1wrs Citations

Refined solution structures of the Escherichia coli trp holo- and aporepressor.

J Mol Biol 229 735-46 (1993)
Related entries: 1rcs, 1wrt

Cited: 55 times
EuropePMC logo PMID: 8433368

Abstract

The solution structures of the trp-repressor from Escherichia coli in both the liganded (holo-) and unliganded (apo-) form, have been refined by restrained molecular dynamics with simulated annealing using the program XPLOR and additional experimental constraints. The ensemble of refined holorepressor structures have a root-mean-square deviation (r.m.s.d.) of 0.8 A relative to the average structure for the backbone of the dimer core (helices A, B, C, A', B', C') and 2.5 A for the helix-turn-helix DNA-binding domain (helices D and E). The corresponding values for the aporepressor are 0.9 A for the backbone of the ABC-dimer core and 3.2 A for the DE helix-turn-helix. The r.m.s.d. of the average structures from the corresponding crystal structures are 2.3 A for the holorepressor ABC core and 4.2 A for its DE region; 2.3 A for the aporepressor core and 5.5 A for its DE region. The relative disorder of the DNA-binding domain is reflected in a number of experimental parameters including substantially more rapid backbone proton exchange rates, exchange-limited relaxation times and crystallographic B-factors. The stabilizing effect of the L-Trp ligand is evident in these measurements, as it is in the higher precision of the holorepressor structure.

Articles - 1wrs mentioned but not cited (1)



Reviews citing this publication (8)

  1. Is allostery an intrinsic property of all dynamic proteins? Gunasekaran K, Ma B, Nussinov R. Proteins 57 433-443 (2004)
  2. Recognition between flexible protein molecules: induced and assisted folding. Demchenko AP. J Mol Recognit 14 42-61 (2001)
  3. Molecular and biological constraints on ligand-binding affinity and specificity. Szwajkajzer D, Carey J. Biopolymers 44 181-198 (1997)
  4. Lac repressor-operator complex. Kercher MA, Lu P, Lewis M. Curr Opin Struct Biol 7 76-85 (1997)
  5. Regulating transcription regulators via allostery and flexibility. Beckett D. Proc Natl Acad Sci U S A 106 22035-22036 (2009)
  6. Direct recognition of the trp operator by the trp holorepressor--a review. Youderian P, Arvidson DN. Gene 150 1-8 (1994)
  7. Protein dynamics. Jardetzky O, Lefèvre JF. FEBS Lett 338 246-250 (1994)
  8. Affinity, Specificity, and Cooperativity of DNA Binding by Bacterial Gene Regulatory Proteins. Carey J. Int J Mol Sci 23 (2022)

Articles citing this publication (46)

