1ydt Citations

Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. Structural implications for selectivity.

J Biol Chem 271 26157-64 (1996)
Related entries: 1cdk, 1ydr, 1yds

Cited: 163 times
EuropePMC logo PMID: 8824261

Abstract

The discovery of several hundred different protein kinases involved in highly diverse cellular signaling pathways is in stark contrast to the much smaller number of known modulators of cell signaling. Of these, the H series protein kinase inhibitors (1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H8) N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89)) are frequently used to block signaling pathways in studies of cellular regulation. To elucidate inhibition mechanisms at atomic resolution and to enable structure-based drug design of potential therapeutic modulators of signaling pathways, we determined the crystal structures of corresponding complexes with the cAPK catalytic subunit. Complexes with H7 and H8 (2.2 A) and with H89 (2.3 A) define the binding mode of the isoquinoline-sulfonamide derivatives in the ATP-binding site while demonstrating effects of ligand-induced structural change. Specific interactions between the enzyme and the inhibitors include the isoquinoline ring nitrogen ligating to backbone amide of Val-123 and an inhibitor side chain amide bonding to the backbone carbonyl of Glu-170. The conservation of the ATP-binding site of protein kinases allows evaluation of factors governing general selectivity of these inhibitors among kinases. These results should assist efforts in the design of protein kinase inhibitors with specific properties.

Reviews - 1ydt mentioned but not cited (2)

  1. Solution NMR Spectroscopy for the Study of Enzyme Allostery. Lisi GP, Loria JP. Chem. Rev. 116 6323-6369 (2016)
  2. Allostery and binding cooperativity of the catalytic subunit of protein kinase A by NMR spectroscopy and molecular dynamics simulations. Masterson LR, Cembran A, Shi L, Veglia G. Adv Protein Chem Struct Biol 87 363-389 (2012)

Articles - 1ydt mentioned but not cited (10)

  1. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Bikadi Z, Hazai E. J Cheminform 1 15 (2009)
  2. Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit. Leech A, Nath N, McCartney RR, Schmidt MC. Eukaryotic Cell 2 265-273 (2003)
  3. Cardiovascular effects of a novel potent and highly selective azaindole-based inhibitor of Rho-kinase. Kast R, Schirok H, Figueroa-Pérez S, Mittendorf J, Gnoth MJ, Apeler H, Lenz J, Franz JK, Knorr A, Hütter J, Lobell M, Zimmermann K, Münter K, Augstein KH, Ehmke H, Stasch JP. Br. J. Pharmacol. 152 1070-1080 (2007)
  4. Dynamic clustering threshold reduces conformer ensemble size while maintaining a biologically relevant ensemble. Yongye AB, Bender A, Martínez-Mayorga K. J. Comput. Aided Mol. Des. 24 675-686 (2010)
  5. Preference of small molecules for local minimum conformations when binding to proteins. Wang Q, Pang YP. PLoS One 2 e820 (2007)
  6. Uncoupling Catalytic and Binding Functions in the Cyclic AMP-Dependent Protein Kinase A. Kim J, Li G, Walters MA, Taylor SS, Veglia G. Structure 24 353-363 (2016)
  7. Divide-and-conquer strategy for large-scale Eulerian solvent excluded surface. Zhao R, Wang M, Tong Y, Wei GW. Commun Inf Syst 18 299-329 (2018)
  8. ATP-competitive inhibitors modulate the substrate binding cooperativity of a kinase by altering its conformational entropy. Olivieri C, Li GC, Wang Y, V S M, Walker C, Kim J, Camilloni C, De Simone A, Vendruscolo M, Bernlohr DA, Taylor SS, Veglia G. Sci Adv 8 eabo0696 (2022)
  9. Anomalous dispersion analysis of inhibitor flexibility: a case study of the kinase inhibitor H-89. Pflug A, Johnson KA, Engh RA. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 873-877 (2012)
  10. Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking. Li C, Sun J, Palade V. BMC Bioinformatics 21 286 (2020)


Reviews citing this publication (20)

  1. Regulation and functions of Rho-associated kinase. Amano M, Fukata Y, Kaibuchi K. Exp. Cell Res. 261 44-51 (2000)
  2. Role of receptors in Bacillus thuringiensis crystal toxin activity. Pigott CR, Ellar DJ. Microbiol. Mol. Biol. Rev. 71 255-281 (2007)
  3. Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Ma B, Shatsky M, Wolfson HJ, Nussinov R. Protein Sci. 11 184-197 (2002)
  4. The many faces of H89: a review. Lochner A, Moolman JA. Cardiovasc Drug Rev 24 261-274 (2006)
