1uz0 Citations

The crystal structure of the family 6 carbohydrate binding module from Cellvibrio mixtus endoglucanase 5a in complex with oligosaccharides reveals two distinct binding sites with different ligand specificities.

J Biol Chem 279 21560-8 (2004)
Related entries: 1uxx, 1uxz, 1uy0, 1uyx, 1uyy, 1uyz

Cited: 44 times
EuropePMC logo PMID: 15010454

Abstract

Glycoside hydrolases that release fixed carbon from the plant cell wall are of considerable biological and industrial importance. These hydrolases contain non-catalytic carbohydrate binding modules (CBMs) that, by bringing the appended catalytic domain into intimate association with its insoluble substrate, greatly potentiate catalysis. Family 6 CBMs (CBM6) are highly unusual because they contain two distinct clefts (cleft A and cleft B) that potentially can function as binding sites. Henshaw et al. (Henshaw, J., Bolam, D. N., Pires, V. M. R., Czjzek, M., Henrissat, B., Ferreira, L. M. A., Fontes, C. M. G. A., and Gilbert, H. J. (2003) J. Biol. Chem. 279, 21552-21559) show that CmCBM6 contains two binding sites that display both similarities and differences in their ligand specificity. Here we report the crystal structure of CmCBM6 in complex with a variety of ligands that reveals the structural basis for the ligand specificity displayed by this protein. In cleft A the two faces of the terminal sugars of beta-linked oligosaccharides stack against Trp-92 and Tyr-33, whereas the rest of the binding cleft is blocked by Glu-20 and Thr-23, residues that are not present in CBM6 proteins that bind to the internal regions of polysaccharides in cleft A. Cleft B is solvent-exposed and, therefore, able to bind ligands because the loop, which occludes this region in other CBM6 proteins, is much shorter and flexible (lacks a conserved proline) in CmCBM6. Subsites 2 and 3 of cleft B accommodate cellobiose (Glc-beta-1,4-Glc), subsite 4 will bind only to a beta-1,3-linked glucose, whereas subsite 1 can interact with either a beta-1,3- or beta-1,4-linked glucose. These different specificities of the subsites explain how cleft B can accommodate beta-1,4-beta-1,3- or beta-1,3-beta-1,4-linked gluco-configured ligands.

Reviews - 1uz0 mentioned but not cited (1)

  1. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Biochem J 382 769-781 (2004)

Articles - 1uz0 mentioned but not cited (2)

  1. Structure and function of an arabinoxylan-specific xylanase. Correia MA, Mazumder K, Brás JL, Firbank SJ, Zhu Y, Lewis RJ, York WS, Fontes CM, Gilbert HJ. J Biol Chem 286 22510-22520 (2011)
  2. The β-glucanase ZgLamA from Zobellia galactanivorans evolved a bent active site adapted for efficient degradation of algal laminarin. Labourel A, Jam M, Jeudy A, Hehemann JH, Czjzek M, Michel G. J Biol Chem 289 2027-2042 (2014)


Reviews citing this publication (5)

  1. Role of receptors in Bacillus thuringiensis crystal toxin activity. Pigott CR, Ellar DJ. Microbiol Mol Biol Rev 71 255-281 (2007)
  2. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Gilbert HJ, Knox JP, Boraston AB. Curr Opin Struct Biol 23 669-677 (2013)
  3. The biochemistry and structural biology of plant cell wall deconstruction. Gilbert HJ. Plant Physiol 153 444-455 (2010)
  4. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Xu C, Wang BC, Yu Z, Sun M. Toxins (Basel) 6 2732-2770 (2014)
  5. Using structure to inform carbohydrate binding module function. Abbott DW, van Bueren AL. Curr Opin Struct Biol 28 32-40 (2014)

Articles citing this publication (36)

