1v0f Citations

Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F.

Nat Struct Mol Biol 12 90-6 (2005)
Cited: 126 times
EuropePMC logo PMID: 15608653

Abstract

Phages infecting the polysialic acid (polySia)-encapsulated human pathogen Escherichia coli K1 are equipped with capsule-degrading tailspikes known as endosialidases, which are the only identified enzymes that specifically degrade polySia. As polySia also promotes cellular plasticity and tumor metastasis in vertebrates, endosialidases are widely applied in polySia-related neurosciences and cancer research. Here we report the crystal structures of endosialidase NF and its complex with oligomeric sialic acid. The structure NF, which reveals three distinct domains, indicates that the unique polySia specificity evolved from a combination of structural elements characteristic of exosialidases and bacteriophage tailspike proteins. The endosialidase assembles into a catalytic trimer stabilized by a triple beta-helix. Its active site differs markedly from that of exosialidases, indicating an endosialidase-specific substrate-binding mode and catalytic mechanism. Residues essential for endosialidase activity were identified by structure-based mutational analysis.

Reviews - 1v0f mentioned but not cited (1)

  1. Unraveling virus relationships by structure-based phylogenetic classification. Ng WM, Stelfox AJ, Bowden TA. Virus Evol 6 veaa003 (2020)

Articles - 1v0f mentioned but not cited (2)

  1. The K5 lyase KflA combines a viral tail spike structure with a bacterial polysaccharide lyase mechanism. Thompson JE, Pourhossein M, Waterhouse A, Hudson T, Goldrick M, Derrick JP, Roberts IS. J. Biol. Chem. 285 23963-23969 (2010)
  2. Structure of the Chlamydia trachomatis immunodominant antigen Pgp3. Galaleldeen A, Taylor AB, Chen D, Schuermann JP, Holloway SP, Hou S, Gong S, Zhong G, Hart PJ. J. Biol. Chem. 288 22068-22079 (2013)


Reviews citing this publication (26)

  1. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Physiol. Rev. 94 461-518 (2014)
  2. Mechanistic insights into glycosidase chemistry. Vocadlo DJ, Davies GJ. Curr Opin Chem Biol 12 539-555 (2008)
  3. Recent structural insights into the expanding world of carbohydrate-active enzymes. Davies GJ, Gloster TM, Henrissat B. Curr. Opin. Struct. Biol. 15 637-645 (2005)
  4. Morphogenesis of the T4 tail and tail fibers. Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG. Virol. J. 7 355 (2010)
  5. Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Garron ML, Cygler M. Glycobiology 20 1547-1573 (2010)
  6. Glycosidase inhibition: assessing mimicry of the transition state. Gloster TM, Davies GJ. Org. Biomol. Chem. 8 305-320 (2010)
  7. Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. Cress BF, Englaender JA, He W, Kasper D, Linhardt RJ, Koffas MA. FEMS Microbiol. Rev. 38 660-697 (2014)
  8. Molecular architecture of tailed double-stranded DNA phages. Fokine A, Rossmann MG. Bacteriophage 4 e28281 (2014)
  9. The intramolecular chaperone-mediated protein folding. Chen YJ, Inouye M. Curr. Opin. Struct. Biol. 18 765-770 (2008)
  10. Bacteriophage based probes for pathogen detection. Singh A, Arutyunov D, Szymanski CM, Evoy S. Analyst 137 3405-3421 (2012)
  11. Structural insights into sialic acid enzymology. Buschiazzo A, Alzari PM. Curr Opin Chem Biol 12 565-572 (2008)
  12. Bacteriophages and phage-derived proteins--application approaches. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Curr. Med. Chem. 22 1757-1773 (2015)