  5. Structural aspects of protein kinase control-role of conformational flexibility. Engh RA, Bossemeyer D. Pharmacol. Ther. 93 99-111 (2002)
  6. Protein tyrosine kinases: structure, substrate specificity, and drug discovery. al-Obeidi FA, Wu JJ, Lam KS. Biopolymers 47 197-223 (1998)
  7. H-series protein kinase inhibitors and potential clinical applications. Ono-Saito N, Niki I, Hidaka H. Pharmacol. Ther. 82 123-131 (1999)
  8. Structures of staurosporine bound to CDK2 and cAPK--new tools for structure-based design of protein kinase inhibitors. Toledo LM, Lydon NB. Structure 5 1551-1556 (1997)
  9. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft. Taylor SS, Radzio-Andzelm E, Madhusudan, Cheng X, Ten Eyck L, Narayana N. Pharmacol. Ther. 82 133-141 (1999)
  10. Sulfotransferase structural biology and inhibitor discovery. Rath VL, Verdugo D, Hemmerich S. Drug Discov. Today 9 1003-1011 (2004)
  11. Evaluation of kinase inhibitor selectivity by chemical proteomics. Daub H, Godl K, Brehmer D, Klebl B, Müller G. Assay Drug Dev Technol 2 215-224 (2004)
  12. Protein kinase inhibition: natural and synthetic variations on a theme. Taylor SS, Radzio-Andzelm E. Curr Opin Chem Biol 1 219-226 (1997)
  13. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention. Engh RA, Bossemeyer D. Adv. Enzyme Regul. 41 121-149 (2001)
  14. Protein Kinase Inhibitor Peptide as a Tool to Specifically Inhibit Protein Kinase A. Liu C, Ke P, Zhang J, Zhang X, Chen X. Front Physiol 11 574030 (2020)
  15. Cardiac cAMP: production, hydrolysis, modulation and detection. Boularan C, Gales C. Front Pharmacol 6 203 (2015)
  16. cAMP/PKA-mediated regulation of erythropoiesis. Boer AK, Drayer AL, Vellenga E. Leuk. Lymphoma 44 1893-1901 (2003)
  17. Conformational diversity of catalytic cores of protein kinases. Sowadski JM, Epstein LF, Lankiewicz L, Karlsson R. Pharmacol. Ther. 82 157-164 (1999)
  18. Side-effects of protein kinase inhibitors on ion channels. Son YK, Park H, Firth AL, Park WS. J. Biosci. 38 937-949 (2013)
  19. Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Seok SH. Life (Basel) 11 957 (2021)
  20. [Development of protein kinase inhibitors and their applications for chemical biology]. Hagiwara M. Nippon Yakurigaku Zasshi 132 22-25 (2008)

Articles citing this publication (131)

  1. The atomic structure of protein-protein recognition sites. Lo Conte L, Chothia C, Janin J. J. Mol. Biol. 285 2177-2198 (1999)
  2. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK, Hubbard SR, Schlessinger J. Science 276 955-960 (1997)
  3. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Kuijl C, Savage ND, Marsman M, Tuin AW, Janssen L, Egan DA, Ketema M, van den Nieuwendijk R, van den Eeden SJ, Geluk A, Poot A, van der Marel G, Beijersbergen RL, Overkleeft H, Ottenhoff TH, Neefjes J. Nature 450 725-730 (2007)
  4. Protein flexibility in ligand docking and virtual screening to protein kinases. Cavasotto CN, Abagyan RA. J. Mol. Biol. 337 209-225 (2004)
  5. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Zhang X, Candas M, Griko NB, Taussig R, Bulla LA. Proc. Natl. Acad. Sci. U.S.A. 103 9897-9902 (2006)
  6. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. Frödin M, Antal TL, Dümmler BA, Jensen CJ, Deak M, Gammeltoft S, Biondi RM. EMBO J. 21 5396-5407 (2002)
  7. Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signaling in vivo. Drogen F, O'Rourke SM, Stucke VM, Jaquenoud M, Neiman AM, Peter M. Curr. Biol. 10 630-639 (2000)
  8. Protein kinase A in complex with Rho-kinase inhibitors Y-27632, Fasudil, and H-1152P: structural basis of selectivity. Breitenlechner C, Gassel M, Hidaka H, Kinzel V, Huber R, Engh RA, Bossemeyer D. Structure 11 1595-1607 (2003)
  9. Staurosporine-induced conformational changes of cAMP-dependent protein kinase catalytic subunit explain inhibitory potential. Prade L, Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D. Structure 5 1627-1637 (1997)
  10. Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure. Akamine P, Madhusudan, Wu J, Xuong NH, Ten Eyck LF, Taylor SS. J. Mol. Biol. 327 159-171 (2003)
  11. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells. Salvador LM, Park Y, Cottom J, Maizels ET, Jones JC, Schillace RV, Carr DW, Cheung P, Allis CD, Jameson JL, Hunzicker-Dunn M. J Biol Chem 276 40146-40155 (2001)
  12. A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility. Narayana N, Cox S, Nguyen-huu X, Ten Eyck LF, Taylor SS. Structure 5 921-935 (1997)
