1v74 Citations

Structural inhibition of the colicin D tRNase by the tRNA-mimicking immunity protein.

Abstract

Colicins are toxins secreted by Escherichia coli in order to kill their competitors. Colicin D is a 75 kDa protein that consists of a translocation domain, a receptor-binding domain and a cytotoxic domain, which specifically cleaves the anticodon loop of all four tRNA(Arg) isoacceptors, thereby inactivating protein synthesis and leading to cell death. Here we report the 2.0 A resolution crystal structure of the complex between the toxic domain and its immunity protein ImmD. Neither component shows structural homology to known RNases or their inhibitors. In contrast to other characterized colicin nuclease-Imm complexes, the colicin D active site pocket is completely blocked by ImmD, which, by bringing a negatively charged cluster in opposition to a positively charged cluster on the surface of colicin D, appears to mimic the tRNA substrate backbone. Site-directed mutations affecting either the catalytic domain or the ImmD protein have led to the identification of the residues vital for catalytic activity and for the tight colicin D/ImmD interaction that inhibits colicin D toxicity and tRNase catalytic activity.

Reviews - 1v74 mentioned but not cited (1)

  1. Colicin biology. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Microbiol Mol Biol Rev 71 158-229 (2007)

Articles - 1v74 mentioned but not cited (12)

  1. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. Biol Direct 7 18 (2012)
  2. Structural inhibition of the colicin D tRNase by the tRNA-mimicking immunity protein. Graille M, Mora L, Buckingham RH, van Tilbeurgh H, de Zamaroczy M. EMBO J 23 1474-1482 (2004)
  3. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  4. Structural alphabets derived from attractors in conformational space. Pandini A, Fornili A, Kleinjung J. BMC Bioinformatics 11 97 (2010)
  5. Convergent Evolution of the Barnase/EndoU/Colicin/RelE (BECR) Fold in Antibacterial tRNase Toxins. Gucinski GC, Michalska K, Garza-Sánchez F, Eschenfeldt WH, Stols L, Nguyen JY, Goulding CW, Joachimiak A, Hayes CS. Structure 27 1660-1674.e5 (2019)
  6. Discordant and chameleon sequences: their distribution and implications for amyloidogenicity. Gendoo DM, Harrison PM. Protein Sci 20 567-579 (2011)
  7. Target highlights in CASP14: Analysis of models by structure providers. Alexander LT, Lepore R, Kryshtafovych A, Adamopoulos A, Alahuhta M, Arvin AM, Bomble YJ, Böttcher B, Breyton C, Chiarini V, Chinnam NB, Chiu W, Fidelis K, Grinter R, Gupta GD, Hartmann MD, Hayes CS, Heidebrecht T, Ilari A, Joachimiak A, Kim Y, Linares R, Lovering AL, Lunin VV, Lupas AN, Makbul C, Michalska K, Moult J, Mukherjee PK, Nutt WS, Oliver SL, Perrakis A, Stols L, Tainer JA, Topf M, Tsutakawa SE, Valdivia-Delgado M, Schwede T. Proteins 89 1647-1672 (2021)
  8. Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions. Malhotra S, Sankar K, Sowdhamini R. PLoS One 9 e80255 (2014)
  9. Structural design principles for specific ultra-high affinity interactions between colicins/pyocins and immunity proteins. Shushan A, Kosloff M. Sci Rep 11 3789 (2021)
  10. Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction. Tsuchiya Y, Kanamori E, Nakamura H, Kinoshita K. Adv Appl Bioinform Chem 2 79-100 (2009)
  11. Match_Motif: A rapid computational tool to assist in protein-protein interaction design. Zacharias M. Protein Sci 31 147-157 (2022)
  12. Structural basis for the toxic activity of MafB2 from maf genomic island 2 (MGI-2) in N. meningitidis B16B6. Park SH, Jeong SJ, Ha SC. Sci Rep 13 3365 (2023)


Reviews citing this publication (11)