  13. Glycoside hydrolases: catalytic base/nucleophile diversity. Vuong TV, Wilson DB. Biotechnol. Bioeng. 107 195-205 (2010)
  14. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Appl. Microbiol. Biotechnol. 101 3103-3119 (2017)
  15. Mobile contingency locus controlling Escherichia coli K1 polysialic acid capsule acetylation. Vimr ER, Steenbergen SM. Mol. Microbiol. 60 828-837 (2006)
  16. Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. Dunne M, Prokhorov NS, Loessner MJ, Leiman PG. Curr Opin Biotechnol 68 272-281 (2021)
  17. Advances in multifunctional glycosylated nanomaterials: preparation and applications in glycoscience. Adak AK, Li BY, Lin CC. Carbohydr. Res. 405 2-12 (2015)
  18. Evolution of the CNS myelin gene regulatory program. Li H, Richardson WD. Brain Res. 1641 111-121 (2016)
  19. Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates. Simpson DJ, Sacher JC, Szymanski CM. Curr. Opin. Struct. Biol. 34 69-77 (2015)
  20. Knitting and snipping: chaperones in β-helix folding. Schulz EC, Ficner R. Curr. Opin. Struct. Biol. 21 232-239 (2011)
  21. Exploring Mucin as Adjunct to Phage Therapy. Carroll-Portillo A, Lin HC. Microorganisms 9 509 (2021)
  22. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Mangalea MR, Duerkop BA. Infect Immun 88 (2020)
  23. Phage-encoded carbohydrate-interacting proteins in the human gut. Rothschild-Rodriguez D, Hedges M, Kaplan M, Karav S, Nobrega FL. Front Microbiol 13 1083208 (2022)
  24. Co-infection of the respiratory epithelium, scene of complex functional interactions between viral, bacterial, and human neuraminidases. Escuret V, Terrier O. Front Microbiol 14 1137336 (2023)
  25. Neuroimmunomodulatory properties of polysialic acid. Gretenkort L, Thiesler H, Hildebrandt H. Glycoconj J 40 277-294 (2023)
  26. Resources and Methods for Engineering "Designer" Glycan-Binding Proteins. Warkentin R, Kwan DH. Molecules 26 (2021)

Articles citing this publication (97)

  1. Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. Weinhold B, Seidenfaden R, Röckle I, Mühlenhoff M, Schertzinger F, Conzelmann S, Marth JD, Gerardy-Schahn R, Hildebrandt H. J Biol Chem 280 42971-42977 (2005)
  2. Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery. Chang J, Weigele P, King J, Chiu W, Jiang W. Structure 14 1073-1082 (2006)
  3. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Guu TS, Liu Z, Ye Q, Mata DA, Li K, Yin C, Zhang J, Tao YJ. Proc. Natl. Acad. Sci. U.S.A. 106 12992-12997 (2009)
  4. Structural changes of bacteriophage phi29 upon DNA packaging and release. Xiang Y, Morais MC, Battisti AJ, Grimes S, Jardine PJ, Anderson DL, Rossmann MG. EMBO J. 25 5229-5239 (2006)
  5. MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes. Bujalka H, Koenning M, Jackson S, Perreau VM, Pope B, Hay CM, Mitew S, Hill AF, Lu QR, Wegner M, Srinivasan R, Svaren J, Willingham M, Barres BA, Emery B. PLoS Biol. 11 e1001625 (2013)
  6. The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. Leiman PG, Battisti AJ, Bowman VD, Stummeyer K, Mühlenhoff M, Gerardy-Schahn R, Scholl D, Molineux IJ. J. Mol. Biol. 371 836-849 (2007)
  7. Impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid synthesis during postnatal mouse brain development. Oltmann-Norden I, Galuska SP, Hildebrandt H, Geyer R, Gerardy-Schahn R, Geyer H, Mühlenhoff M. J Biol Chem 283 1463-1471 (2008)