  13. Follicle-stimulating hormone activates extracellular signal-regulated kinase but not extracellular signal-regulated kinase kinase through a 100-kDa phosphotyrosine phosphatase. Cottom J, Salvador LM, Maizels ET, Reierstad S, Park Y, Carr DW, Davare MA, Hell JW, Palmer SS, Dent P, Kawakatsu H, Ogata M, Hunzicker-Dunn M. J. Biol. Chem. 278 7167-7179 (2003)
  14. Kinase inhibitors and the case for CH...O hydrogen bonds in protein-ligand binding. Pierce AC, Sandretto KL, Bemis GW. Proteins 49 567-576 (2002)
  15. The H89 cAMP-dependent protein kinase inhibitor blocks Plasmodium falciparum development in infected erythrocytes. Syin C, Parzy D, Traincard F, Boccaccio I, Joshi MB, Lin DT, Yang XM, Assemat K, Doerig C, Langsley G. Eur. J. Biochem. 268 4842-4849 (2001)
  16. Acute signaling by the LH receptor is independent of protein kinase C activation. Salvador LM, Maizels E, Hales DB, Miyamoto E, Yamamoto H, Hunzicker-Dunn M. Endocrinology 143 2986-2994 (2002)
  17. Activation of the mouse histone deacetylase 1 gene by cooperative histone phosphorylation and acetylation. Hauser C, Schuettengruber B, Bartl S, Lagger G, Seiser C. Mol. Cell. Biol. 22 7820-7830 (2002)
  18. ProFace: a server for the analysis of the physicochemical features of protein-protein interfaces. Saha RP, Bahadur RP, Pal A, Mandal S, Chakrabarti P. BMC Struct. Biol. 6 11 (2006)
  19. Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. Xie H, Braha O, Gu LQ, Cheley S, Bayley H. Chem. Biol. 12 109-120 (2005)
  20. cAMP-dependent axon guidance is distinctly regulated by Epac and protein kinase A. Murray AJ, Tucker SJ, Shewan DA. J. Neurosci. 29 15434-15444 (2009)
  21. A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera. Davies TG, Verdonk ML, Graham B, Saalau-Bethell S, Hamlett CC, McHardy T, Collins I, Garrett MD, Workman P, Woodhead SJ, Jhoti H, Barford D. J. Mol. Biol. 367 882-894 (2007)
  22. EP2 receptor signaling pathways regulate classical activation of microglia. Quan Y, Jiang J, Dingledine R. J. Biol. Chem. 288 9293-9302 (2013)
  23. The signal transduction cascade regulating the expression of the gap junction protein connexin43 by beta-adrenoceptors. Salameh A, Krautblatter S, Karl S, Blanke K, Gomez DR, Dhein S, Pfeiffer D, Janousek J. Br. J. Pharmacol. 158 198-208 (2009)
  24. Differential regulation of steroid hormone biosynthesis in R2C and MA-10 Leydig tumor cells: role of SR-B1-mediated selective cholesteryl ester transport. Rao RM, Jo Y, Leers-Sucheta S, Bose HS, Miller WL, Azhar S, Stocco DM. Biol. Reprod. 68 114-121 (2003)
  25. Intracellular distribution of mammalian protein kinase A catalytic subunit altered by conserved Asn2 deamidation. Pepperkok R, Hotz-Wagenblatt A, König N, Girod A, Bossemeyer D, Kinzel V. J. Cell Biol. 148 715-726 (2000)
  26. Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Juhász T, Matta C, Somogyi C, Katona É, Takács R, Soha RF, Szabó IA, Cserháti C, Sződy R, Karácsonyi Z, Bakó E, Gergely P, Zákány R. Cell. Signal. 26 468-482 (2014)
  27. Adenovirus-mediated delivery and expression of a cAMP-dependent protein kinase inhibitor gene to BEAS-2B epithelial cells abolishes the anti-inflammatory effects of rolipram, salbutamol, and prostaglandin E2: a comparison with H-89. Meja KK, Catley MC, Cambridge LM, Barnes PJ, Lum H, Newton R, Giembycz MA. J Pharmacol Exp Ther 309 833-844 (2004)
  28. Design and synthesis of Rho kinase inhibitors (I). Takami A, Iwakubo M, Okada Y, Kawata T, Odai H, Takahashi N, Shindo K, Kimura K, Tagami Y, Miyake M, Fukushima K, Inagaki M, Amano M, Kaibuchi K, Iijima H. Bioorg. Med. Chem. 12 2115-2137 (2004)
  29. Beta-agonists modulate T-cell functions via direct actions on type 1 and type 2 cells. Loza MJ, Foster S, Peters SP, Penn RB. Blood 107 2052-2060 (2006)
  30. NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase. Langer T, Vogtherr M, Elshorst B, Betz M, Schieborr U, Saxena K, Schwalbe H. Chembiochem 5 1508-1516 (2004)
  31. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a novel activator of transient receptor potential vanilloid 1 (TRPV1) channel. Wen H, Östman J, Bubb KJ, Panayiotou C, Priestley JV, Baker MD, Ahluwalia A. J. Biol. Chem. 287 13868-13876 (2012)
  32. Signaling through the neuropeptide GPCR PAC₁ induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor. Emery AC, Eiden LE. FASEB J. 26 3199-3211 (2012)