  1. Nucleases: diversity of structure, function and mechanism. Yang W. Q Rev Biophys 44 1-93 (2011)
  2. The weird and wonderful world of bacterial ribosome regulation. Wilson DN, Nierhaus KH. Crit Rev Biochem Mol Biol 42 187-219 (2007)
  3. High-resolution protein-protein docking. Gray JJ. Curr Opin Struct Biol 16 183-193 (2006)
  4. Nuclease colicins and their immunity proteins. Papadakos G, Wojdyla JA, Kleanthous C. Q Rev Biophys 45 57-103 (2012)
  5. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Masschelein J, Jenner M, Challis GL. Nat Prod Rep 34 712-783 (2017)
  6. Border crossings: colicins and transporters. Jakes KS, Cramer WA. Annu Rev Genet 46 209-231 (2012)
  7. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. Kim YC, Kim YC, Tarr AW, Penfold CN. Biochim Biophys Acta 1843 1717-1731 (2014)
  8. tRNA-targeting ribonucleases: molecular mechanisms and insights into their physiological roles. Ogawa T. Biosci Biotechnol Biochem 80 1037-1045 (2016)
  9. RNA toxins: mediators of stress adaptation and pathogen defense. Zhabokritsky A, Kutky M, Burns LA, Karran RA, Hudak KA. Wiley Interdiscip Rev RNA 2 890-903 (2011)
  10. Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors. Cuthbert BJ, Hayes CS, Goulding CW. Front Mol Biosci 9 866854 (2022)
  11. Story of Pore-Forming Proteins from Deadly Disease-Causing Agents to Modern Applications with Evolutionary Significance. Gupta LK, Molla J, Prabhu AA. Mol Biotechnol (2023)

Articles citing this publication (46)