  1. Deciphering common failures in molecular docking of ligand-protein complexes. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. J Comput Aided Mol Des 14 731-751 (2000)
  2. Water-mediated protein-DNA interactions: the relationship of thermodynamics to structural detail. Morton CJ, Ladbury JE. Protein Sci 5 2115-2118 (1996)
  3. TROSY-NMR studies of the 91kDa TRAP protein reveal allosteric control of a gene regulatory protein by ligand-altered flexibility. McElroy C, Manfredo A, Wendt A, Gollnick P, Foster M. J Mol Biol 323 463-473 (2002)
  4. Characterization of non-inducible Tet repressor mutants suggests conformational changes necessary for induction. Müller G, Hecht B, Helbl V, Hinrichs W, Saenger W, Hillen W. Nat Struct Biol 2 693-703 (1995)
  5. Study of a noncovalent trp repressor: DNA operator complex by electrospray ionization time-of-flight mass spectrometry. Potier N, Donald LJ, Chernushevich I, Ayed A, Ens W, Arrowsmith CH, Standing KG, Duckworth HW. Protein Sci 7 1388-1395 (1998)
  6. Coarse-grained model of entropic allostery. Hawkins RJ, McLeish TC. Phys Rev Lett 93 098104 (2004)
  7. Thermodynamics of sequence-specific protein-DNA interactions. Härd T, Lundbäck T. Biophys Chem 62 121-139 (1996)
  8. Structural similarity of a developmentally regulated bacterial spore coat protein to beta gamma-crystallins of the vertebrate eye lens. Bagby S, Harvey TS, Eagle SG, Inouye S, Ikura M. Proc Natl Acad Sci U S A 91 4308-4312 (1994)
  9. Flexibility of DNA binding domain of trp repressor required for recognition of different operator sequences. Gryk MR, Jardetzky O, Klig LS, Yanofsky C. Protein Sci 5 1195-1197 (1996)
  10. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels. Gloss LM, Simler BR, Matthews CR. J Mol Biol 312 1121-1134 (2001)
  11. The interactions of Escherichia coli trp repressor with tryptophan and with an operator oligonucleotide. NMR studies using selectively 15N-labelled protein. Ramesh V, Frederick RO, Syed SE, Gibson CF, Yang JC, Roberts GC. Eur J Biochem 225 601-608 (1994)
  12. A mean field model of ligand-protein interactions: implications for the structural assessment of human immunodeficiency virus type 1 protease complexes and receptor-specific binding. Verkhivker GM, Rejto PA. Proc Natl Acad Sci U S A 93 60-64 (1996)
  13. Solution dynamics of the trp repressor: a study of amide proton exchange by T1 relaxation. Gryk MR, Finucane MD, Zheng Z, Jardetzky O. J Mol Biol 246 618-627 (1995)
  14. Water molecules in DNA recognition I: hydration lifetimes of trp operator DNA in solution measured by NMR spectroscopy. Sunnerhagen M, Denisov VP, Venu K, Bonvin AM, Carey J, Halle B, Otting G. J Mol Biol 282 847-858 (1998)
  15. Affinity and specificity of trp repressor-DNA interactions studied with fluorescent oligonucleotides. Reedstrom RJ, Brown MP, Grillo A, Roen D, Royer CA. J Mol Biol 273 572-585 (1997)
  16. Probing the physical basis for trp repressor-operator recognition. Grillo AO, Brown MP, Royer CA. J Mol Biol 287 539-554 (1999)
  17. Heteronuclear relaxation study of the PH domain of beta-spectrin: restriction of loop motions upon binding inositol trisphosphate. Gryk MR, Abseher R, Simon B, Nilges M, Oschkinat H. J Mol Biol 280 879-896 (1998)
  18. Backbone dynamics of a short PU.1 ETS domain. Jia X, Lee LK, Light J, Palmer AG, Assa-Munt N. J Mol Biol 292 1083-1093 (1999)
  19. Studies of the Escherichia coli Trp repressor binding to its five operators and to variant operator sequences. Jeeves M, Evans PD, Parslow RA, Jaseja M, Hyde EI. Eur J Biochem 265 919-928 (1999)
  20. Molecular dynamics simulations of trp apo- and holorepressors: domain structure and ligand-protein interaction. Komeiji Y, Uebayasi M, Yamato I. Proteins 20 248-258 (1994)
  21. Dynamic alpha-helices: conformations that do not conform. Sandhu KS, Dash D. Proteins 68 109-122 (2007)
  22. E. coli trp repressor forms a domain-swapped array in aqueous alcohol. Lawson CL, Benoff B, Berger T, Berman HM, Carey J. Structure 12 1099-1108 (2004)
  23. The tryptophan repressor sequence is highly conserved among the Enterobacteriaceae. Arvidson DN, Arvidson CG, Lawson CL, Miner J, Adams C, Youderian P. Nucleic Acids Res 22 1821-1829 (1994)
  24. Long-range effects on dynamics in a temperature-sensitive mutant of trp repressor. Jin L, Fukayama JW, Pelczer I, Carey J. J Mol Biol 285 361-378 (1999)
  25. Letter An atomic view of the L-tryptophan binding site of trp repressor. Lawson CL. Nat Struct Biol 3 986-987 (1996)
  26. Rapid corepressor exchange from the trp-repressor/operator complex: an NMR study of [ul-13C/15N]-L-tryptophan. Lee W, Revington M, Farrow NA, Nakamura A, Utsunomiya-Tate N, Miyake Y, Kainosho M, Arrowsmith CH. J Biomol NMR 5 367-375 (1995)