  33. Small GTP-binding protein Ral is involved in cAMP-mediated release of von Willebrand factor from endothelial cells. Rondaij MG, Sellink E, Gijzen KA, ten Klooster JP, Hordijk PL, van Mourik JA, Voorberg J. Arterioscler. Thromb. Vasc. Biol. 24 1315-1320 (2004)
  34. Identification in human airways smooth muscle cells of the prostanoid receptor and signalling pathway through which PGE2 inhibits the release of GM-CSF. Clarke DL, Belvisi MG, Catley MC, Yacoub MH, Newton R, Giembycz MA. Br. J. Pharmacol. 141 1141-1150 (2004)
  35. Prostanoid receptor expression by human airway smooth muscle cells and regulation of the secretion of granulocyte colony-stimulating factor. Clarke DL, Belvisi MG, Smith SJ, Hardaker E, Yacoub MH, Meja KK, Newton R, Slater DM, Giembycz MA. Am. J. Physiol. Lung Cell Mol. Physiol. 288 L238-50 (2005)
  36. Somatostatin-induced control of cytosolic free calcium in pituitary tumour cells. Petrucci C, Cervia D, Buzzi M, Biondi C, Bagnoli P. Br. J. Pharmacol. 129 471-484 (2000)
  37. Can MM-PBSA calculations predict the specificities of protein kinase inhibitors? Page CS, Bates PA. J Comput Chem 27 1990-2007 (2006)
  38. A conserved deamidation site at Asn 2 in the catalytic subunit of mammalian cAMP-dependent protein kinase detected by capillary LC-MS and tandem mass spectrometry. Jedrzejewski PT, Girod A, Tholey A, König N, Thullner S, Kinzel V, Bossemeyer D. Protein Sci. 7 457-469 (1998)
  39. Trafficking and phosphorylation dynamics of AQP4 in histamine-treated human gastric cells. Carmosino M, Procino G, Tamma G, Mannucci R, Svelto M, Valenti G. Biol. Cell 99 25-36 (2007)
  40. Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Grace PM, Ramos KM, Rodgers KM, Wang X, Hutchinson MR, Lewis MT, Morgan KN, Kroll JL, Taylor FR, Strand KA, Zhang Y, Berkelhammer D, Huey MG, Greene LI, Cochran TA, Yin H, Barth DS, Johnson KW, Rice KC, Maier SF, Watkins LR. Neuroscience 280 299-317 (2014)
  41. Carbenoxolone inhibits junctional transfer and upregulates Connexin43 expression by a protein kinase A-dependent pathway. Sagar GD, Larson DM. J. Cell. Biochem. 98 1543-1551 (2006)
  42. Mutants of protein kinase A that mimic the ATP-binding site of protein kinase B (AKT). Gassel M, Breitenlechner CB, Rüger P, Jucknischke U, Schneider T, Huber R, Bossemeyer D, Engh RA. J. Mol. Biol. 329 1021-1034 (2003)
  43. Direct inhibition of a PKA inhibitor, H-89 on KV channels in rabbit coronary arterial smooth muscle cells. Son YK, Park WS, Kim SJ, Earm YE, Kim N, Youm JB, Warda M, Warda M, Kim E, Han J. Biochem. Biophys. Res. Commun. 341 931-937 (2006)
  44. Lysophosphatidic acid stimulates cAMP accumulation and cAMP response element-binding protein phosphorylation in immortalized hippocampal progenitor cells. Rhee HJ, Nam JS, Sun Y, Kim MJ, Choi HK, Han DH, Kim NH, Huh SO. Neuroreport 17 523-526 (2006)
  45. Analysis of inhibition by H89 of UCP1 gene expression and thermogenesis indicates protein kinase A mediation of beta(3)-adrenergic signalling rather than beta(3)-adrenoceptor antagonism by H89. Fredriksson JM, Thonberg H, Ohlson KB, Ohba K, Cannon B, Nedergaard J. Biochim. Biophys. Acta 1538 206-217 (2001)
  46. Gain-of-function mutations in transient receptor potential C6 (TRPC6) activate extracellular signal-regulated kinases 1/2 (ERK1/2). Chiluiza D, Krishna S, Schumacher VA, Schlöndorff J. J. Biol. Chem. 288 18407-18420 (2013)
  47. High affinity targets of protein kinase inhibitors have similar residues at the positions energetically important for binding. Sheinerman FB, Giraud E, Laoui A. J. Mol. Biol. 352 1134-1156 (2005)
  48. The protein kinase C inhibitor bisindolyl maleimide 2 binds with reversed orientations to different conformations of protein kinase A. Gassel M, Breitenlechner CB, König N, Huber R, Engh RA, Bossemeyer D. J. Biol. Chem. 279 23679-23690 (2004)
  49. Involvement of cAMP and protein kinase A in conidial differentiation by Erysiphe graminis f. sp. hordei. Hall AA, Bindslev L, Rouster J, Rasmussen SW, Oliver RP, Gurr SJ. Mol. Plant Microbe Interact. 12 960-968 (1999)
  50. Role of cAMP-dependent pathway in eosinophil apoptosis and survival. Chang HS, Jeon KW, Kim YH, Chung IY, Park CS. Cell. Immunol. 203 29-38 (2000)
  51. Structural analysis of protein kinase A mutants with Rho-kinase inhibitor specificity. Bonn S, Herrero S, Breitenlechner CB, Erlbruch A, Lehmann W, Engh RA, Gassel M, Bossemeyer D. J Biol Chem 281 24818-24830 (2006)