  1. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Dai X, Tian Y, Li J, Luo Y, Liu D, Zheng H, Wang J, Dong Z, Hu S, Huang L. Appl Environ Microbiol 81 1375-1386 (2015)
  2. Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. Najmudin S, Guerreiro CI, Carvalho AL, Prates JA, Correia MA, Alves VD, Ferreira LM, Romão MJ, Gilbert HJ, Bolam DN, Fontes CM. J Biol Chem 281 8815-8828 (2006)
  3. Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding. Tunnicliffe RB, Bolam DN, Pell G, Gilbert HJ, Williamson MP. J Mol Biol 347 287-296 (2005)
  4. The C-terminal domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module. Alderwick LJ, Lloyd GS, Ghadbane H, May JW, Bhatt A, Eggeling L, Fütterer K, Besra GS. PLoS Pathog 7 e1001299 (2011)
  5. Analysis of the specific interactions between the lectin domain of malectin and diglucosides. Schallus T, Fehér K, Sternberg U, Rybin V, Muhle-Goll C. Glycobiology 20 1010-1020 (2010)
  6. Requirement of the type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicus. Gardner JG, Keating DH. Appl Environ Microbiol 76 5079-5087 (2010)
  7. Distinct oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessibility to the ligand binding site. Vincent F, Round A, Reynaud A, Bordi C, Filloux A, Bourne Y. Environ Microbiol 12 1775-1786 (2010)
  8. Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: crystal structure of the CBM22-1-GH10 modules complexed with xylohexaose. Najmudin S, Pinheiro BA, Prates JA, Gilbert HJ, Romão MJ, Fontes CM. J Struct Biol 172 353-362 (2010)
  9. SACCHARIS: an automated pipeline to streamline discovery of carbohydrate active enzyme activities within polyspecific families and de novo sequence datasets. Jones DR, Thomas D, Alger N, Ghavidel A, Inglis GD, Abbott DW. Biotechnol Biofuels 11 27 (2018)
  10. N-acetylglucosamine recognition by a family 32 carbohydrate-binding module from Clostridium perfringens NagH. Ficko-Blean E, Boraston AB. J Mol Biol 390 208-220 (2009)
  11. The family 6 carbohydrate-binding modules have coevolved with their appended catalytic modules toward similar substrate specificity. Michel G, Barbeyron T, Kloareg B, Czjzek M. Glycobiology 19 615-623 (2009)
  12. Biochemical and domain analyses of FSUAxe6B, a modular acetyl xylan esterase, identify a unique carbohydrate binding module in Fibrobacter succinogenes S85. Yoshida S, Mackie RI, Cann IK. J Bacteriol 192 483-493 (2010)
  13. Structural basis for carbohydrate-binding specificity--a comparative assessment of two engineered carbohydrate-binding modules. von Schantz L, Håkansson M, Logan DT, Walse B, Osterlin J, Nordberg-Karlsson E, Ohlin M. Glycobiology 22 948-961 (2012)
  14. Molecular determinants of ligand specificity in family 11 carbohydrate binding modules: an NMR, X-ray crystallography and computational chemistry approach. Viegas A, Brás NF, Cerqueira NM, Fernandes PA, Prates JA, Fontes CM, Bruix M, Romão MJ, Carvalho AL, Ramos MJ, Macedo AL, Cabrita EJ. FEBS J 275 2524-2535 (2008)
  15. Structural elucidation of the cyclization mechanism of α-1,6-glucan by Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase. Suzuki N, Fujimoto Z, Kim YM, Momma M, Kishine N, Suzuki R, Suzuki S, Kitamura S, Kobayashi M, Kimura A, Funane K. J Biol Chem 289 12040-12051 (2014)
  16. Identification of a novel family of carbohydrate-binding modules with broad ligand specificity. Duan CJ, Feng YL, Cao QL, Huang MY, Feng JX. Sci Rep 6 19392 (2016)
  17. Binding sub-site dissection of a carbohydrate-binding module reveals the contribution of entropy to oligosaccharide recognition at "non-primary" binding subsites. Lammerts van Bueren A, Boraston AB. J Mol Biol 340 869-879 (2004)
  18. Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction. Zhao H, Yang Y, von Itzstein M, Zhou Y. J Comput Chem 35 2177-2183 (2014)
  19. Domain analysis of a modular alpha-L-Arabinofuranosidase with a unique carbohydrate binding strategy from the fiber-degrading bacterium Fibrobacter succinogenes S85. Yoshida S, Hespen CW, Beverly RL, Mackie RI, Cann IK. J Bacteriol 192 5424-5436 (2010)
