1xfe Citations

Cooperation between fixed and low pH-inducible interfaces controls lipoprotein release by the LDL receptor.

Mol Cell 16 281-92 (2004)
Cited: 52 times
EuropePMC logo PMID: 15494314

Abstract

Low-density lipoprotein (LDL) receptors bind lipoprotein particles at the cell surface and release them in the low pH environment of the endosome. The published structure of the receptor determined at endosomal pH reveals an interdomain interface between its beta propeller and its fourth and fifth ligand binding (LA) repeats, suggesting that the receptor adopts a closed conformation at low pH to release LDL. Here, we combine lipoprotein binding and release assays with NMR spectroscopy to examine structural features of the receptor promoting release of LDL at low pH. These studies lead to a model in which the receptor uses a pH-invariant scaffold as an anchor to restrict conformational search space, combining it with flexible linkers between ligand binding repeats to interconvert between open and closed conformations. This finely tuned balance between interdomain rigidity and flexibility is likely to represent a shared structural feature in proteins of the LDL receptor family.

Articles - 1xfe mentioned but not cited (1)

  1. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (11)

  1. Structure and physiologic function of the low-density lipoprotein receptor. Jeon H, Blacklow SC. Annu Rev Biochem 74 535-562 (2005)
  2. Intracellular pH sensors: design principles and functional significance. Srivastava J, Barber DL, Jacobson MP. Physiology (Bethesda) 22 30-39 (2007)
  3. The LDL receptor: how acid pulls the trigger. Beglova N, Blacklow SC. Trends Biochem Sci 30 309-317 (2005)
  4. Uncoating of human rhinoviruses. Fuchs R, Blaas D. Rev Med Virol 20 281-297 (2010)
  5. Versatility in ligand recognition by LDL receptor family proteins: advances and frontiers. Blacklow SC. Curr Opin Struct Biol 17 419-426 (2007)
  6. Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Van der Horst DJ, Roosendaal SD, Rodenburg KW. Mol Cell Biochem 326 105-119 (2009)
  7. Hypercholesterolemia, low density lipoprotein receptor and proprotein convertase subtilisin/kexin-type 9. Gu HM, Zhang DW. J Biomed Res 29 356-361 (2015)
  8. Hypercholesterolemia: The role of PCSK9. Melendez QM, Krishnaji ST, Wooten CJ, Lopez D. Arch Biochem Biophys 625-626 39-53 (2017)
  9. Proteostasis Regulation in the Endoplasmic Reticulum: An Emerging Theme in the Molecular Pathology and Therapeutic Management of Familial Hypercholesterolemia. Oommen D, Kizhakkedath P, Jawabri AA, Varghese DS, Ali BR. Front Genet 11 570355 (2020)
  10. How multi-scale structural biology elucidated context-dependent variability in ectodomain conformation along with the ligand capture and release cycle for LDLR family members. Nogi T. Biophys Rev 10 481-492 (2018)
  11. PCSK9 as a Target for Development of a New Generation of Hypolipidemic Drugs. Kuzmich N, Andresyuk E, Porozov Y, Tarasov V, Samsonov M, Preferanskaya N, Veselov V, Alyautdin R. Molecules 27 (2022)

Articles citing this publication (40)