  52. The protein kinase A inhibitor, H-89, directly inhibits KATP and Kir channels in rabbit coronary arterial smooth muscle cells. Sun Park W, Kyoung Son Y, Kim N, Boum Youm J, Joo H, Warda M, Warda M, Ko JH, Earm YE, Han J. Biochem. Biophys. Res. Commun. 340 1104-1110 (2006)
  53. A gold nanoparticles colorimetric assay for label-free detection of protein kinase activity based on phosphorylation protection against exopeptidase cleavage. Zhou J, Xu X, Liu X, Li H, Nie Z, Qing M, Huang Y, Yao S. Biosens Bioelectron 53 295-300 (2014)
  54. Cell specific dopamine modulation of the transient potassium current in the pyloric network by the canonical D1 receptor signal transduction cascade. Zhang H, Rodgers EW, Krenz WD, Clark MC, Baro DJ. J. Neurophysiol. 104 873-884 (2010)
  55. Pituitary adenylate cyclase-activating polypeptide (PACAP-27) enhances tyrosine hydroxylase activity in the nucleus accumbens of the rat. Moser A, Scholz J, Gänsle A. Neuropeptides 33 492-497 (1999)
  56. A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato. Li J, Li Z, Tang L, Yang Y, Zouine M, Bouzayen M. J. Exp. Bot. 63 427-439 (2012)
  57. Cyclic AMP-independent relaxation mediated by beta3-adrenoceptors on guinea pig gastrointestine. Horinouchi T, Koike K. Eur. J. Pharmacol. 442 137-146 (2002)
  58. Discovery of trans-3,4'-bispyridinylethylenes as potent and novel inhibitors of protein kinase B (PKB/Akt) for the treatment of cancer: Synthesis and biological evaluation. Li Q, Li T, Zhu GD, Gong J, Claibone A, Dalton C, Luo Y, Johnson EF, Shi Y, Liu X, Klinghofer V, Bauch JL, Marsh KC, Bouska JJ, Arries S, De Jong R, Oltersdorf T, Stoll VS, Jakob CG, Rosenberg SH, Giranda VL. Bioorg. Med. Chem. Lett. 16 1679-1685 (2006)
  59. Linking phenotype to kinase: identification of a novel benzoxaborole hinge-binding motif for kinase inhibition and development of high-potency rho kinase inhibitors. Akama T, Dong C, Virtucio C, Sullivan D, Zhou Y, Zhang YK, Rock F, Freund Y, Liu L, Bu W, Wu A, Fan XQ, Jarnagin K. J Pharmacol Exp Ther 347 615-625 (2013)
  60. A Whole Proteome Inventory of Background Photocrosslinker Binding. Kleiner P, Heydenreuter W, Stahl M, Korotkov VS, Sieber SA. Angew. Chem. Int. Ed. Engl. 56 1396-1401 (2017)
  61. Crystallography-independent determination of ligand binding modes. Orts J, Tuma J, Reese M, Grimm SK, Monecke P, Bartoschek S, Schiffer A, Wendt KU, Griesinger C, Carlomagno T. Angew. Chem. Int. Ed. Engl. 47 7736-7740 (2008)
  62. Interpretation of BMP signaling in early Xenopus development. Simeoni I, Gurdon JB. Dev. Biol. 308 82-92 (2007)
  63. MC1R expression in HaCaT keratinocytes inhibits UVA-induced ROS production via NADPH oxidase- and cAMP-dependent mechanisms. Henri P, Beaumel S, Guezennec A, Poumès C, Stoebner PE, Stasia MJ, Guesnet J, Martinez J, Meunier L. J. Cell. Physiol. 227 2578-2585 (2012)
  64. NF-κB enhances hypoxia-driven T-cell immunosuppression via upregulation of adenosine A(2A) receptors. Bruzzese L, Fromonot J, By Y, Durand-Gorde JM, Condo J, Kipson N, Guieu R, Fenouillet E, Ruf J. Cell. Signal. 26 1060-1067 (2014)
  65. Structure-based design of isoquinoline-5-sulfonamide inhibitors of protein kinase B. Collins I, Caldwell J, Fonseca T, Donald A, Bavetsias V, Hunter LJ, Garrett MD, Rowlands MG, Aherne GW, Davies TG, Berdini V, Woodhead SJ, Davis D, Seavers LC, Wyatt PG, Workman P, McDonald E. Bioorg. Med. Chem. 14 1255-1273 (2006)
  66. The basal transcription machinery as a target for cancer therapy. Villicaña C, Cruz G, Zurita M. Cancer Cell Int. 14 18 (2014)
  67. (1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: a novel class of potent MSK-1-inhibitors. Bamford MJ, Alberti MJ, Bailey N, Davies S, Dean DK, Gaiba A, Garland S, Harling JD, Jung DK, Panchal TA, Parr CA, Steadman JG, Takle AK, Townsend JT, Wilson DM, Witherington J. Bioorg. Med. Chem. Lett. 15 3402-3406 (2005)
  68. Efficient inclusion of receptor flexibility in grid-based protein-ligand docking. Leis S, Zacharias M. J Comput Chem 32 3433-3439 (2011)
  69. Epac, not PKA catalytic subunit, is required for 3T3-L1 preadipocyte differentiation. Ji Z, Mei FC, Cheng X. Front Biosci (Elite Ed) 2 392-398 (2010)
  70. The protein kinase A catalytic subunit Cbeta2: molecular characterization and distribution of the splice variant. Thullner S, Gesellchen F, Wiemann S, Pyerin W, Kinzel V, Bossemeyer D. Biochem. J. 351 123-132 (2000)