  8. Neural cell adhesion molecule-associated polysialic acid regulates synaptic plasticity and learning by restraining the signaling through GluN2B-containing NMDA receptors. Kochlamazashvili G, Senkov O, Grebenyuk S, Robinson C, Xiao MF, Stummeyer K, Gerardy-Schahn R, Engel AK, Feig L, Semyanov A, Suppiramaniam V, Schachner M, Dityatev A. J. Neurosci. 30 4171-4183 (2010)
  9. Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages. Stummeyer K, Schwarzer D, Claus H, Vogel U, Gerardy-Schahn R, Mühlenhoff M. Mol. Microbiol. 60 1123-1135 (2006)
  10. Biochemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases. Freiberger F, Claus H, Günzel A, Oltmann-Norden I, Vionnet J, Mühlenhoff M, Vogel U, Vann WF, Gerardy-Schahn R, Stummeyer K. Mol. Microbiol. 65 1258-1275 (2007)
  11. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Berg Miller ME, Yeoman CJ, Chia N, Tringe SG, Angly FE, Edwards RA, Flint HJ, Lamed R, Bayer EA, White BA. Environ. Microbiol. 14 207-227 (2012)
  12. Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Barbirz S, Müller JJ, Uetrecht C, Clark AJ, Heinemann U, Seckler R. Mol. Microbiol. 69 303-316 (2008)
  13. Polysialic acid profiles of mice expressing variant allelic combinations of the polysialyltransferases ST8SiaII and ST8SiaIV. Galuska SP, Oltmann-Norden I, Geyer H, Weinhold B, Kuchelmeister K, Hildebrandt H, Gerardy-Schahn R, Geyer R, Mühlenhoff M. J Biol Chem 281 31605-31615 (2006)
  14. An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Müller JJ, Barbirz S, Heinle K, Freiberg A, Seckler R, Heinemann U. Structure 16 766-775 (2008)
  15. Structure of the receptor-binding protein of bacteriophage det7: a podoviral tail spike in a myovirus. Walter M, Fiedler C, Grassl R, Biebl M, Rachel R, Hermo-Parrado XL, Llamas-Saiz AL, Seckler R, Miller S, van Raaij MJ. J. Virol. 82 2265-2273 (2008)
  16. Targeting epileptogenesis-associated induction of neurogenesis by enzymatic depolysialylation of NCAM counteracts spatial learning dysfunction but fails to impact epilepsy development. Pekcec A, Fuest C, Mühlenhoff M, Gerardy-Schahn R, Potschka H. J. Neurochem. 105 389-400 (2008)
  17. Demyelination of the hippocampus is prominent in the cuprizone model. Koutsoudaki PN, Skripuletz T, Gudi V, Moharregh-Khiabani D, Hildebrandt H, Trebst C, Stangel M. Neurosci. Lett. 451 83-88 (2009)
  18. Imbalance of neural cell adhesion molecule and polysialyltransferase alleles causes defective brain connectivity. Hildebrandt H, Mühlenhoff M, Oltmann-Norden I, Röckle I, Burkhardt H, Weinhold B, Gerardy-Schahn R. Brain 132 2831-2838 (2009)
  19. A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis. Schwarzer D, Buettner FF, Browning C, Nazarov S, Rabsch W, Bethe A, Oberbeck A, Bowman VD, Stummeyer K, Mühlenhoff M, Leiman PG, Gerardy-Schahn R. J. Virol. 86 10384-10398 (2012)
  20. Structure of phage P22 cell envelope–penetrating needle. Olia AS, Casjens S, Cingolani G. Nat. Struct. Mol. Biol. 14 1221-1226 (2007)
  21. Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers. Garcia-Doval C, van Raaij MJ. Proc. Natl. Acad. Sci. U.S.A. 109 9390-9395 (2012)
  22. Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded beta-helix. Smith NL, Taylor EJ, Lindsay AM, Charnock SJ, Turkenburg JP, Dodson EJ, Davies GJ, Black GW. Proc. Natl. Acad. Sci. U.S.A. 102 17652-17657 (2005)
