1usx Citations

Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion.

J Virol 78 3733-41 (2004)
Related entries: 1e8t, 1e8u, 1e8v, 1usr

Cited: 124 times
EuropePMC logo PMID: 15016893

Abstract

Paramyxoviruses are the leading cause of respiratory disease in children. Several paramyxoviruses possess a surface glycoprotein, the hemagglutinin-neuraminidase (HN), that is involved in attachment to sialic acid receptors, promotion of fusion, and removal of sialic acid from infected cells and progeny virions. Previously we showed that Newcastle disease virus (NDV) HN contained a pliable sialic acid recognition site that could take two states, a binding state and a catalytic state. Here we present evidence for a second sialic acid binding site at the dimer interface of HN and present a model for its involvement in cell fusion. Three different crystal forms of NDV HN now reveal identical tetrameric arrangements of HN monomers, perhaps indicative of the tetramer association found on the viral surface.

Reviews - 1usx mentioned but not cited (1)

  1. Shared paramyxoviral glycoprotein architecture is adapted for diverse attachment strategies. Bowden TA, Crispin M, Jones EY, Stuart DI. Biochem Soc Trans 38 1349-1355 (2010)

Articles - 1usx mentioned but not cited (2)

  1. Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. Zaitsev V, von Itzstein M, Groves D, Kiefel M, Takimoto T, Portner A, Taylor G. J Virol 78 3733-3741 (2004)
  2. Sophora interrupta Bedd. root-derived flavonoids as prominent antiviral agents against Newcastle disease virus. Bhuvaneswar C, Rammohan A, Bhaskar BV, Babu PR, Naveen G, Gunasekar D, Madhuri S, Reddanna P, Rajendra W. RSC Adv 10 33534-33543 (2020)


Reviews citing this publication (23)

  1. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. White JM, Delos SE, Brecher M, Schornberg K. Crit Rev Biochem Mol Biol 43 189-219 (2008)
  2. Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Lamb RA, Paterson RG, Jardetzky TS. Virology 344 30-37 (2006)
  3. Sialic Acid Receptors of Viruses. Matrosovich M, Herrler G, Klenk HD. Top Curr Chem 367 1-28 (2015)
  4. Paramyxovirus fusion and entry: multiple paths to a common end. Chang A, Dutch RE. Viruses 4 613-636 (2012)
  5. Viral entry mechanisms: the increasing diversity of paramyxovirus entry. Smith EC, Popa A, Chang A, Masante C, Dutch RE. FEBS J 276 7217-7227 (2009)
  6. Entry of parainfluenza virus into cells as a target for interrupting childhood respiratory disease. Moscona A. J Clin Invest 115 1688-1698 (2005)
  7. Role of sialic acid-containing molecules in paramyxovirus entry into the host cell: a minireview. Villar E, Barroso IM. Glycoconj J 23 5-17 (2006)
  8. Viruses and sialic acids: rules of engagement. Neu U, Bauer J, Stehle T. Curr Opin Struct Biol 21 610-618 (2011)
  9. Modes of paramyxovirus fusion: a Henipavirus perspective. Lee B, Ataman ZA. Trends Microbiol 19 389-399 (2011)
  10. Structural and mechanistic studies of measles virus illuminate paramyxovirus entry. Plemper RK, Brindley MA, Iorio RM. PLoS Pathog 7 e1002058 (2011)
  11. Effects of Sialic Acid Modifications on Virus Binding and Infection. Wasik BR, Barnard KN, Parrish CR. Trends Microbiol 24 991-1001 (2016)
  12. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry. Bose S, Jardetzky TS, Lamb RA. Virology (Lond) 479-480 518-531 (2015)
  13. Measles Virus Fusion Protein: Structure, Function and Inhibition. Plattet P, Alves L, Herren M, Aguilar HC. Viruses 8 112 (2016)
  14. Envelope protein dynamics in paramyxovirus entry. Plattet P, Plemper RK. mBio 4 e00413-13 (2013)
  15. The structural basis of paramyxovirus invasion. Russell CJ, Luque LE. Trends Microbiol 14 243-246 (2006)
  16. Paramyxovirus entry. Bossart KN, Fusco DL, Broder CC. Adv Exp Med Biol 790 95-127 (2013)
  17. An overview of influenza A virus receptors. Ge S, Wang Z. Crit Rev Microbiol 37 157-165 (2011)
  18. Fusogenic Viruses in Oncolytic Immunotherapy. Krabbe T, Altomonte J. Cancers (Basel) 10 E216 (2018)
  19. Unity in diversity: shared mechanism of entry among paramyxoviruses. Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Prog Mol Biol Transl Sci 129 1-32 (2015)
  20. Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development. Jayawardena N, Burga LN, Poirier JT, Bostina M. Oncolytic Virother 8 39-56 (2019)
  21. Specificity switching in virus-receptor complexes. Stehle T, Casasnovas JM. Curr Opin Struct Biol 19 181-188 (2009)
  22. X-ray crystallographic analysis of measles virus hemagglutinin. Hashiguchi T, Maenaka K, Yanagi Y. Uirusu 58 1-10 (2008)
  23. [Viral fusion mechanisms]. Tsurudome M. Uirusu 55 207-219 (2005)