  71. E-ring 8-isoprostanes are agonists at EP2- and EP4-prostanoid receptors on human airway smooth muscle cells and regulate the release of colony-stimulating factors by activating cAMP-dependent protein kinase. Clarke DL, Belvisi MG, Hardaker E, Newton R, Giembycz MA. Mol Pharmacol 67 383-393 (2005)
  72. Diversity of bisubstrate binding modes of adenosine analogue-oligoarginine conjugates in protein kinase a and implications for protein substrate interactions. Pflug A, Rogozina J, Lavogina D, Enkvist E, Uri A, Engh RA, Bossemeyer D. J. Mol. Biol. 403 66-77 (2010)
  73. cAMP-binding site of PKA as a molecular target of bisabolangelone against melanocyte-specific hyperpigmented disorder. Roh E, Yun CY, Young Yun J, Park D, Doo Kim N, Yeon Hwang B, Jung SH, Park SK, Kim YB, Han SB, Kim Y. J. Invest. Dermatol. 133 1072-1079 (2013)
  74. cGMP-Dependent Protein Kinase Inhibitors in Health and Disease. Wolfertstetter S, Huettner JP, Schlossmann J. Pharmaceuticals (Basel) 6 269-286 (2013)
  75. A novel mechanism of cell growth regulation by Cell Cycle and Apoptosis Regulatory Protein (CARP)-1. Jiang Y, Puliyappadamba VT, Zhang L, Wu W, Wali A, Yaffe MB, Fontana JA, Rishi AK. J Mol Signal 5 7 (2010)
  76. Molecular cloning and characterization of two new isoforms of the protein kinase A catalytic subunit from the human parasite Leishmania. Siman-Tov MM, Ivens AC, Jaffe CL. Gene 288 65-75 (2002)
  77. A DNA-based electrochemical strategy for label-free monitoring the activity and inhibition of protein kinase. Xu X, Nie Z, Chen J, Fu Y, Li W, Shen Q, Yao S. Chem. Commun. (Camb.) 6946-6948 (2009)
  78. Enzymatic activity of CaMKII is not required for its interaction with the glutamate receptor subunit GluN2B. Barcomb K, Coultrap SJ, Bayer KU. Mol. Pharmacol. 84 834-843 (2013)
  79. cAMP-dependent protein kinase (PKA) complexes probed by complementary differential scanning fluorimetry and ion mobility-mass spectrometry. Byrne DP, Vonderach M, Ferries S, Brownridge PJ, Eyers CE, Eyers PA. Biochem. J. 473 3159-3175 (2016)
  80. Experimental and computational active site mapping as a starting point to fragment-based lead discovery. Behnen J, Köster H, Neudert G, Craan T, Heine A, Klebe G. ChemMedChem 7 248-261 (2012)
  81. Interplay between nitric oxide and vasoactive intestinal polypeptide in the pig gastric fundus smooth muscle. Dick JM, Lefebvre RA. Eur. J. Pharmacol. 397 389-397 (2000)
  82. Resistin induces lipolysis and suppresses adiponectin secretion in cultured human visceral adipose tissue. Chen N, Zhou L, Zhang Z, Xu J, Wan Z, Qin L. Regul. Pept. 194-195 49-54 (2014)
  83. Differential regulation of two distinct voltage-dependent sodium currents by group III metabotropic glutamate receptor activation in insect pacemaker neurons. Lavialle-Defaix C, Gautier H, Defaix A, Lapied B, Grolleau F. J. Neurophysiol. 96 2437-2450 (2006)
  84. Identification of SRC as a potent drug target for asthma, using an integrative approach of protein interactome analysis and in silico drug discovery. Randhawa V, Bagler G. OMICS 16 513-526 (2012)
  85. Molecular scaffold-based design and comparison of combinatorial libraries focused on the ATP-binding site of protein kinases. Stahura FL, Xue L, Godden JW, Bajorath J. J. Mol. Graph. Model. 17 1-9, 51-2 (1999)
  86. Signaling pathways in ascidian oocyte maturation: the roles of cAMP/Epac, intracellular calcium levels, and calmodulin kinase in regulating GVBD. Lambert CC. Mol. Reprod. Dev. 78 726-733 (2011)
  87. Characterization of protein kinase A phosphorylation: multi-technique approach to phosphate mapping. Shen J, Smith RA, Stoll VS, Edalji R, Jakob C, Walter K, Gramling E, Dorwin S, Bartley D, Gunasekera A, Yang J, Holzman T, Johnson RW. Anal. Biochem. 324 204-218 (2004)
  88. Evaluation of broad spectrum protein kinase inhibitors to probe the architecture of the malarial cyclin dependent protein kinase Pfmrk. Woodard CL, Keenan SM, Gerena L, Welsh WJ, Geyer JA, Waters NC. Bioorg. Med. Chem. Lett. 17 4961-4966 (2007)
  89. Microfluidic bead-based sensing platform for monitoring kinase activity. Lee SH, Rhee HW, van Noort D, Lee HJ, Park HH, Shin IS, Hong JI, Park TH. Biosens Bioelectron 57 1-9 (2014)
  90. p38β Mitogen-Activated Protein Kinase Signaling Mediates Exenatide-Stimulated Microglial β-Endorphin Expression. Wu HY, Mao XF, Fan H, Wang YX. Mol Pharmacol 91 451-463 (2017)
  91. Antimalarial activity of novel 4-cyano-3-methylisoquinoline inhibitors against Plasmodium falciparum: design, synthesis and biological evaluation. Buskes MJ, Harvey KL, Richards BJ, Kalhor R, Christoff RM, Gardhi CK, Littler DR, Cope ED, Prinz B, Weiss GE, O'Brien NJ, Crabb BS, Deady LW, Gilson PR, Abbott BM. Org. Biomol. Chem. 14 4617-4639 (2016)