  23. Polysialic acid/neural cell adhesion molecule modulates the formation of ductular reactions in liver injury. Tsuchiya A, Lu WY, Weinhold B, Boulter L, Stutchfield BM, Williams MJ, Guest RV, Minnis-Lyons SE, MacKinnon AC, Schwarzer D, Ichida T, Nomoto M, Aoyagi Y, Gerardy-Schahn R, Forbes SJ. Hepatology 60 1727-1740 (2014)
  24. Polysialic acid controls NCAM-induced differentiation of neuronal precursors into calretinin-positive olfactory bulb interneurons. Röckle I, Seidenfaden R, Weinhold B, Mühlenhoff M, Gerardy-Schahn R, Hildebrandt H. Dev Neurobiol 68 1170-1184 (2008)
  25. Restoration of synaptic plasticity and learning in young and aged NCAM-deficient mice by enhancing neurotransmission mediated by GluN2A-containing NMDA receptors. Kochlamazashvili G, Bukalo O, Senkov O, Salmen B, Gerardy-Schahn R, Engel AK, Schachner M, Dityatev A. J. Neurosci. 32 2263-2275 (2012)
  26. Soluble polysialylated NCAM: a novel player of the innate immune system in the lung. Ulm C, Saffarzadeh M, Mahavadi P, Müller S, Prem G, Saboor F, Simon P, Middendorff R, Geyer H, Henneke I, Bayer N, Rinné S, Lütteke T, Böttcher-Friebertshäuser E, Gerardy-Schahn R, Schwarzer D, Mühlenhoff M, Preissner KT, Günther A, Geyer R, Galuska SP. Cell. Mol. Life Sci. 70 3695-3708 (2013)
  27. Structure of the central hub of bacteriophage Mu baseplate determined by X-ray crystallography of gp44. Kondou Y, Kitazawa D, Takeda S, Tsuchiya Y, Yamashita E, Mizuguchi M, Kawano K, Tsukihara T. J. Mol. Biol. 352 976-985 (2005)
  28. Polysialic acid is present in mammalian semen as a post-translational modification of the neural cell adhesion molecule NCAM and the polysialyltransferase ST8SiaII. Simon P, Bäumner S, Busch O, Röhrich R, Kaese M, Richterich P, Wehrend A, Müller K, Gerardy-Schahn R, Mühlenhoff M, Geyer H, Geyer R, Middendorff R, Galuska SP. J. Biol. Chem. 288 18825-18833 (2013)
  29. Polysialic acid on neuropilin-2 is exclusively synthesized by the polysialyltransferase ST8SiaIV and attached to mucin-type o-glycans located between the b2 and c domain. Rollenhagen M, Buettner FF, Reismann M, Jirmo AC, Grove M, Behrens GM, Gerardy-Schahn R, Hanisch FG, Mühlenhoff M. J. Biol. Chem. 288 22880-22892 (2013)
  30. Whole genome sequencing and comparative genomic analyses of two Vibrio cholerae O139 Bengal-specific Podoviruses to other N4-like phages reveal extensive genetic diversity. Fouts DE, Klumpp J, Bishop-Lilly KA, Rajavel M, Willner KM, Butani A, Henry M, Biswas B, Li M, Albert MJ, Loessner MJ, Calendar R, Sozhamannan S. Virol. J. 10 165 (2013)
  31. Culturing of glial and neuronal cells on polysialic acid. Haile Y, Haastert K, Cesnulevicius K, Stummeyer K, Timmer M, Berski S, Dräger G, Gerardy-Schahn R, Grothe C. Biomaterials 28 1163-1173 (2007)
  32. Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Li Y, Cao H, Yu H, Chen Y, Lau K, Qu J, Thon V, Sugiarto G, Chen X. Mol Biosyst 7 1060-1072 (2011)
  33. Sialidase NEU4 hydrolyzes polysialic acids of neural cell adhesion molecules and negatively regulates neurite formation by hippocampal neurons. Takahashi K, Mitoma J, Hosono M, Shiozaki K, Sato C, Yamaguchi K, Kitajima K, Higashi H, Nitta K, Shima H, Miyagi T. J. Biol. Chem. 287 14816-14826 (2012)
  34. Crystal structure of an intramolecular chaperone mediating triple-beta-helix folding. Schulz EC, Dickmanns A, Urlaub H, Schmitt A, Mühlenhoff M, Stummeyer K, Schwarzer D, Gerardy-Schahn R, Ficner R. Nat. Struct. Mol. Biol. 17 210-215 (2010)
