1vyz Citations

3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 1. Lead finding.

Abstract

Abnormal proliferation mediated by disruption of the normal cell cycle mechanisms is a hallmark of virtually all cancer cells. Compounds targeting complexes between cyclin-dependent kinases (CDK) and cyclins, such as CDK2/cyclin A and CDK2/cyclin E, and inhibiting their kinase activity are regarded as promising antitumor agents to complement the existing therapies. From a high-throughput screening effort, we identified a new class of CDK2/cyclin A/E inhibitors. The hit-to-lead expansion of this class is described. X-ray crystallographic data of early compounds in this series, as well as in vitro testing funneled for rapidly achieving in vivo efficacy, led to a nanomolar inhibitor of CDK2/cyclin A (N-(5-cyclopropyl-1H-pyrazol-3-yl)-2-(2-naphthyl)acetamide (41), PNU-292137, IC50 = 37 nM) with in vivo antitumor activity (TGI > 50%) in a mouse xenograft model at a dose devoid of toxic effects.

Articles - 1vyz mentioned but not cited (6)

  1. In Silico Identification and In Vitro and In Vivo Validation of Anti-Psychotic Drug Fluspirilene as a Potential CDK2 Inhibitor and a Candidate Anti-Cancer Drug. Shi XN, Li H, Yao H, Liu X, Li L, Leung KS, Kung HF, Lu D, Wong MH, Lin MC. PLoS One 10 e0132072 (2015)
  2. Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy. Sonawane YA, Taylor MA, Napoleon JV, Rana S, Contreras JI, Natarajan A. J. Med. Chem. 59 8667-8684 (2016)
  3. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Robb CM, Contreras JI, Kour S, Taylor MA, Abid M, Sonawane YA, Zahid M, Murry DJ, Natarajan A, Rana S. Chem. Commun. (Camb.) 53 7577-7580 (2017)
  4. Structure-based predictions of activity cliffs. Husby J, Bottegoni G, Kufareva I, Abagyan R, Cavalli A. J Chem Inf Model 55 1062-1076 (2015)
  5. AlphaSpace 2.0: Representing Concave Biomolecular Surfaces Using β-Clusters. Katigbak J, Li H, Rooklin D, Zhang Y. J Chem Inf Model 60 1494-1508 (2020)
  6. A Free Web-Based Protocol to Assist Structure-Based Virtual Screening Experiments. Lagarde N, Goldwaser E, Pencheva T, Jereva D, Pajeva I, Rey J, Tuffery P, Villoutreix BO, Miteva MA. Int J Mol Sci 20 (2019)


Reviews citing this publication (5)

  1. High-throughput kinase profiling as a platform for drug discovery. Goldstein DM, Gray NS, Zarrinkar PP. Nat Rev Drug Discov 7 391-397 (2008)
  2. Selectivity and potency of cyclin-dependent kinase inhibitors. Sridhar J, Akula N, Pattabiraman N. AAPS J 8 E204-21 (2006)
  3. The State of the Art in Azaborine Chemistry: New Synthetic Methods and Applications. Giustra ZX, Liu SY. J. Am. Chem. Soc. 140 1184-1194 (2018)
  4. Kinase selectivity profiling by inhibitor affinity chromatography. Valsasina B, Kalisz HM, Isacchi A. Expert Rev Proteomics 1 303-315 (2004)
  5. PROTAC'ing oncoproteins: targeted protein degradation for cancer therapy. Kelm JM, Pandey DS, Malin E, Kansou H, Arora S, Kumar R, Gavande NS. Mol Cancer 22 62 (2023)

Articles citing this publication (43)