  92. Design and synthesis of inositolphosphoglycan putative insulin mediators. López-Prados J, Cuevas F, Reichardt NC, de Paz JL, Morales EQ, Martín-Lomas M. Org. Biomol. Chem. 3 764-786 (2005)
  93. Enzyme kinetics and distinct modulation of the protein kinase N family of kinases by lipid activators and small molecule inhibitors. Falk MD, Liu W, Bolaños B, Unsal-Kacmaz K, Klippel A, Grant S, Brooun A, Timofeevski S. Biosci. Rep. 34 (2014)
  94. H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulphonamide) induces autophagy independently of protein kinase A inhibition. Inoue H, Hase K, Segawa A, Takita T. Eur. J. Pharmacol. 714 170-177 (2013)
  95. Mechanism of H-8 inhibition of cyclin-dependent kinase 9: study using inhibitor-immobilized matrices. Shima D, Yugami M, Tatsuno M, Wada T, Yamaguchi Y, Handa H. Genes Cells 8 215-223 (2003)
  96. Michellamine alkaloids inhibit protein kinase C. White EL, Chao WR, Ross LJ, Borhani DW, Hobbs PD, Upender V, Dawson MI. Arch. Biochem. Biophys. 365 25-30 (1999)
  97. Transducin-like enhancer of split-6 (TLE6) is a substrate of protein kinase A activity during mouse oocyte maturation. Duncan FE, Padilla-Banks E, Bernhardt ML, Ord TS, Jefferson WN, Moss SB, Williams CJ. Biol. Reprod. 90 63 (2014)
  98. A Survey of Barley PIP Aquaporin Ionic Conductance Reveals Ca2+-Sensitive HvPIP2;8 Na+ and K+ Conductance. Tran STH, Horie T, Imran S, Qiu J, McGaughey S, Byrt CS, Tyerman SD, Katsuhara M. Int J Mol Sci 21 E7135 (2020)
  99. H89 Treatment Reduces Intestinal Inflammation and Candida albicans Overgrowth in Mice. Dumortier C, Charlet R, Bettaieb A, Jawhara S. Microorganisms 8 E2039 (2020)
  100. H89 enhances the sensitivity of cancer cells to glyceryl trinitrate through a purinergic receptor-dependent pathway. Cortier M, Boina-Ali R, Racoeur C, Paul C, Solary E, Jeannin JF, Bettaieb A. Oncotarget 6 6877-6886 (2015)
  101. In vivo screening for substrates of protein kinase A using a combination of proteomic approaches and pharmacological modulation of kinase activity. Hamaguchi T, Nakamuta S, Funahashi Y, Takano T, Nishioka T, Shohag MH, Yura Y, Kaibuchi K, Amano M. Cell Struct Funct 40 1-12 (2015)
  102. Motility of a biflagellate sperm: waveform analysis and cyclic nucleotide activation. Howard DR, Trantow CM, Thaler CD. Cell Motil. Cytoskeleton 59 120-130 (2004)
  103. Mutants of protein kinase A that mimic the ATP-binding site of Aurora kinase. Pflug A, de Oliveira TM, Bossemeyer D, Engh RA. Biochem. J. 440 85-93 (2011)
  104. Synthesis of highly substituted dibenzo[b,f]azocines and their evaluation as protein kinase inhibitors. Arnold LA, Kiplin Guy R. Bioorg. Med. Chem. Lett. 16 5360-5363 (2006)
  105. Use of pseudosubstrate affinity to measure active protein kinase A. Paulucci-Holthauzen AA, O'Connor KL. Anal. Biochem. 355 175-182 (2006)
  106. Binding of BIS like and other ligands with the GSK-3β kinase: a combined docking and MM-PBSA study. Jena NR. J Mol Model 18 631-644 (2012)
  107. Cysteinyl-specialized proresolving mediators link resolution of infectious inflammation and tissue regeneration via TRAF3 activation. Chiang N, de la Rosa X, Libreros S, Pan H, Dreyfuss JM, Serhan CN. Proc Natl Acad Sci U S A 118 e2013374118 (2021)
  108. Effect of beta-agonists on LAM progression and treatment. Le K, Steagall WK, Stylianou M, Pacheco-Rodriguez G, Darling TN, Vaughan M, Moss J. Proc. Natl. Acad. Sci. U.S.A. 115 E944-E953 (2018)
  109. GBR-12909 effect on dopamine outflow depends on phosphorylation in the caudate nucleus of the rat. Thümen A, Qadri F, Sarkar R, Moser A. Synapse 46 72-78 (2002)
  110. Rationally designed PKA inhibitors for positron emission tomography: Synthesis and cerebral biodistribution of N-(2-(4-bromocinnamylamino)ethyl)-N-[11C]methyl-isoquinoline-5-sulfonamide. Vasdev N, LaRonde FJ, Woodgett JR, Garcia A, Rubie EA, Meyer JH, Houle S, Wilson AA. Bioorg. Med. Chem. 16 5277-5284 (2008)
  111. An assessment of protein-ligand binding site polarizability. Nayeem A, Krystek S, Stouch T. Biopolymers 70 201-211 (2003)
  112. Evaluation of docking strategies for virtual screening of compound databases: cAMP-dependent serine/threonine kinase as an example. Godden JW, Stahura F, Bajorath J. J. Mol. Graph. Model. 16 139-43, 165 (1998)