  35. Polysialylation and lipopolysaccharide-induced shedding of E-selectin ligand-1 and neuropilin-2 by microglia and THP-1 macrophages. Werneburg S, Buettner FF, Erben L, Mathews M, Neumann H, Mühlenhoff M, Hildebrandt H. Glia 64 1314-1330 (2016)
  36. Polysialylation of the synaptic cell adhesion molecule 1 (SynCAM 1) depends exclusively on the polysialyltransferase ST8SiaII in vivo. Rollenhagen M, Kuckuck S, Ulm C, Hartmann M, Galuska SP, Geyer R, Geyer H, Mühlenhoff M. J. Biol. Chem. 287 35170-35180 (2012)
  37. Level and localization of polysialic acid is critical for early peripheral nerve regeneration. Jungnickel J, Brämer C, Bronzlik P, Lipokatic-Takacs E, Weinhold B, Gerardy-Schahn R, Grothe C. Mol. Cell. Neurosci. 40 374-381 (2009)
  38. Characterization of two polyvalent phages infecting Enterobacteriaceae. Hamdi S, Rousseau GM, Labrie SJ, Tremblay DM, Kourda RS, Ben Slama K, Moineau S. Sci Rep 7 40349 (2017)
  39. Proteolytic release of the intramolecular chaperone domain confers processivity to endosialidase F. Schwarzer D, Stummeyer K, Haselhorst T, Freiberger F, Rode B, Grove M, Scheper T, von Itzstein M, Mühlenhoff M, Gerardy-Schahn R. J. Biol. Chem. 284 9465-9474 (2009)
  40. Remyelination after cuprizone induced demyelination is accelerated in mice deficient in the polysialic acid synthesizing enzyme St8siaIV. Koutsoudaki PN, Hildebrandt H, Gudi V, Skripuletz T, Škuljec J, Stangel M. Neuroscience 171 235-244 (2010)
  41. The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells. Haile Y, Berski S, Dräger G, Nobre A, Stummeyer K, Gerardy-Schahn R, Grothe C. Biomaterials 29 1880-1891 (2008)
  42. A new sialidase mechanism: bacteriophage K1F endo-sialidase is an inverting glycosidase. Morley TJ, Willis LM, Whitfield C, Wakarchuk WW, Withers SG. J. Biol. Chem. 284 17404-17410 (2009)
  43. Identification of amino acid residues at the active site of endosialidase that dissociate the polysialic acid binding and cleaving activities in Escherichia coli K1 bacteriophages. Jakobsson E, Jokilammi A, Aalto J, Ollikka P, Lehtonen JV, Hirvonen H, Finne J. Biochem. J. 405 465-472 (2007)
  44. NCAM and polysialyltransferase profiles match dopaminergic marker gene expression but polysialic acid is dispensable for development of the midbrain dopamine system. Schiff M, Weinhold B, Grothe C, Hildebrandt H. J. Neurochem. 110 1661-1673 (2009)
  45. Phages of Pseudomonas aeruginosa: response to environmental factors and in vitro ability to inhibit bacterial growth and biofilm formation. Knezevic P, Obreht D, Curcin S, Petrusic M, Aleksic V, Kostanjsek R, Petrovic O. J. Appl. Microbiol. 111 245-254 (2011)
  46. Polysialic acid on SynCAM 1 in NG2 cells and on neuropilin-2 in microglia is confined to intracellular pools that are rapidly depleted upon stimulation. Werneburg S, Mühlenhoff M, Stangel M, Hildebrandt H. Glia 63 1240-1255 (2015)
  47. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain. Parent KN, Tang J, Cardone G, Gilcrease EB, Janssen ME, Olson NH, Casjens SR, Baker TS. Virology 464-465 55-66 (2014)
  48. Deficits in sialylation impair podocyte maturation. Weinhold B, Sellmeier M, Schaper W, Blume L, Philippens B, Kats E, Bernard U, Galuska SP, Geyer H, Geyer R, Worthmann K, Schiffer M, Groos S, Gerardy-Schahn R, Münster-Kühnel AK. J. Am. Soc. Nephrol. 23 1319-1328 (2012)
  49. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1. Casey E, Mahony J, Neve H, Noben JP, Dal Bello F, van Sinderen D. Appl. Environ. Microbiol. 81 1319-1326 (2015)