  1. HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. de Vries SJ, van Dijk AD, Krzeminski M, van Dijk M, Thureau A, Hsu V, Wassenaar T, Bonvin AM. Proteins 69 726-733 (2007)
  2. Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Chen H, Zhou HX. Proteins 61 21-35 (2005)
  3. Improved side-chain modeling for protein-protein docking. Wang C, Schueler-Furman O, Baker D. Protein Sci 14 1328-1339 (2005)
  4. Crystal structure of archaeal toxin-antitoxin RelE-RelB complex with implications for toxin activity and antitoxin effects. Takagi H, Kakuta Y, Okada T, Yao M, Tanaka I, Kimura M. Nat Struct Mol Biol 12 327-331 (2005)
  5. Assessing predictions of protein-protein interaction: the CAPRI experiment. Janin J. Protein Sci 14 278-283 (2005)
  6. Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems. Morse RP, Nikolakakis KC, Willett JL, Gerrick E, Low DA, Hayes CS, Goulding CW. Proc Natl Acad Sci U S A 109 21480-21485 (2012)
  7. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility. Schueler-Furman O, Wang C, Baker D. Proteins 60 187-194 (2005)
  8. Data-driven docking: HADDOCK's adventures in CAPRI. van Dijk AD, de Vries SJ, Dominguez C, Chen H, Zhou HX, Bonvin AM. Proteins 60 232-238 (2005)
  9. RNA repair: an antidote to cytotoxic eukaryal RNA damage. Nandakumar J, Schwer B, Schaffrath R, Shuman S. Mol Cell 31 278-286 (2008)
  10. CAPRI rounds 3-5 reveal promising successes and future challenges for RosettaDock. Daily MD, Masica D, Sivasubramanian A, Somarouthu S, Gray JJ. Proteins 60 181-186 (2005)
  11. The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic. Walbott H, Machado-Pinilla R, Liger D, Blaud M, Réty S, Grozdanov PN, Godin K, van Tilbeurgh H, Varani G, Meier UT, Leulliot N. Genes Dev 25 2398-2408 (2011)
  12. Kluyveromyces lactis gamma-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Lu J, Esberg A, Huang B, Byström AS. Nucleic Acids Res 36 1072-1080 (2008)
  13. FtsH-dependent processing of RNase colicins D and E3 means that only the cytotoxic domains are imported into the cytoplasm. Chauleau M, Mora L, Serba J, de Zamaroczy M. J Biol Chem 286 29397-29407 (2011)
  14. Diversity and distribution of nuclease bacteriocins in bacterial genomes revealed using Hidden Markov Models. Sharp C, Bray J, Housden NG, Maiden MCJ, Kleanthous C. PLoS Comput Biol 13 e1005652 (2017)
  15. Structural basis for sequence-dependent recognition of colicin E5 tRNase by mimicking the mRNA-tRNA interaction. Yajima S, Inoue S, Ogawa T, Nonaka T, Ohsawa K, Masaki H. Nucleic Acids Res 34 6074-6082 (2006)
  16. A comparative genomics approach identifies contact-dependent growth inhibition as a virulence determinant. Allen JP, Ozer EA, Minasov G, Shuvalova L, Kiryukhina O, Satchell KJF, Hauser AR. Proc Natl Acad Sci U S A 117 6811-6821 (2020)
  17. Characterization of the 2',3' cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage lambda phosphatase. Keppetipola N, Shuman S. Nucleic Acids Res 35 7721-7732 (2007)
  18. Crystal structure of the antitoxin-toxin protein complex RelB-RelE from Methanococcus jannaschii. Francuski D, Saenger W. J Mol Biol 393 898-908 (2009)
  19. Discovery, characterization and in vivo activity of pyocin SD2, a protein antibiotic from Pseudomonas aeruginosa. McCaughey LC, Josts I, Grinter R, White P, Byron O, Tucker NP, Matthews JM, Kleanthous C, Whitchurch CB, Walker D. Biochem J 473 2345-2358 (2016)
  20. The weak shall inherit: bacteriocin-mediated interactions in bacterial populations. Majeed H, Lampert A, Ghazaryan L, Gillor O. PLoS One 8 e63837 (2013)
  21. Docking to single-domain and multiple-domain proteins: old and new challenges. Ben-Zeev E, Kowalsman N, Ben-Shimon A, Segal D, Atarot T, Noivirt O, Shay T, Eisenstein M. Proteins 60 195-201 (2005)
  22. Performance of the first protein docking server ClusPro in CAPRI rounds 3-5. Comeau SR, Vajda S, Camacho CJ. Proteins 60 239-244 (2005)
  23. Global structural rearrangement of the cell penetrating ribonuclease colicin E3 on interaction with phospholipid membranes. Mosbahi K, Walker D, James R, Moore GR, Kleanthous C. Protein Sci 15 620-627 (2006)
  24. Reprogramming the tRNA-splicing activity of a bacterial RNA repair enzyme. Keppetipola N, Nandakumar J, Shuman S. Nucleic Acids Res 35 3624-3630 (2007)