  113. RSK2 Binding Models Delineate Key Features for Activity. Gussio R, Currens MJ, Scudiero DA, Smith JA, Lannigan DA, Shoemaker RH, Zaharevitz DW, Nguyen TL. J Chem Pharm Res 2 587-598 (2010)
  114. Substituted 2H-isoquinolin-1-one as potent Rho-Kinase inhibitors. Part 1: Hit-to-lead account. Wu F, Büttner FH, Chen R, Hickey E, Jakes S, Kaplita P, Kashem MA, Kerr S, Kugler S, Paw Z, Prokopowicz A, Shih CK, Snow R, Young E, Cywin CL. Bioorg. Med. Chem. Lett. 20 3235-3239 (2010)
  115. Characterization of PKACα enzyme kinetics and inhibition in an HPLC assay with a chromophoric substrate. Luzi NM, Lyons CE, Peterson DL, Ellis KC. Anal. Biochem. 532 45-52 (2017)
  116. Computer modeling of the dynamic properties of the cAMP-dependent protein kinase catalytic subunit. Izvolski A, Järv J, Kuznetsov A. Comput Biol Chem 47 66-70 (2013)
  117. Prostaglandin E2 Enhances Gap Junctional Intercellular Communication in Clonal Epithelial Cells. Ogazon Del Toro A, Jimenez L, Serrano Rubi M, Castillo A, Hinojosa L, Martinez Rendon J, Cereijido M, Ponce A. Int J Mol Sci 22 5813 (2021)
  118. Role of amyloid β in the induction of lipolysis and secretion of adipokines from human adipose tissue. Wan Z, Mah D, Simtchouk S, Kluftinger A, Little JP. Adipocyte 4 212-216 (2015)
  119. The In Vitro Effect of Steroid Hormones, Arachidonic Acid, and Kinases Inhibitors on Aquaporin 1, 2, 5, and 7 Gene Expression in the Porcine Uterine Luminal Epithelial Cells during the Estrous Cycle. Tanski D, Skowronska A, Tanska M, Lepiarczyk E, Skowronski MT. Cells 10 832 (2021)
  120. Unique inhibitory action of the synthetic compound 2-[N-(2-aminoethyl)-N-(5-isoquinolinesulfonyl)] amino-N-(4-chlorocinnamyl)-N-methylbenzylamine (CKA-1306) against calcium/calmodulin-dependent protein kinase I. Sakaguchi H, Yokokura H, Terada O, Naito Y, Nimura Y, Hidaka H. Biochem. Pharmacol. 56 329-334 (1998)
  121. α-Viniferin Improves Facial Hyperpigmentation via Accelerating Feedback Termination of cAMP/PKA-Signaled Phosphorylation Circuit in Facultative Melanogenesis. Yun CY, Mi Ko S, Pyo Choi Y, Kim BJ, Lee J, Mun Kim J, Kim JY, Song JY, Kim SH, Hwang BY, Tae Hong J, Han SB, Kim Y. Theranostics 8 2031-2043 (2018)
  122. Affinity-Based Kinase-Catalyzed Crosslinking to Study Kinase-Substrate Pairs. Beltman RJ, Herppich AA, Bremer HJ, Pflum MKH. Bioconjug Chem 34 1054-1060 (2023)
  123. C9orf72 ALS/FTD dipeptide repeat protein levels are reduced by small molecules that inhibit PKA or enhance protein degradation. Licata NV, Cristofani R, Salomonsson S, Wilson KM, Kempthorne L, Vaizoglu D, D'Agostino VG, Pollini D, Loffredo R, Pancher M, Adami V, Bellosta P, Ratti A, Viero G, Quattrone A, Isaacs AM, Poletti A, Provenzani A. EMBO J 41 e105026 (2022)
  124. Cell death signaling in Anopheles gambiae initiated by Bacillus thuringiensis Cry4B toxin involves Na+/K+ ATPase. Liu L, Bulla LA. Exp Biol Med (Maywood) 248 1191-1205 (2023)
  125. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining. Zhang T, Jiang S, Li T, Liu Y, Zhang Y. ACS Omega 8 25165-25184 (2023)
  126. Photo-crosslinking of clinically relevant kinases using H89-derived photo-affinity probes. Stolze SC, Liu N, Wijdeven RH, Tuin AW, van den Nieuwendijk AM, Florea BI, van der Stelt M, van der Marel GA, Neefjes JJ, Overkleeft HS. Mol Biosyst 12 1809-1817 (2016)
  127. Protein kinase A activity leads to the extension of the acrosomal process in starfish sperm. Niikura K, Alam MS, Naruse M, Jimbo M, Moriyama H, Reich A, Wessel GM, Matsumoto M. Mol. Reprod. Dev. 84 614-625 (2017)
  128. Structural basis for selective inhibition of human PKG Iα by the balanol-like compound N46. Qin L, Sankaran B, Aminzai S, Casteel DE, Kim C. J. Biol. Chem. 293 10985-10992 (2018)
  129. Structures of PKA-phospholamban complexes reveal a mechanism of familial dilated cardiomyopathy. Qin J, Zhang J, Lin L, Haji-Ghassemi O, Lin Z, Woycechowsky KJ, Van Petegem F, Zhang Y, Yuchi Z. Elife 11 e75346 (2022)
  130. The sulfonadyns: a class of aryl sulfonamides inhibiting dynamin I GTPase and clathrin mediated endocytosis are anti-seizure in animal models. Odell LR, Jones NC, Chau N, Robertson MJ, Ambrus JI, Deane FM, Young KA, Whiting A, Xue J, Prichard K, Daniel JA, Gorgani NN, O'Brien TJ, Robinson PJ, McCluskey A. RSC Med Chem 14 1492-1511 (2023)
  131. Three derivatives of 4-fluoro-5-sulfonylisoquinoline. Ohba S, Gomi N, Ohgiya T, Shibuya K. Acta Crystallogr C 68 o427-30 (2012)


Related citations provided by authors (4)