Articles citing this publication (98)

  1. Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Hashiguchi T, Kajikawa M, Maita N, Takeda M, Kuroki K, Sasaki K, Kohda D, Yanagi Y, Maenaka K. Proc Natl Acad Sci U S A 104 19535-19540 (2007)
  2. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Tian C, Hromatka BS, Kiefer AK, Eriksson N, Noble SM, Tung JY, Hinds DA. Nat Commun 8 599 (2017)
  3. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, Yanagi Y. Nat Struct Mol Biol 18 135-141 (2011)
  4. N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. Aguilar HC, Matreyek KA, Filone CM, Hashimi ST, Levroney EL, Negrete OA, Bertolotti-Ciarlet A, Choi DY, McHardy I, Fulcher JA, Su SV, Wolf MC, Kohatsu L, Baum LG, Lee B. J Virol 80 4878-4889 (2006)
  5. Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Yuan P, Thompson TB, Wurzburg BA, Paterson RG, Lamb RA, Jardetzky TS. Structure 13 803-815 (2005)
  6. Activation of natural killer cells by newcastle disease virus hemagglutinin-neuraminidase. Jarahian M, Watzl C, Fournier P, Arnold A, Djandji D, Zahedi S, Cerwenka A, Paschen A, Schirrmacher V, Momburg F. J Virol 83 8108-8121 (2009)
  7. Amino acid substitutions in the F-specific domain in the stalk of the newcastle disease virus HN protein modulate fusion and interfere with its interaction with the F protein. Melanson VR, Iorio RM. J Virol 78 13053-13061 (2004)
  8. Polybasic KKR motif in the cytoplasmic tail of Nipah virus fusion protein modulates membrane fusion by inside-out signaling. Aguilar HC, Matreyek KA, Choi DY, Filone CM, Young S, Lee B. J Virol 81 4520-4532 (2007)
  9. Addition of N-glycans in the stalk of the Newcastle disease virus HN protein blocks its interaction with the F protein and prevents fusion. Melanson VR, Iorio RM. J Virol 80 623-633 (2006)
  10. Refolding of a paramyxovirus F protein from prefusion to postfusion conformations observed by liposome binding and electron microscopy. Connolly SA, Leser GP, Yin HS, Jardetzky TS, Lamb RA. Proc Natl Acad Sci U S A 103 17903-17908 (2006)
  11. Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses. Uhlendorff J, Matrosovich T, Klenk HD, Matrosovich M. Arch Virol 154 945-957 (2009)
  12. A second receptor binding site on human parainfluenza virus type 3 hemagglutinin-neuraminidase contributes to activation of the fusion mechanism. Porotto M, Fornabaio M, Kellogg GE, Moscona A. J Virol 81 3216-3228 (2007)
  13. Dimeric architecture of the Hendra virus attachment glycoprotein: evidence for a conserved mode of assembly. Bowden TA, Crispin M, Harvey DJ, Jones EY, Stuart DI. J Virol 84 6208-6217 (2010)
  14. A novel receptor-induced activation site in the Nipah virus attachment glycoprotein (G) involved in triggering the fusion glycoprotein (F). Aguilar HC, Ataman ZA, Aspericueta V, Fang AQ, Stroud M, Negrete OA, Kammerer RA, Lee B. J Biol Chem 284 1628-1635 (2009)
  15. Residues in the stalk domain of the hendra virus g glycoprotein modulate conformational changes associated with receptor binding. Bishop KA, Hickey AC, Khetawat D, Patch JR, Bossart KN, Zhu Z, Wang LF, Dimitrov DS, Broder CC. J Virol 82 11398-11409 (2008)
  16. Glycoprotein interactions in paramyxovirus fusion. Iorio RM, Melanson VR, Mahon PJ. Future Virol 4 335-351 (2009)
  17. Mechanism of fusion triggering by human parainfluenza virus type III: communication between viral glycoproteins during entry. Porotto M, Palmer SG, Palermo LM, Moscona A. J Biol Chem 287 778-793 (2012)
  18. Paramyxovirus receptor-binding molecules: engagement of one site on the hemagglutinin-neuraminidase protein modulates activity at the second site. Porotto M, Fornabaio M, Greengard O, Murrell MT, Kellogg GE, Moscona A. J Virol 80 1204-1213 (2006)