  1. A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Montagnoli A, Valsasina B, Croci V, Menichincheri M, Rainoldi S, Marchesi V, Tibolla M, Tenca P, Brotherton D, Albanese C, Patton V, Alzani R, Ciavolella A, Sola F, Molinari A, Volpi D, Avanzi N, Fiorentini F, Cattoni M, Healy S, Ballinari D, Pesenti E, Isacchi A, Moll J, Bensimon A, Vanotti E, Santocanale C. Nat. Chem. Biol. 4 357-365 (2008)
  2. Molecular mechanical study of halogen bonding in drug discovery. Ibrahim MA. J Comput Chem 32 2564-2574 (2011)
  3. Modulation of Wnt3a-mediated nuclear beta-catenin accumulation and activation by integrin-linked kinase in mammalian cells. Oloumi A, Syam S, Dedhar S. Oncogene 25 7747-7757 (2006)
  4. The importance of plasma protein binding in drug discovery. Trainor GL. Expert Opin Drug Discov 2 51-64 (2007)
  5. Identification of antitumor activity of pyrazole oxime ethers. Park HJ, Lee K, Park SJ, Ahn B, Lee JC, Cho H, Lee KI. Bioorg. Med. Chem. Lett. 15 3307-3312 (2005)
  6. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Ouyang G, Chen Z, Cai XJ, Song BA, Bhadury PS, Yang S, Jin LH, Xue W, Hu DY, Zeng S. Bioorg. Med. Chem. 16 9699-9707 (2008)
  7. 3-Amino-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: a new class of CDK2 inhibitors. Pevarello P, Fancelli D, Vulpetti A, Amici R, Villa M, Pittalà V, Vianello P, Cameron A, Ciomei M, Mercurio C, Bischoff JR, Roletto F, Varasi M, Brasca MG. Bioorg. Med. Chem. Lett. 16 1084-1090 (2006)
  8. Synthesis and biological validation of novel pyrazole derivatives with anticancer activity guided by 3D-QSAR analysis. Vujasinović I, Paravić-Radičević A, Mlinarić-Majerski K, Brajša K, Bertoša B. Bioorg. Med. Chem. 20 2101-2110 (2012)
  9. Identification of inhibitors of the Leishmania cdc2-related protein kinase CRK3. Cleghorn LA, Woodland A, Collie IT, Torrie LS, Norcross N, Luksch T, Mpamhanga C, Walker RG, Mottram JC, Brenk R, Frearson JA, Gilbert IH, Wyatt PG. ChemMedChem 6 2214-2224 (2011)
  10. Disruption of the EGFR E884-R958 ion pair conserved in the human kinome differentially alters signaling and inhibitor sensitivity. Tang Z, Jiang S, Du R, Petri ET, El-Telbany A, Chan PS, Kijima T, Dietrich S, Matsui K, Kobayashi M, Sasada S, Okamoto N, Suzuki H, Kawahara K, Iwasaki T, Nakagawa K, Kawase I, Christensen JG, Hirashima T, Halmos B, Salgia R, Boggon TJ, Kern JA, Ma PC. Oncogene 28 518-533 (2009)
  11. Identifying tumor cell growth inhibitors by combinatorial chemistry and zebrafish assays. Xiang J, Yang H, Che C, Zou H, Yang H, Wei Y, Quan J, Zhang H, Yang Z, Lin S. PLoS ONE 4 e4361 (2009)
  12. Medicinal Chemistry Profiling of Monocyclic 1,2-Azaborines. Zhao P, Nettleton DO, Karki RG, Zécri FJ, Liu SY. ChemMedChem 12 358-361 (2017)
  13. Novel pyrazole integrated 1,3,4-oxadiazoles: synthesis, characterization and antimicrobial evaluation. Ningaiah S, Bhadraiah UK, Doddaramappa SD, Keshavamurthy S, Javarasetty C. Bioorg. Med. Chem. Lett. 24 245-248 (2014)
  14. Synthesis and biological evaluation of 3,5-diaminoindazoles as cyclin-dependent kinase inhibitors. Lee J, Choi H, Kim KH, Jeong S, Park JW, Baek CS, Lee SH. Bioorg. Med. Chem. Lett. 18 2292-2295 (2008)
  15. An efficient tool for identifying inhibitors based on 3D-QSAR and docking using feature-shape pharmacophore of biologically active conformation--a case study with CDK2/cyclinA. Mascarenhas NM, Ghoshal N. Eur J Med Chem 43 2807-2818 (2008)
  16. Off-target decoding of a multitarget kinase inhibitor by chemical proteomics. Missner E, Bahr I, Badock V, Lücking U, Siemeister G, Donner P. Chembiochem 10 1163-1174 (2009)