  50. Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families. Quistgaard EM, Thirup SS. BMC Struct. Biol. 9 46 (2009)
  51. Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction. Prymula K, Jadczyk T, Roterman I. J. Comput. Aided Mol. Des. 25 117-133 (2011)
  52. In vitro generation of polysialylated cervical mucins by bacterial polysialyltransferases to counteract cytotoxicity of extracellular histones. Galuska SP, Galuska CE, Tharmalingam T, Zlatina K, Prem G, Husejnov FCO, Rudd PM, Vann WF, Reid C, Vionnet J, Gallagher ME, Carrington FA, Hassett SL, Carrington SD. FEBS J. 284 1688-1699 (2017)
  53. Structure of the host-recognition device of Staphylococcus aureus phage ϕ11. Koç C, Xia G, Kühner P, Spinelli S, Roussel A, Cambillau C, Stehle T. Sci Rep 6 27581 (2016)
  54. Atypical sialylated N-glycan structures are attached to neuronal voltage-gated potassium channels. Cartwright TA, Schwalbe RA. Biosci. Rep. 29 301-313 (2009)
  55. Genesis of rods in the zebrafish retina occurs in a microenvironment provided by polysialic acid-expressing Müller glia. Kustermann S, Hildebrandt H, Bolz S, Dengler K, Kohler K. J. Comp. Neurol. 518 636-646 (2010)
  56. Introductory Journal Article Not a barrier but a key: How bacteriophages exploit host's O-antigen as an essential receptor to initiate infection. Broeker NK, Barbirz S. Mol. Microbiol. 105 353-357 (2017)
  57. Polysialic acid as an antigen for monoclonal antibody HIgM12 to treat multiple sclerosis and other neurodegenerative disorders. Watzlawik JO, Kahoud RJ, Ng S, Painter MM, Papke LM, Zoecklein L, Wootla B, Warrington AE, Carey WA, Rodriguez M. J. Neurochem. 134 865-878 (2015)
  58. Polysialic acid immobilized on silanized glass surfaces: a test case for its use as a biomaterial for nerve regeneration. Steinhaus S, Stark Y, Bruns S, Haile Y, Scheper T, Grothe C, Behrens P. J Mater Sci Mater Med 21 1371-1378 (2010)
  59. Polysialylation of NCAM correlates with onset and termination of seasonal spermatogenesis in roe deer. Hänsch M, Simon P, Schön J, Kaese M, Braun BC, Jewgenow K, Göritz F, Küpper J, Ahmadvand N, Geyer R, Middendorff R, Müller K, Galuska SP. Glycobiology 24 488-493 (2014)
  60. Myrf ER-Bound Transcription Factors Drive C. elegans Synaptic Plasticity via Cleavage-Dependent Nuclear Translocation. Meng J, Ma X, Tao H, Jin X, Witvliet D, Mitchell J, Zhu M, Dong MQ, Zhen M, Jin Y, Qi YB. Dev. Cell 41 180-194.e7 (2017)
  61. Structure and biochemical characterization of bacteriophage phi92 endosialidase. Schwarzer D, Browning C, Stummeyer K, Oberbeck A, Mühlenhoff M, Gerardy-Schahn R, Leiman PG. Virology 477 133-143 (2015)
  62. A plate-based high-throughput activity assay for polysialyltransferase from Neisseria meningitidis. Yu CC, Hill T, Kwan DH, Chen HM, Lin CC, Wakarchuk W, Withers SG. Anal. Biochem. 444 67-74 (2014)
  63. Endosialidase NF appears to bind polySia DP5 in a helical conformation. Haselhorst T, Stummeyer K, Mühlenhoff M, Schaper W, Gerardy-Schahn R, von Itzstein M. Chembiochem 7 1875-1877 (2006)
  64. St8sia2 deficiency plus juvenile cannabis exposure in mice synergistically affect higher cognition in adulthood. Tantra M, Kröcher T, Papiol S, Winkler D, Röckle I, Jatho J, Burkhardt H, Ronnenberg A, Gerardy-Schahn R, Ehrenreich H, Hildebrandt H. Behav. Brain Res. 275 166-175 (2014)