  1. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, Cohen JC, Hobbs HH. J Biol Chem 282 18602-18612 (2007)
  2. Molecular basis for LDL receptor recognition by PCSK9. Kwon HJ, Lagace TA, McNutt MC, Horton JD, Deisenhofer J. Proc Natl Acad Sci U S A 105 1820-1825 (2008)
  3. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Zhang DW, Garuti R, Tang WJ, Cohen JC, Hobbs HH. Proc Natl Acad Sci U S A 105 13045-13050 (2008)
  4. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. Lo Surdo P, Bottomley MJ, Calzetta A, Settembre EC, Cirillo A, Pandit S, Ni YG, Hubbard B, Sitlani A, Carfí A. EMBO Rep 12 1300-1305 (2011)
  5. Disabled1 regulates the intracellular trafficking of reelin receptors. Morimura T, Hattori M, Ogawa M, Mikoshiba K. J Biol Chem 280 16901-16908 (2005)
  6. A two-step binding model of PCSK9 interaction with the low density lipoprotein receptor. Yamamoto T, Lu C, Ryan RO. J Biol Chem 286 5464-5470 (2011)
  7. Structure of a receptor-binding fragment of reelin and mutational analysis reveal a recognition mechanism similar to endocytic receptors. Yasui N, Nogi T, Kitao T, Nakano Y, Hattori M, Takagi J. Proc Natl Acad Sci U S A 104 9988-9993 (2007)
  8. Structural basis for specific recognition of reelin by its receptors. Yasui N, Nogi T, Takagi J. Structure 18 320-331 (2010)
  9. Mechanism of low density lipoprotein (LDL) release in the endosome: implications of the stability and Ca2+ affinity of the fifth binding module of the LDL receptor. Arias-Moreno X, Velazquez-Campoy A, Rodríguez JC, Pocoví M, Sancho J. J Biol Chem 283 22670-22679 (2008)
  10. Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance. Liu W, Mani S, Davis NR, Sarrafzadegan N, Kavathas PB, Mani A. Circ Res 103 1280-1288 (2008)
  11. Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor. Huang S, Henry L, Ho YK, Pownall HJ, Rudenko G. J Lipid Res 51 297-308 (2010)
  12. Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP. Kwak SY, Yang JS, Kim BY, Bae IH, Han YH. Biochim Biophys Acta 1843 508-516 (2014)
  13. Functional characterization of splicing and ligand-binding domain variants in the LDL receptor. Etxebarria A, Palacios L, Stef M, Tejedor D, Uribe KB, Oleaga A, Irigoyen L, Torres B, Ostolaza H, Martin C. Hum Mutat 33 232-243 (2012)
  14. Cooperative folding and ligand-binding properties of LRP6 beta-propeller domains. Liu CC, Pearson C, Bu G. J Biol Chem 284 15299-15307 (2009)
  15. Functional characterization and classification of frequent low-density lipoprotein receptor variants. Etxebarria A, Benito-Vicente A, Palacios L, Stef M, Cenarro A, Civeira F, Ostolaza H, Martin C. Hum Mutat 36 129-141 (2015)
  16. Isoform-specific binding of selenoprotein P to the β-propeller domain of apolipoprotein E receptor 2 mediates selenium supply. Kurokawa S, Bellinger FP, Hill KE, Burk RF, Berry MJ. J Biol Chem 289 9195-9207 (2014)
  17. Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole. Schultz LW, Liu L, Cegielski M, Hastings JW. Proc Natl Acad Sci U S A 102 1378-1383 (2005)
  18. The epidermal growth factor homology domain of the LDL receptor drives lipoprotein release through an allosteric mechanism involving H190, H562, and H586. Zhao Z, Michaely P. J Biol Chem 283 26528-26537 (2008)
  19. The role of calcium in lipoprotein release by the low-density lipoprotein receptor. Zhao Z, Michaely P. Biochemistry 48 7313-7324 (2009)
  20. Molecular studies of pH-dependent ligand interactions with the low-density lipoprotein receptor. Yamamoto T, Chen HC, Guigard E, Kay CM, Ryan RO. Biochemistry 47 11647-11652 (2008)
  21. Characterization of the role of EGF-A of low density lipoprotein receptor in PCSK9 binding. Gu HM, Adijiang A, Mah M, Zhang DW. J Lipid Res 54 3345-3357 (2013)
  22. LDL receptor/lipoprotein recognition: endosomal weakening of ApoB and ApoE binding to the convex face of the LR5 repeat. Martínez-Oliván J, Arias-Moreno X, Velazquez-Campoy A, Millet O, Sancho J. FEBS J 281 1534-1546 (2014)