  25. The targets of CAPRI rounds 3-5. Janin J. Proteins 60 170-175 (2005)
  26. Relation between tRNase activity and the structure of colicin D according to X-ray crystallography. Yajima S, Nakanishi K, Takahashi K, Ogawa T, Hidaka M, Kezuka Y, Nonaka T, Ohsawa K, Masaki H. Biochem Biophys Res Commun 322 966-973 (2004)
  27. Structure-activity relationships in Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. Keppetipola N, Jain R, Meineke B, Diver M, Shuman S. RNA 15 1036-1044 (2009)
  28. Assessing the energy landscape of CAPRI targets by FunHunt. London N, Schueler-Furman O. Proteins 69 809-815 (2007)
  29. Combining interface core and whole interface descriptors in postscan processing of protein-protein docking models. Kowalsman N, Eisenstein M. Proteins 77 297-318 (2009)
  30. Import of the transfer RNase colicin D requires site-specific interaction with the energy-transducing protein TonB. Mora L, Diaz N, Buckingham RH, de Zamaroczy M. J Bacteriol 187 2693-2697 (2005)
  31. Biologically enhanced sampling geometric docking and backbone flexibility treatment with multiconformational superposition. Ma XH, Li CH, Shen LZ, Gong XQ, Chen WZ, Wang CX. Proteins 60 319-323 (2005)
  32. In vivo processing of DNase colicins E2 and E7 is required for their import into the cytoplasm of target cells. Mora L, de Zamaroczy M. PLoS One 9 e96549 (2014)
  33. Molecular basis of inhibition of the ribonuclease activity in colicin E5 by its cognate immunity protein. Luna-Chávez C, Lin YL, Huang RH. J Mol Biol 358 571-579 (2006)
  34. Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination. Chakravarty AK, Smith P, Jalan R, Shuman S. Cell Rep 7 339-347 (2014)
  35. Comment RelBE or not to be. Wilson DN, Nierhaus KH. Nat Struct Mol Biol 12 282-284 (2005)
  36. Searching for protein-protein interaction sites and docking by the methods of molecular dynamics, grid scoring, and the pairwise interaction potential of amino acid residues. Terashi G, Takeda-Shitaka M, Takaya D, Komatsu K, Umeyama H. Proteins 60 289-295 (2005)
  37. Cellular and transcriptional responses of yeast to the cleavage of cytosolic tRNAs induced by colicin D. Shigematsu M, Ogawa T, Kido A, Kitamoto HK, Hidaka M, Masaki H. Yeast 26 663-673 (2009)
  38. Crystal structure of the central and the C-terminal RNase domains of colicin D implicated its translocation pathway through inner membrane of target cell. Chang JW, Sato Y, Ogawa T, Arakawa T, Fukai S, Fushinobu S, Masaki H. J Biochem 164 329-339 (2018)
  39. The Stable Interaction Between Signal Peptidase LepB of Escherichia coli and Nuclease Bacteriocins Promotes Toxin Entry into the Cytoplasm. Mora L, Moncoq K, England P, Oberto J, de Zamaroczy M. J Biol Chem 290 30783-30796 (2015)
  40. Mechanistic insights into tRNA cleavage by a contact-dependent growth inhibitor protein and translation factors. Wang J, Yashiro Y, Sakaguchi Y, Suzuki T, Tomita K. Nucleic Acids Res 50 4713-4731 (2022)
  41. Substrate recognition mechanism of tRNA-targeting ribonuclease, colicin D, and an insight into tRNA cleavage-mediated translation impairment. Ogawa T, Takahashi K, Ishida W, Aono T, Hidaka M, Terada T, Masaki H. RNA Biol 18 1193-1205 (2021)
  42. Tasmancin and lysogenic bacteriophages induced from Erwinia tasmaniensis strains. Müller I, Lurz R, Geider K. Microbiol Res 167 381-387 (2012)
  43. RtcB2-PrfH Operon Protects E. coli ATCC25922 Strain from Colicin E3 Toxin. Maviza TP, Zarechenskaia AS, Burmistrova NR, Tchoub AS, Dontsova OA, Sergiev PV, Osterman IA. Int J Mol Sci 23 6453 (2022)
  44. Ribonuclease T2 represents a distinct circularly permutated version of the BECR RNases. Li H, Schneider T, Tan Y, Zhang D. Protein Sci 32 e4531 (2023)
  45. Unraveling the Uncharacterized Domain of Carocin S2: A Ribonuclease Pectobacterium carotovorum subsp. carotovorum Bacteriocin. Chung PC, Lagitnay RBJS, Derilo RC, Wu JL, Chuang Y, Lin JD, Chuang DY. Microorganisms 10 359 (2022)
  46. A Novel Deoxyribonuclease Low-Molecular-Weight Bacteriocin, Carocin S4, from Pectobacterium carotovorum subsp. carotovorum. Wu HP, Derilo RC, Hsu SH, Hu JM, Chuang DY. Microorganisms 11 1854 (2023)