  19. Mechanism for active membrane fusion triggering by morbillivirus attachment protein. Ader N, Brindley M, Avila M, Örvell C, Horvat B, Hiltensperger G, Schneider-Schaulies J, Vandevelde M, Zurbriggen A, Plemper RK, Plattet P. J Virol 87 314-326 (2013)
  20. The second receptor binding site of the globular head of the Newcastle disease virus hemagglutinin-neuraminidase activates the stalk of multiple paramyxovirus receptor binding proteins to trigger fusion. Porotto M, Salah Z, DeVito I, Talekar A, Palmer SG, Xu R, Wilson IA, Moscona A. J Virol 86 5730-5741 (2012)
  21. Inhibition of parainfluenza virus type 3 and Newcastle disease virus hemagglutinin-neuraminidase receptor binding: effect of receptor avidity and steric hindrance at the inhibitor binding sites. Porotto M, Murrell M, Greengard O, Lawrence MC, McKimm-Breschkin JL, Moscona A. J Virol 78 13911-13919 (2004)
  22. Structure of the ulster strain newcastle disease virus hemagglutinin-neuraminidase reveals auto-inhibitory interactions associated with low virulence. Yuan P, Paterson RG, Leser GP, Lamb RA, Jardetzky TS. PLoS Pathog 8 e1002855 (2012)
  23. Paramyxoviruses: different receptors - different mechanisms of fusion. Iorio RM, Mahon PJ. Trends Microbiol 16 135-137 (2008)
  24. Changes in mumps virus neurovirulence phenotype associated with quasispecies heterogeneity. Sauder CJ, Vandenburgh KM, Iskow RC, Malik T, Carbone KM, Rubin SA. Virology (Lond) 350 48-57 (2006)
  25. Domain architecture and oligomerization properties of the paramyxovirus PIV 5 hemagglutinin-neuraminidase (HN) protein. Yuan P, Leser GP, Demeler B, Lamb RA, Jardetzky TS. Virology 378 282-291 (2008)
  26. Newcastle disease virus in Madagascar: identification of an original genotype possibly deriving from a died out ancestor of genotype IV. Maminiaina OF, Gil P, Briand FX, Albina E, Keita D, Andriamanivo HR, Chevalier V, Lancelot R, Martinez D, Rakotondravao R, Rajaonarison JJ, Koko M, Andriantsimahavandy AA, Jestin V, Servan de Almeida R. PLoS One 5 e13987 (2010)
  27. Spring-loaded model revisited: paramyxovirus fusion requires engagement of a receptor binding protein beyond initial triggering of the fusion protein. Porotto M, Devito I, Palmer SG, Jurgens EM, Yee JL, Yokoyama CC, Pessi A, Moscona A. J Virol 85 12867-12880 (2011)
  28. Inhibition of receptor binding stabilizes Newcastle disease virus HN and F protein-containing complexes. McGinnes LW, Morrison TG. J Virol 80 2894-2903 (2006)
  29. Role of the two sialic acid binding sites on the newcastle disease virus HN protein in triggering the interaction with the F protein required for the promotion of fusion. Mahon PJ, Mirza AM, Iorio RM. J Virol 85 12079-12082 (2011)
  30. Biological significance of the second receptor binding site of Newcastle disease virus hemagglutinin-neuraminidase protein. Bousse TL, Taylor G, Krishnamurthy S, Portner A, Samal SK, Takimoto T. J Virol 78 13351-13355 (2004)
  31. Engineered intermonomeric disulfide bonds in the globular domain of Newcastle disease virus hemagglutinin-neuraminidase protein: implications for the mechanism of fusion promotion. Mahon PJ, Mirza AM, Musich TA, Iorio RM. J Virol 82 10386-10396 (2008)
  32. Fusion promotion by a paramyxovirus hemagglutinin-neuraminidase protein: pH modulation of receptor avidity of binding sites I and II. Palermo LM, Porotto M, Greengard O, Moscona A. J Virol 81 9152-9161 (2007)
  33. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery. Farzan SF, Palermo LM, Yokoyama CC, Orefice G, Fornabaio M, Sarkar A, Kellogg GE, Greengard O, Porotto M, Moscona A. J Biol Chem 286 37945-37954 (2011)