  17. Computer-aided design, synthesis and validation of 2-phenylquinazolinone fragments as CDK9 inhibitors with anti-HIV-1 Tat-mediated transcription activity. Sancineto L, Iraci N, Massari S, Attanasio V, Corazza G, Barreca ML, Sabatini S, Manfroni G, Avanzi NR, Cecchetti V, Pannecouque C, Marcello A, Tabarrini O. ChemMedChem 8 1941-1953 (2013)
  18. Exploring QSAR on 3-aminopyrazoles as antitumor agents for their inhibitory activity of CDK2/cyclin A. Samanta S, Debnath B, Basu A, Gayen S, Srikanth K, Jha T. Eur J Med Chem 41 1190-1195 (2006)
  19. Synthesis, anticancer activity and DNA-binding properties of novel 4-pyrazolyl-1,8-naphthalimide derivatives. Li S, Xu S, Tang Y, Ding S, Zhang J, Wang S, Zhou G, Zhou C, Li X. Bioorg. Med. Chem. Lett. 24 586-590 (2014)
  20. 6-Substituted pyrrolo[3,4-c]pyrazoles: an improved class of CDK2 inhibitors. Brasca MG, Albanese C, Amici R, Ballinari D, Corti L, Croci V, Fancelli D, Fiorentini F, Nesi M, Orsini P, Orzi F, Pastori W, Perrone E, Pesenti E, Pevarello P, Riccardi-Sirtori F, Roletto F, Roussel P, Varasi M, Vulpetti A, Mercurio C. ChemMedChem 2 841-852 (2007)
  21. Antiproliferative and proapoptotic activities of a new class of pyrazole derivatives in HL-60 cells. Anzaldi M, Macciò C, Mazzei M, Bertolotto M, Ottonello L, Dallegri F, Balbi A. Chem. Biodivers. 6 1674-1687 (2009)
  22. Structure-based drug design to the discovery of new 2-aminothiazole CDK2 inhibitors. Vulpetti A, Casale E, Roletto F, Amici R, Villa M, Pevarello P. J. Mol. Graph. Model. 24 341-348 (2006)
  23. Discovery of NMS-E973 as novel, selective and potent inhibitor of heat shock protein 90 (Hsp90). Brasca MG, Mantegani S, Amboldi N, Bindi S, Caronni D, Casale E, Ceccarelli W, Colombo N, De Ponti A, Donati D, Ermoli A, Fachin G, Felder ER, Ferguson RD, Fiorelli C, Guanci M, Isacchi A, Pesenti E, Polucci P, Riceputi L, Sola F, Visco C, Zuccotto F, Fogliatto G. Bioorg. Med. Chem. 21 7047-7063 (2013)
  24. Fragment-based hit discovery and structure-based optimization of aminotriazoloquinazolines as novel Hsp90 inhibitors. Casale E, Amboldi N, Brasca MG, Caronni D, Colombo N, Dalvit C, Felder ER, Fogliatto G, Galvani A, Isacchi A, Polucci P, Riceputi L, Sola F, Visco C, Zuccotto F, Casuscelli F. Bioorg. Med. Chem. 22 4135-4150 (2014)
  25. Molecular modelling on small molecular CDK2 inhibitors: an integrated approach using a combination of molecular docking, 3D-QSAR and pharmacophore modelling. Yuan H, Liu H, Tai W, Wang F, Zhang Y, Yao S, Ran T, Lu S, Ke Z, Xiong X, Xu J, Chen Y, Lu T. SAR QSAR Environ Res 24 795-817 (2013)
  26. Stochastic entropy QSAR for the in silico discovery of anticancer compounds: prediction, synthesis, and in vitro assay of new purine carbanucleosides. González-Díaz H, Viña D, Santana L, de Clercq E, Uriarte E. Bioorg. Med. Chem. 14 1095-1107 (2006)
  27. Synthesis of benzo[1,2-d;3,4-d']diimidazole and 1H-pyrazolo[4,3-b]pyridine as putative A2A receptor antagonists. Piersanti G, Giorgi L, Bartoccini F, Tarzia G, Minetti P, Gallo G, Giorgi F, Castorina M, Ghirardi O, Carminati P. Org. Biomol. Chem. 5 2567-2571 (2007)
  28. Disubstituted 1,8-dipyrazolcarbazole derivatives as a new type of c-myc G-quadruplex binding ligands. Chen WJ, Zhou CX, Yao PF, Wang XX, Tan JH, Li D, Ou TM, Gu LQ, Huang ZS. Bioorg. Med. Chem. 20 2829-2836 (2012)
  29. Factors influencing publication of scientific articles derived from masters theses in public health. Hollmann M, Borrell C, Garin O, Fernández E, Alonso J. Int J Public Health 60 495-504 (2015)