  27. The pH dependence of hydrogen-deuterium exchange in trp repressor: the exchange rate of amide protons in proteins reflects tertiary interactions, not only secondary structure. Finucane MD, Jardetzky O. Protein Sci 5 653-662 (1996)
  28. Comparison of solution structure of free and complexed lac operator by molecular modelling with NMR constraints. Gincel E, Lancelot G, Maurizot JC, Thuong NT, Vovelle F. Biochimie 76 141-151 (1994)
  29. Mutants of Escherichia coli Trp repressor with changes of conserved, helix-turn-helix residue threonine 81 have altered DNA-binding specificities. Pfau J, Arvidson DN, Youderian P. Mol Microbiol 13 1001-1012 (1994)
  30. NMR studies of the mode of binding of corepressors and inducers to Escherichia coli trp repressor. Ramesh V, Syed SE, Frederick RO, Sutcliffe MJ, Barnes M, Roberts GC. Eur J Biochem 235 804-813 (1996)
  31. Substitutions of Thr30 provide mechanistic insight into tryptophan-mediated activation of TRAP binding to RNA. Payal V, Gollnick P. Nucleic Acids Res 34 2933-2942 (2006)
  32. Subunit-specific backbone NMR assignments of a 64 kDa trp repressor/DNA complex: a role for N-terminal residues in tandem binding. Shan X, Gardner KH, Muhandiram DR, Kay LE, Arrowsmith CH. J Biomol NMR 11 307-318 (1998)
  33. The NMR-derived conformation of orexin-A: an orphan G-protein coupled receptor agonist involved in appetite regulation and sleep. Miskolzie M, Kotovych G. J Biomol Struct Dyn 21 201-210 (2003)
  34. Accurate genetic switch in Escherichia coli: novel mechanism of regulation by co-repressor. Tabaka M, Cybulski O, Hołyst R. J Mol Biol 377 1002-1014 (2008)
  35. Cooperative folding units of escherichia coli tryptophan repressor. Wallqvist A, Lavoie TA, Chanatry JA, Covell DG, Carey J. Biophys J 77 1619-1626 (1999)
  36. Mutational analysis of the NH2-terminal arms of the trp repressor indicates a multifunctional domain. Mackintosh SG, McDermott PF, Hurlburt BK. Mol Microbiol 27 1119-1127 (1998)
  37. Engineering proteins without primary sequence tryptophan residues: mutant trp repressors with aliphatic substitutions for tryptophan side chains. Chapman D, Hochstrasser R, Millar D, Youderian P. Gene 163 1-11 (1995)
  38. Fluorescence quenching studies of Trp repressor using single-tryptophan mutants. Blicharska Z, Wasylewski Z. J Protein Chem 14 739-746 (1995)
  39. Multiple helical conformations of the helix-turn-helix region revealed by NOE-restrained MD simulations of tryptophan aporepressor, TrpR. Harish B, Swapna GV, Kornhaber GJ, Montelione GT, Carey J. Proteins 85 731-740 (2017)
  40. NMR studies of the Escherichia coli Trp repressor.trpRs operator complex. Evans PD, Jaseja M, Jeeves M, Hyde EI. Eur J Biochem 242 567-575 (1996)
  41. The basis for the super-repressor phenotypes of the AV77 and EK18 mutants of trp repressor. Grillo AO, Royer CA. J Mol Biol 295 17-28 (2000)
  42. Environment-dependent long-range structural distortion in a temperature-sensitive point mutant. Carey J, Benoff B, Harish B, Yuan L, Lawson CL. Protein Sci 21 63-74 (2012)
  43. Oligomerization of the EK18 mutant of the trp repressor of Escherichia coli as observed by NMR spectroscopy. Chae YK, Abildgaard F, Royer CA, Markley JL. Arch Biochem Biophys 371 35-40 (1999)
  44. The nucleotide messenger (p)ppGpp is an anti-inducer of the purine synthesis transcription regulator PurR in Bacillus. Anderson BW, Schumacher MA, Yang J, Turdiev A, Turdiev H, Schroeder JW, He Q, Lee VT, Brennan RG, Wang JD. Nucleic Acids Res 50 847-866 (2022)
  45. Crystal structures of Val58Ile tryptophan repressor in a domain-swapped array in the presence and absence of L-tryptophan. Sprenger J, Lawson CL, von Wachenfeldt C, Lo Leggio L, Carey J. Acta Crystallogr F Struct Biol Commun 77 215-225 (2021)
  46. Fluorescence quenching studies of Trp repressor-operator interaction. Blicharska Z, Wasylewski Z. J Protein Chem 18 823-830 (1999)


Related citations provided by authors (5)

  1. The solution structures of the trp repressor-operator DNA complex.. Zhang H, Zhao D, Revington M, Lee W, Jia X, Arrowsmith C, Jardetzky O J Mol Biol 238 592-614 (1994)
  2. Sequential Simulated Annealing: An Efficient Procedure for Structural Refinement Based on NMR Constraints. Zhao D, Jardetzky O J Phys Chem 97 3007- (1993)
  3. The solution structures of Escherichia coli trp repressor and trp aporepressor at an intermediate resolution.. Arrowsmith C, Pachter R, Altman R, Jardetzky O Eur J Biochem 202 53-66 (1991)
  4. Sequence-specific 1H NMR assignments and secondary structure in solution of Escherichia coli trp repressor.. Arrowsmith CH, Pachter R, Altman RB, Iyer SB, Jardetzky O Biochemistry 29 6332-41 (1990)
  5. NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding.. Arrowsmith CH, Carey J, Treat-Clemons L, Jardetzky O Biochemistry 28 3875-9 (1989)