  34. Mapping antigenic diversity and strain specificity of mumps virus: a bioinformatics approach. Kulkarni-Kale U, Ojha J, Manjari GS, Deobagkar DD, Mallya AD, Dhere RM, Kapre SV. Virology 359 436-446 (2007)
  35. Regulation of paramyxovirus fusion activation: the hemagglutinin-neuraminidase protein stabilizes the fusion protein in a pretriggered state. Porotto M, Salah ZW, Gui L, DeVito I, Jurgens EM, Lu H, Yokoyama CC, Palermo LM, Lee KK, Moscona A. J Virol 86 12838-12848 (2012)
  36. Triggering of the newcastle disease virus fusion protein by a chimeric attachment protein that binds to Nipah virus receptors. Mirza AM, Aguilar HC, Zhu Q, Mahon PJ, Rota PA, Lee B, Iorio RM. J Biol Chem 286 17851-17860 (2011)
  37. Enhancement of pathogenicity of Newcastle disease virus by alteration of specific amino acid residues in the surface glycoproteins F and HN. Römer-Oberdörfer A, Veits J, Werner O, Mettenleiter TC. Avian Dis 50 259-263 (2006)
  38. Contribution of HN protein length diversity to Newcastle disease virus virulence, replication and biological activities. Jin J, Zhao J, Ren Y, Zhong Q, Zhang G. Sci Rep 6 36890 (2016)
  39. α2-3- and α2-6- N-linked sialic acids allow efficient interaction of Newcastle Disease Virus with target cells. Sánchez-Felipe L, Villar E, Muñoz-Barroso I. Glycoconj J 29 539-549 (2012)
  40. Characterization of the genome sequence of an oncolytic Newcastle disease virus strain Italien. Wei D, Yang B, Li YL, Xue CF, Chen ZN, Bian H. Virus Res 135 312-319 (2008)
  41. New insights into the Hendra virus attachment and entry process from structures of the virus G glycoprotein and its complex with Ephrin-B2. Xu K, Chan YP, Rajashankar KR, Khetawat D, Yan L, Kolev MV, Broder CC, Nikolov DB. PLoS One 7 e48742 (2012)
  42. Electron tomography imaging of surface glycoproteins on human parainfluenza virus 3: association of receptor binding and fusion proteins before receptor engagement. Gui L, Jurgens EM, Ebner JL, Porotto M, Moscona A, Lee KK. mBio 6 e02393-14 (2015)
  43. Identification of a region in the stalk domain of the nipah virus receptor binding protein that is critical for fusion activation. Talekar A, DeVito I, Salah Z, Palmer SG, Chattopadhyay A, Rose JK, Xu R, Wilson IA, Moscona A, Porotto M. J Virol 87 10980-10996 (2013)
  44. Measles virus fusion machinery activated by sialic acid binding globular domain. Talekar A, Moscona A, Porotto M. J Virol 87 13619-13627 (2013)
  45. N-linked glycan at residue 523 of human parainfluenza virus type 3 hemagglutinin-neuraminidase masks a second receptor-binding site. Mishin VP, Watanabe M, Taylor G, Devincenzo J, Bose M, Portner A, Alymova IV. J Virol 84 3094-3100 (2010)
  46. Viral Entry Properties Required for Fitness in Humans Are Lost through Rapid Genomic Change during Viral Isolation. Iketani S, Shean RC, Ferren M, Makhsous N, Aquino DB, des Georges A, Rima B, Mathieu C, Porotto M, Moscona A, Greninger AL. mBio 9 e00898-18 (2018)
  47. Receptor-binding specificity of the human parainfluenza virus type 1 hemagglutinin-neuraminidase glycoprotein. Alymova IV, Portner A, Mishin VP, McCullers JA, Freiden P, Taylor GL. Glycobiology 22 174-180 (2012)
  48. Loss of the N-linked glycan at residue 173 of human parainfluenza virus type 1 hemagglutinin-neuraminidase exposes a second receptor-binding site. Alymova IV, Taylor G, Mishin VP, Watanabe M, Murti KG, Boyd K, Chand P, Babu YS, Portner A. J Virol 82 8400-8410 (2008)
  49. Entry of Newcastle Disease Virus into the host cell: role of acidic pH and endocytosis. Sánchez-Felipe L, Villar E, Muñoz-Barroso I. Biochim Biophys Acta 1838 300-309 (2014)