  30. In vitro and in vivo pharmacodynamics of three novel antileishmanial lead series. Van den Kerkhof M, Mabille D, Chatelain E, Mowbray CE, Braillard S, Hendrickx S, Maes L, Caljon G. Int J Parasitol Drugs Drug Resist 8 81-86 (2018)
  31. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands. Sancineto L, Iraci N, Barreca ML, Massari S, Manfroni G, Corazza G, Cecchetti V, Marcello A, Daelemans D, Pannecouque C, Tabarrini O. Bioorg. Med. Chem. 22 4658-4666 (2014)
  32. Novel pyrrole carboxamide inhibitors of JAK2 as potential treatment of myeloproliferative disorders. Brasca MG, Gnocchi P, Nesi M, Amboldi N, Avanzi N, Bertrand J, Bindi S, Canevari G, Casero D, Ciomei M, Colombo N, Cribioli S, Fachin G, Felder ER, Galvani A, Isacchi A, Motto I, Panzeri A, Donati D. Bioorg. Med. Chem. 23 2387-2407 (2015)
  33. Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors. Brasca MG, Nesi M, Avanzi N, Ballinari D, Bandiera T, Bertrand J, Bindi S, Canevari G, Carenzi D, Casero D, Ceriani L, Ciomei M, Cirla A, Colombo M, Cribioli S, Cristiani C, Della Vedova F, Fachin G, Fasolini M, Felder ER, Galvani A, Isacchi A, Mirizzi D, Motto I, Panzeri A, Pesenti E, Vianello P, Gnocchi P, Donati D. Bioorg. Med. Chem. 22 4998-5012 (2014)
  34. 1-Substituted carbamoyl and thiocarbamoyl-4,5-dihydro-1H-pyrazoles as possible cytotoxic and antimicrobial agents. Khan KA, Faidallah HM. J Enzyme Inhib Med Chem 31 619-627 (2016)
  35. A practical synthesis of the major 3-hydroxy-2-pyrrolidinone metabolite of a potent CDK2/cyclin A inhibitor. Nesi M, Borghi D, Brasca MG, Fiorentini F, Pevarello P. Bioorg. Med. Chem. Lett. 16 3205-3208 (2006)
  36. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. King HM, Rana S, Kubica SP, Mallareddy JR, Kizhake S, Ezell EL, Zahid M, Naldrett MJ, Alvarez S, Law HC, Woods NT, Natarajan A. Bioorg Med Chem Lett 43 128061 (2021)
  37. Hit clustering can improve virtual fragment screening: CDK2 and PARP1 case studies. Zeifman AA, Stroylov VS, Novikov FN, Stroganov OV, Zakharenko AL, Khodyreva SN, Lavrik OI, Chilov GG. J Mol Model 18 2553-2566 (2012)
  38. Characterization of CDK(5) inhibitor, 20-223 (aka CP668863) for colorectal cancer therapy. Robb CM, Kour S, Contreras JI, Agarwal E, Barger CJ, Rana S, Sonawane Y, Neilsen BK, Taylor M, Kizhake S, Thakare RN, Chowdhury S, Wang J, Black JD, Hollingsworth MA, Brattain MG, Natarajan A. Oncotarget 9 5216-5232 (2018)
  39. Design and synthesis of novel complexes containing N-phenyl-1H-pyrazole moiety: Ni complex as potential antifungal and antiproliferative compound. El-Gamel NE, Farghaly TA. Spectrochim Acta A Mol Biomol Spectrosc 115 469-475 (2013)
  40. Systemic Administration of a Brain Permeable Cdk5 Inhibitor Alters Neurobehavior. Umfress A, Singh S, Ryan KJ, Chakraborti A, Plattner F, Sonawane Y, Mallareddy JR, Acosta EP, Natarajan A, Bibb JA. Front Pharmacol 13 863762 (2022)
  41. CDK5 Inhibitor Downregulates Mcl-1 and Sensitizes Pancreatic Cancer Cell Lines to Navitoclax. Kour S, Rana S, Contreras JI, King HM, Robb CM, Sonawane YA, Bendjennat M, Crawford AJ, Barger CJ, Kizhake S, Luo X, Hollingsworth MA, Natarajan A. Mol. Pharmacol. 96 419-429 (2019)
  42. Synthesis of aminopyrazole analogs and their evaluation as CDK inhibitors for cancer therapy. Rana S, Sonawane YA, Taylor MA, Kizhake S, Zahid M, Natarajan A. Bioorg. Med. Chem. Lett. 28 3736-3740 (2018)
  43. Topochemical models for prediction of anti-tumor activity of 3-aminopyrazoles. Bajaj S, Sambi SS, Madan AK. Chem. Pharm. Bull. 53 611-615 (2005)