  65. Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2. Khedri Z, Li Y, Cao H, Qu J, Yu H, Muthana MM, Chen X. Org. Biomol. Chem. 10 6112-6120 (2012)
  66. WITHDRAWN: Polysialylation of NCAM. Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. Neurochem. Res. (2008)
  67. Coliphage derived sialidase preferentially recognizes nonreducing end of polysialic acid. Kataoka Y, Miyake K, Iijima S. J. Biosci. Bioeng. 101 198-201 (2006)
  68. In silico analysis of AHJD-like viruses, Staphylococcus aureus phages S24-1 and S13', and study of phage S24-1 adsorption. Uchiyama J, Takemura-Uchiyama I, Kato S, Sato M, Ujihara T, Matsui H, Hanaki H, Daibata M, Matsuzaki S. Microbiologyopen 3 257-270 (2014)
  69. Stalled folding mutants in the triple beta-helix domain of the phage P22 tailspike adhesin. Weigele PR, Haase-Pettingell C, Campbell PG, Gossard DC, King J. J. Mol. Biol. 354 1103-1117 (2005)
  70. Molecular analysis of the low-temperature Escherichia coli phage vB_EcoS_NBD2. Kaliniene L, Truncaitė L, Šimoliūnas E, Zajančkauskaitė A, Vilkaitytė M, Kaupinis A, Skapas M, Meškys R. Arch. Virol. 163 105-114 (2018)
  71. Polysialic acid and Siglec-E orchestrate negative feedback regulation of microglia activation. Thiesler H, Beimdiek J, Hildebrandt H. Cell Mol Life Sci 78 1637-1653 (2021)
  72. Polysialylation of NCAM characterizes the proliferation period of contractile elements during postnatal development of the epididymis. Simon P, Feuerstacke C, Kaese M, Saboor F, Middendorff R, Galuska SP. PLoS ONE 10 e0123960 (2015)
  73. Structure and Analysis of R1 and R2 Pyocin Receptor-Binding Fibers. Buth SA, Shneider MM, Scholl D, Leiman PG. Viruses 10 (2018)
  74. The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase. Cornelissen A, Sadovskaya I, Vinogradov E, Blangy S, Spinelli S, Casey E, Mahony J, Noben JP, Dal Bello F, Cambillau C, van Sinderen D. J. Biol. Chem. 291 16816-16827 (2016)
  75. A glyco-gold nanoparticle based assay for α-2,8-polysialyltransferase from Neisseria meningitidis. Yu CC, Huang LD, Kwan DH, Wakarchuk WW, Withers SG, Lin CC. Chem. Commun. (Camb.) 49 10166-10168 (2013)
  76. Intrabodies against the Polysialyltransferases ST8SiaII and ST8SiaIV inhibit Polysialylation of NCAM in rhabdomyosarcoma tumor cells. Somplatzki S, Mühlenhoff M, Kröger A, Gerardy-Schahn R, Böldicke T. BMC Biotechnol. 17 42 (2017)
  77. Polysialic Acid in Human Plasma Can Compensate the Cytotoxicity of Histones. Zlatina K, Saftenberger M, Kühnle A, Galuska CE, Gärtner U, Rebl A, Oster M, Vernunft A, Galuska SP. Int J Mol Sci 19 (2018)
  78. Polysialylation takes place in granulosa cells during apoptotic processes of atretic tertiary follicles. Kaese M, Galuska CE, Simon P, Braun BC, Cabrera-Fuentes HA, Middendorff R, Wehrend A, Jewgenow K, Galuska SP. FEBS J. 282 4595-4606 (2015)
  79. Structure and Biophysical Properties of a Triple-Stranded Beta-Helix Comprising the Central Spike of Bacteriophage T4. Buth SA, Menin L, Shneider MM, Engel J, Boudko SP, Leiman PG. Viruses 7 4676-4706 (2015)
  80. Characterization of the Polysialylation Status in Ovaries of the Salmonid Fish Coregonus maraena and the Percid Fish Sander lucioperca. Venuto MT, Martorell-Ribera J, Bochert R, Harduin-Lepers A, Rebl A, Galuska SP. Cells 9 E2391 (2020)
  81. Geometrical principles of homomeric β-barrels and β-helices: Application to modeling amyloid protofilaments. Hayward S, Milner-White EJ. Proteins 85 1866-1881 (2017)
