasker NR, Rastelli EJ, Burnett JC, Garrott SR, Hart DJ, McCloud RL, Hsu KL, Wipf P, Sharlow ER. J Pharmacol Exp Ther 371 652-662 (2019)
  25. Light-Mediated Sulfenic Acid Generation from Photocaged Cysteine Sulfoxide. Pan J, Carroll KS. Org Lett 17 6014-6017 (2015)
  26. Regulation of Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) by oxidation/reduction at Cys-359. Baba H, Sueyoshi N, Shigeri Y, Ishida A, Kameshita I. Arch Biochem Biophys 526 9-15 (2012)
  27. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation. Machado LESF, Shen TL, Page R, Peti W. J Biol Chem 292 8786-8796 (2017)
  28. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations. Ge Y, van der Kamp M, Malaisree M, Liu D, Liu Y, Mulholland AJ. J Comput Aided Mol Des 31 995-1007 (2017)
  29. Mechanism of thienopyridone and iminothienopyridinedione inhibition of protein phosphatases. Zhang Z, Kozlov G, Chen YS, Gehring K. Medchemcomm 10 791-799 (2019)
  30. Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins. Nayak J, Gastonguay AJ, Talipov MR, Vakeel P, Span EA, Kalous KS, Kutty RG, Jensen DR, Pokkuluri PR, Sem DS, Rathore R, Ramchandran R. BMC Biochem 15 27 (2014)
  31. Temperature dependence of binding and catalysis for the Cdc25B phosphatase. Sohn J, Rudolph J. Biophys Chem 125 549-555 (2007)
  32. Structure of the catalytic phosphatase domain of MTMR8: implications for dimerization, membrane association and reversible oxidation. Yoo KY, Son JY, Lee JU, Shin W, Im DW, Kim SJ, Ryu SE, Heo YS. Acta Crystallogr D Biol Crystallogr 71 1528-1539 (2015)
  33. Evidence for a Morin type intramolecular cyclization of an alkene with a phenylsulfenic acid group in neutral aqueous solution. Keerthi K, Sivaramakrishnan S, Gates KS. Chem Res Toxicol 21 1368-1374 (2008)
  34. CDC25A-inhibitory RE derivatives bind to pocket adjacent to the catalytic site. Tsuchiya A, Asanuma M, Hirai G, Oonuma K, Muddassar M, Nishizawa E, Koyama Y, Otani Y, Zhang KY, Sodeoka M. Mol Biosyst 9 1026-1034 (2013)
  35. In Vitro Activity Assays to Quantitatively Assess the Endogenous Reversible Oxidation State of Protein Tyrosine Phosphatases in Cells. Londhe AD, Rizvi SHM, Boivin B. Curr Protoc Chem Biol 12 e84 (2020)
  36. Measuring the Reversible Oxidation of Protein Tyrosine Phosphatases Using a Modified Cysteinyl-Labeling Assay. Londhe AD, Boivin B. Methods Mol Biol 2743 223-237 (2024)