1x9y Citations

Prostaphopain B structure: a comparison of proregion-mediated and staphostatin-mediated protease inhibition.

Biochemistry 43 14306-15 (2004)
Cited: 24 times
EuropePMC logo PMID: 15518582

Abstract

Prostaphopain B is the precursor of staphopain B, a papain-type secreted cysteine protease from the pathogen Staphylococcus aureus. Here, we describe the 2.5 A crystal structure of the proenzyme. Its 21 kDa proregion is organized around a central half-barrel or barrel-sandwich hybrid and occludes primed, but not nonprimed, sites in the active site cleft of the protease. The structure of the mature part of the protease is similar to previously reported staphopain structures, and no distortion of the catalytic residues is apparent at 2.5 A resolution. A comparison of prostaphopain B with the staphopain B-staphostatin B complex shows that the proregion and the inhibitor interact with largely nonoverlapping parts of the protease surface. In a modeled complex of prostaphopain B with staphostatin B, clashes occur both inside and outside the active site cleft, but involve mostly poorly ordered regions of the protein that may be mobile.

Articles - 1x9y mentioned but not cited (6)

  1. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  2. FiberDock: Flexible induced-fit backbone refinement in molecular docking. Mashiach E, Nussinov R, Wolfson HJ. Proteins 78 1503-1519 (2010)
  3. Interface residues of transient protein-protein complexes have extensive intra-protein interactions apart from inter-protein interactions. Jayashree S, Murugavel P, Sowdhamini R, Srinivasan N. Biol Direct 14 1 (2019)
  4. Contribution of active site glutamine to rate enhancement in ubiquitin C-terminal hydrolases. Boudreaux DA, Chaney J, Maiti TK, Das C. FEBS J 279 1106-1118 (2012)
  5. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. BMC Struct Biol 12 6 (2012)
  6. A Coarse-Grained Methodology Identifies Intrinsic Mechanisms That Dissociate Interacting Protein Pairs. Abdizadeh H, Jalalypour F, Atilgan AR, Atilgan C. Front Mol Biosci 7 210 (2020)


Reviews citing this publication (2)

  1. A novel endogenous inhibitor of the secreted streptococcal NAD-glycohydrolase. Meehl MA, Pinkner JS, Anderson PJ, Hultgren SJ, Caparon MG. PLoS Pathog 1 e35 (2005)
  2. Regulation of bacterial protease activity. Władyka B, Pustelny K. Cell Mol Biol Lett 13 212-229 (2008)

Articles citing this publication (16)

  1. Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. Imamura T, Tanase S, Szmyd G, Kozik A, Travis J, Potempa J. J Exp Med 201 1669-1676 (2005)
  2. A papain-like enzyme at work: native and acyl-enzyme intermediate structures in phytochelatin synthesis. Vivares D, Arnoux P, Pignol D. Proc Natl Acad Sci U S A 102 18848-18853 (2005)
  3. A new autocatalytic activation mechanism for cysteine proteases revealed by Prevotella intermedia interpain A. Mallorquí-Fernández N, Manandhar SP, Mallorquí-Fernández G, Usón I, Wawrzonek K, Kantyka T, Solà M, Thøgersen IB, Enghild JJ, Potempa J, Gomis-Rüth FX. J Biol Chem 283 2871-2882 (2008)
  4. Cytoplasmic control of premature activation of a secreted protease zymogen: deletion of staphostatin B (SspC) in Staphylococcus aureus 8325-4 yields a profound pleiotropic phenotype. Shaw LN, Golonka E, Szmyd G, Foster SJ, Travis J, Potempa J. J Bacteriol 187 1751-1762 (2005)
  5. Porphyromonas gingivalis virulence factor gingipain RgpB shows a unique zymogenic mechanism for cysteine peptidases. de Diego I, Veillard FT, Guevara T, Potempa B, Sztukowska M, Potempa J, Gomis-Rüth FX. J Biol Chem 288 14287-14296 (2013)
  6. High resolution structure of an M23 peptidase with a substrate analogue. Grabowska M, Jagielska E, Czapinska H, Bochtler M, Sabala I. Sci Rep 5 14833 (2015)
  7. Comparison of Staphopain A (ScpA) and B (SspB) precursor activation mechanisms reveals unique secretion kinetics of proSspB (Staphopain B), and a different interaction with its cognate Staphostatin, SspC. Nickerson N, Ip J, Passos DT, McGavin MJ. Mol Microbiol 75 161-177 (2010)
  8. Fighting an enemy within: cytoplasmic inhibitors of bacterial cysteine proteases. Potempa J, Golonka E, Filipek R, Shaw LN. Mol Microbiol 57 605-610 (2005)
  9. SpeB-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Kagawa TF, O'toole PW, Cooney JC. Mol Microbiol 57 650-666 (2005)
  10. Inhibition of gingipains by their profragments as the mechanism protecting Porphyromonas gingivalis against premature activation of secreted proteases. Veillard F, Sztukowska M, Mizgalska D, Ksiazek M, Houston J, Potempa B, Enghild JJ, Thogersen IB, Gomis-Rüth FX, Nguyen KA, Potempa J. Biochim Biophys Acta 1830 4218-4228 (2013)
  11. Staphylococcal SplB serine protease utilizes a novel molecular mechanism of activation. Pustelny K, Zdzalik M, Stach N, Stec-Niemczyk J, Cichon P, Czarna A, Popowicz G, Mak P, Drag M, Salvesen GS, Wladyka B, Potempa J, Dubin A, Dubin G. J Biol Chem 289 15544-15553 (2014)
  12. Substrate specificity of Staphylococcus aureus cysteine proteases--Staphopains A, B and C. Kalińska M, Kantyka T, Greenbaum DC, Larsen KS, Władyka B, Jabaiah A, Bogyo M, Daugherty PS, Wysocka M, Jaros M, Lesner A, Rolka K, Schaschke N, Stennicke H, Dubin A, Potempa J, Dubin G. Biochimie 94 318-327 (2012)
  13. The effect of environmental conditions on expression of Bacteroides fragilis and Bacteroides thetaiotaomicron C10 protease genes. Thornton RF, Murphy EC, Kagawa TF, O'Toole PW, Cooney JC. BMC Microbiol 12 190 (2012)
  14. Proteolytic processing and activation of gingipain zymogens secreted by T9SS of Porphyromonas gingivalis. Veillard F, Sztukowska M, Nowakowska Z, Mizgalska D, Thøgersen IB, Enghild JJ, Bogyo M, Potempa B, Nguyen KA, Potempa J. Biochimie 166 161-172 (2019)
  15. Staphylococcus aureus infection triggers production of neutralizing, V8 protease-specific antibodies. Calander AM, Dubin G, Potempa J, Tarkowski A. FEMS Immunol Med Microbiol 52 267-272 (2008)
  16. Activation mechanism of thiol protease precursor from broiler chicken specific Staphylococcus aureus strain CH-91. Wladyka B, Dubin G, Dubin A. Vet Microbiol 147 195-199 (2011)


Related citations provided by authors (1)

  1. The Staphostatin-staphopain complex: a forward binding inhibitor in complex with its target cysteine protease.. Filipek R, Rzychon M, Oleksy A, Gruca M, Dubin A, Potempa J, Bochtler M J. Biol. Chem. 278 40959-40966 (2003)