  82. Polysialic Acid Regulates Sympathetic Outflow by Facilitating Information Transfer within the Nucleus of the Solitary Tract. Bokiniec P, Shahbazian S, McDougall SJ, Berning BA, Cheng D, Llewellyn-Smith IJ, Burke PGR, McMullan S, Mühlenhoff M, Hildebrandt H, Braet F, Connor M, Packer NH, Goodchild AK. J. Neurosci. 37 6558-6574 (2017)
  83. The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly. Takata T, Haase-Pettingell C, King J. Bacteriophage 2 36-49 (2012)
  84. Antibody Binding Specificity for Kappa (Vκ) Light Chain-containing Human (IgM) Antibodies: Polysialic Acid (PSA) Attached to NCAM as a Case Study. Watzlawik JO, Kahoud RJ, Wootla B, Painter MM, Warrington AE, Carey WA, Rodriguez M. J Vis Exp (2016)
  85. Characterization of Novel Bacteriophage vB_KpnP_ZX1 and Its Depolymerases with Therapeutic Potential for K57 Klebsiella pneumoniae Infection. Li P, Ma W, Shen J, Zhou X. Pharmaceutics 14 1916 (2022)
  86. Identification of Receptor Binding Proteins in Flagellotropic Agrobacterium Phage 7-7-1. Gonzalez F, Scharf BE. Viruses 13 1267 (2021)
  87. Milk Polysialic Acid Levels Rapidly Decrease in Line with the N-Acetylneuraminic Acid Concentrations during Early Lactation in Dairy Cows. Hinterseher J, Günther J, Zlatina K, Isernhagen L, Viergutz T, Wirthgen E, Hoeflich A, Vernunft A, Galuska SP. Biology (Basel) 12 5 (2022)
  88. Modeling the Architecture of Depolymerase-Containing Receptor Binding Proteins in Klebsiella Phages. Latka A, Leiman PG, Drulis-Kawa Z, Briers Y. Front Microbiol 10 2649 (2019)
  89. Molecular characterization of a tetra segmented ssDNA virus infecting Botrytis cinerea worldwide. Ruiz-Padilla A, Turina M, Ayllón MA. Virol J 20 306 (2023)
  90. Nanoparticles Equipped with α2,8-Linked Sialic Acid Chains Inhibit the Release of Neutrophil Extracellular Traps. Bornhöfft KF, Viergutz T, Kühnle A, Galuska SP. Nanomaterials (Basel) 9 (2019)
  91. PhaVIP: Phage VIrion Protein classification based on chaos game representation and Vision Transformer. Shang J, Peng C, Tang X, Sun Y. Bioinformatics 39 i30-i39 (2023)
  92. Polysialic acid is released by human umbilical vein endothelial cells (HUVEC) in vitro. Strubl S, Schubert U, Kühnle A, Rebl A, Ahmadvand N, Fischer S, Preissner KT, Galuska SP. Cell Biosci 8 64 (2018)
  93. Salmonid polysialyltransferases to generate a variety of sialic acid polymers. Decloquement M, Venuto MT, Cogez V, Steinmetz A, Schulz C, Lion C, Noel M, Rigolot V, Teppa RE, Biot C, Rebl A, Galuska SP, Harduin-Lepers A. Sci Rep 13 15610 (2023)
  94. Structural motif, topi and its role in protein function and fibrillation. Dhar J, Chakrabarti P. Mol Omics 14 247-256 (2018)
  95. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. Sci Adv 5 eaaw7414 (2019)
  96. Structure of Escherichia coli O157:H7 bacteriophage CBA120 tailspike protein 4 baseplate anchor and tailspike assembly domains (TSP4-N). Chao KL, Shang X, Greenfield J, Linden SB, Alreja AB, Nelson DC, Herzberg O. Sci Rep 12 2061 (2022)
  97. The Loss of Polysialic Acid Impairs the Contractile Phenotype of Peritubular Smooth Muscle Cells in the Postnatal Testis. Hachem NE, Humpfle L, Simon P, Kaese M, Weinhold B, Günther J, Galuska SP, Middendorff R. Cells 10 1347 (2021)


Related citations provided by authors (1)

  1. Proteolytic processing and oligomerization of bacteriophage-derived endosialidases.. Mühlenhoff M, Stummeyer K, Grove M, Sauerborn M, Gerardy-Schahn R J Biol Chem 278 12634-44 (2003)