  20. Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures. Mori T, Kamei I, Hirai H, Kondo R. Springerplus 3 365 (2014)
  21. Distinct protein architectures mediate species-specific beta-glucan binding and metabolism in the human gut microbiota. Tamura K, Dejean G, Van Petegem F, Brumer H. J Biol Chem 296 100415 (2021)
  22. Unraveling the multivalent binding of a marine family 6 carbohydrate-binding module with its native laminarin ligand. Jam M, Ficko-Blean E, Labourel A, Larocque R, Czjzek M, Michel G. FEBS J 283 1863-1879 (2016)
  23. Factor G utilizes a carbohydrate-binding cleft that is conserved between horseshoe crab and bacteria for the recognition of beta-1,3-D-glucans. Ueda Y, Ohwada S, Abe Y, Shibata T, Iijima M, Yoshimitsu Y, Koshiba T, Nakata M, Ueda T, Kawabata S. J Immunol 183 3810-3818 (2009)
  24. CORK1, A LRR-Malectin Receptor Kinase, Is Required for Cellooligomer-Induced Responses in Arabidopsis thaliana. Tseng YH, Scholz SS, Fliegmann J, Krüger T, Gandhi A, Furch ACU, Kniemeyer O, Brakhage AA, Oelmüller R. Cells 11 2960 (2022)
  25. Novel modular enzymes encoded by a cellulase gene cluster in Cellvibrio mixtus. Centeno MS, Goyal A, Prates JA, Ferreira LM, Gilbert HJ, Fontes CM. FEMS Microbiol Lett 265 26-34 (2006)
  26. Hydrophilic aromatic residue and in silico structure for carbohydrate binding module. Chou WY, Pai TW, Jiang TY, Chou WI, Tang CY, Chang MD. PLoS One 6 e24814 (2011)
  27. Development and Evaluation of GlycanDock: A Protein-Glycoligand Docking Refinement Algorithm in Rosetta. Nance ML, Labonte JW, Adolf-Bryfogle J, Gray JJ. J Phys Chem B (2021)
  28. Molecular engineering of cycloisomaltooligosaccharide glucanotransferase from Bacillus circulans T-3040: structural determinants for the reaction product size and reactivity. Suzuki R, Suzuki N, Fujimoto Z, Momma M, Kimura K, Kitamura S, Kimura A, Funane K. Biochem J 467 259-270 (2015)
  29. Structural and Functional Analysis of a Multimodular Hyperthermostable Xylanase-Glucuronoyl Esterase from Caldicellulosiruptor kristjansonii. Krska D, Mazurkewich S, Brown HA, Theibich Y, Poulsen JN, Morris AL, Koropatkin NM, Lo Leggio L, Larsbrink J. Biochemistry 60 2206-2220 (2021)
  30. The family 6 Carbohydrate Binding Module (CtCBM6) of glucuronoxylanase (CtXynGH30) of Clostridium thermocellum binds decorated and undecorated xylans through cleft A. Verma AK, Bule P, Ribeiro T, Brás JL, Mukherjee J, Gupta MN, Fontes CM, Goyal A. Arch Biochem Biophys 575 8-21 (2015)
  31. Ab initio phasing of a nucleoside hydrolase-related hypothetical protein from Saccharophagus degradans that is associated with carbohydrate metabolism. Hehemann JH, Marsters C, Boraston AB. Proteins 79 2992-2998 (2011)
  32. Agarolytic bacterium Persicobacter sp. CCB-QB2 exhibited a diauxic growth involving galactose utilization pathway. Furusawa G, Lau NS, Suganthi A, Amirul AA. Microbiologyopen 6 (2017)
  33. Functional and structural characterization of family 6 carbohydrate-binding module (CtCBM6A) of Clostridium thermocellum α-L-Arabinofuranosidase. Ahmed S, Luís AS, Brás JL, Fontes CM, Goyal A. Biochemistry (Mosc) 78 1272-1279 (2013)
  34. Over 100-Year Preservation and Temporal Fluctuations of Cell Wall Polysaccharides in Marine Sediments. Salmeán AA, Willats WGT, Ribeiro S, Andersen TJ, Ellegaard M. Front Plant Sci 13 785902 (2022)
  35. GH-16 Type β-1,3-Glucanase from Lysobacter sp. MK9-1 Enhances Antifungal Activity of GH-19 Type Chitinase, and Its Glucan-binding Domain Binds to Fungal Cell-wall. Otsuka Y, Sato K, Yano S, Kanno H, Suyotha W, Konno H, Makabe K, Taira T. J Appl Glycosci (1999) 69 49-56 (2022)
  36. Novel thermostable GH5_34 arabinoxylanase with an atypical CBM6 displays activity on oat fiber xylan for prebiotic production. Norlander S, Jasilionis A, Ara ZGK, Grey C, Adlercreutz P, Karlsson EN. Glycobiology 33 490-502 (2023)