  23. Advantages and versatility of fluorescence-based methodology to characterize the functionality of LDLR and class mutation assignment. Etxebarria A, Benito-Vicente A, Alves AC, Ostolaza H, Bourbon M, Martin C. PLoS One 9 e112677 (2014)
  24. Low pH-triggered beta-propeller switch of the low-density lipoprotein receptor assists rhinovirus infection. Konecsni T, Berka U, Pickl-Herk A, Bilek G, Khan AG, Gajdzig L, Fuchs R, Blaas D. J Virol 83 10922-10930 (2009)
  25. Binding characteristics of a panel of monoclonal antibodies against the ligand binding domain of the human LDLr. Nguyen AT, Hirama T, Chauhan V, Mackenzie R, Milne R. J Lipid Res 47 1399-1405 (2006)
  26. Role of an intramolecular contact on lipoprotein uptake by the LDL receptor. Zhao Z, Michaely P. Biochim Biophys Acta 1811 397-408 (2011)
  27. Structural basis of transcobalamin recognition by human CD320 receptor. Alam A, Woo JS, Schmitz J, Prinz B, Root K, Chen F, Bloch JS, Zenobi R, Locher KP. Nat Commun 7 12100 (2016)
  28. The complex of the insect LDL receptor homolog, lipophorin receptor, LpR, and its lipoprotein ligand does not dissociate under endosomal conditions. Roosendaal SD, Kerver J, Schipper M, Rodenburg KW, Van der Horst DJ. FEBS J 275 1751-1766 (2008)
  29. Structural basis for ligand capture and release by the endocytic receptor ApoER2. Hirai H, Yasui N, Yamashita K, Tabata S, Yamamoto M, Takagi J, Nogi T. EMBO Rep 18 982-999 (2017)
  30. The Proprotein Convertase Subtilisin/Kexin Type 9-resistant R410S Low Density Lipoprotein Receptor Mutation: A NOVEL MECHANISM CAUSING FAMILIAL HYPERCHOLESTEROLEMIA. Susan-Resiga D, Girard E, Kiss RS, Essalmani R, Hamelin J, Asselin MC, Awan Z, Butkinaree C, Fleury A, Soldera A, Dory YL, Baass A, Seidah NG. J Biol Chem 292 1573-1590 (2017)
  31. Structural insights into recognition of beta2-glycoprotein I by the lipoprotein receptors. Beglov D, Lee CJ, De Biasio A, Kozakov D, Brenke R, Vajda S, Beglova N. Proteins 77 940-949 (2009)
  32. Exploring the complete mutational space of the LDL receptor LA5 domain using molecular dynamics: linking SNPs with disease phenotypes in familial hypercholesterolemia. Angarica VE, Orozco M, Sancho J. Hum Mol Genet 25 1233-1246 (2016)
  33. Identification of amino acid residues in the ligand binding repeats of LDL receptor important for PCSK9 binding. Deng SJ, Alabi A, Gu HM, Adijiang A, Qin S, Zhang DW. J Lipid Res 60 516-527 (2019)
  34. Lipoprotein assembly and function in an evolutionary perspective. Van der Horst DJ, Rodenburg KW. Biomol Concepts 1 165-183 (2010)
  35. The closed conformation of the LDL receptor is destabilized by the low Ca(++) concentration but favored by the high Mg(++) concentration in the endosome. Martínez-Oliván J, Arias-Moreno X, Hurtado-Guerrero R, Carrodeguas JA, Miguel-Romero L, Marina A, Bruscolini P, Sancho J. FEBS Lett 589 3534-3540 (2015)
  36. A transient amphipathic helix in the prodomain of PCSK9 facilitates binding to low-density lipoprotein particles. Sarkar SK, Foo ACY, Matyas A, Asikhia I, Kosenko T, Goto NK, Vergara-Jaque A, Lagace TA. J Biol Chem 295 2285-2298 (2020)
  37. Knowing when to let go: endosomal release of LDL from the LDL-Receptor. Debose-Boyd RA. Mol Cell 16 160-162 (2004)
  38. Structures of LRP2 reveal a molecular machine for endocytosis. Beenken A, Cerutti G, Brasch J, Guo Y, Sheng Z, Erdjument-Bromage H, Aziz Z, Robbins-Juarez SY, Chavez EY, Ahlsen G, Katsamba PS, Neubert TA, Fitzpatrick AWP, Barasch J, Shapiro L. Cell 186 821-836.e13 (2023)
  39. Deep generative models of LDLR protein structure to predict variant pathogenicity. James JK, Norland K, Johar AS, Kullo IJ. J Lipid Res 64 100455 (2023)
  40. Identification of roles for H264, H306, H439, and H635 in acid-dependent lipoprotein release by the LDL receptor. Dong H, Zhao Z, LeBrun DG, Michaely P. J Lipid Res 58 364-374 (2017)