  50. Fixation of oligosaccharides to a surface may increase the susceptibility to human parainfluenza virus 1, 2, or 3 hemagglutinin-neuraminidase. Tappert MM, Smith DF, Air GM. J Virol 85 12146-12159 (2011)
  51. Genomic analysis of Newcastle disease virus strain NA-1 isolated from geese in China. Xu M, Chang S, Ding Z, Gao HW, Wan JY, Liu WS, Liu LN, Gao Y, Xu J. Arch Virol 153 1281-1289 (2008)
  52. Mutation at residue 523 creates a second receptor binding site on human parainfluenza virus type 1 hemagglutinin-neuraminidase protein. Bousse T, Takimoto T. J Virol 80 9009-9016 (2006)
  53. Antigenic variation between Newcastle disease viruses of goose and chicken origin. Li ZJ, Li Y, Chang S, Ding Z, Mu LZ, Cong YL. Arch Virol 155 499-505 (2010)
  54. Newcastle Disease Virus Establishes Persistent Infection in Tumor Cells In Vitro: Contribution of the Cleavage Site of Fusion Protein and Second Sialic Acid Binding Site of Hemagglutinin-Neuraminidase. Rangaswamy US, Wang W, Cheng X, McTamney P, Carroll D, Jin H. J Virol 91 e00770-17 (2017)
  55. A histidine switch in hemagglutinin-neuraminidase triggers paramyxovirus-cell membrane fusion. Krishnan A, Verma SK, Mani P, Gupta R, Kundu S, Sarkar DP. J Virol 83 1727-1741 (2009)
  56. Structural analysis of a designed inhibitor complexed with the hemagglutinin-neuraminidase of Newcastle disease virus. Ryan C, Zaitsev V, Tindal DJ, Dyason JC, Thomson RJ, Alymova I, Portner A, von Itzstein M, Taylor G. Glycoconj J 23 135-141 (2006)
  57. Anti-NDV activity of baicalin from a traditional Chinese medicine in vitro. Jia Y, Xu R, Hu Y, Zhu T, Ma T, Wu H, Hu L. J Vet Med Sci 78 819-824 (2016)
  58. Different Origins of Newcastle Disease Virus Hemagglutinin-Neuraminidase Protein Modulate the Replication Efficiency and Pathogenicity of the Virus. Jin JH, Cheng JL, He ZR, Ren YC, Yu XH, Song Y, Yang HM, Yang YL, Liu T, Zhang GZ. Front Microbiol 8 1607 (2017)
  59. Phylogenetic characterization and virulence of two Newcastle disease viruses isolated from wild birds in China. Liu H, Zhang P, Wu P, Chen S, Mu G, Duan X, Hao H, Du E, Wang X, Yang Z. Infect Genet Evol 20 215-224 (2013)
  60. Quantitative comparison of human parainfluenza virus hemagglutinin-neuraminidase receptor binding and receptor cleavage. Tappert MM, Porterfield JZ, Mehta-D'Souza P, Gulati S, Air GM. J Virol 87 8962-8970 (2013)
  61. A single amino acid substitution in the haemagglutinin-neuraminidase protein of Newcastle disease virus results in increased fusion promotion and decreased neuraminidase activities without changes in virus pathotype. Estevez C, King DJ, Luo M, Yu Q. J Gen Virol 92 544-551 (2011)
  62. Antiviral activity of sulfated Chuanmingshen violaceum polysaccharide against Newcastle disease virus. Song X, Yin Z, Zhao X, Cheng A, Jia R, Yuan G, Xu J, Fan Q, Dai S, Lu H, Lv C, Liang X, He C, Su G, Zhao L, Ye G, Shi F. J Gen Virol 94 2164-2174 (2013)
  63. Newcastle disease virus: is an updated attenuated vaccine needed? Shahar E, Haddas R, Goldenberg D, Lublin A, Bloch I, Bachner Hinenzon N, Pitcovski J. Avian Pathol 47 467-478 (2018)
  64. Potential of genotype VII Newcastle disease viruses to cause differential infections in chickens and ducks. Meng C, Rehman ZU, Liu K, Qiu X, Tan L, Sun Y, Liao Y, Song C, Yu S, Ding Z, Nair V, Munir M, Munir M, Ding C. Transbound Emerg Dis 65 1851-1862 (2018)
  65. Construction of a camelid VHH yeast two-hybrid library and the selection of VHH against haemagglutinin-neuraminidase protein of the Newcastle disease virus. Gao X, Hu X, Tong L, Liu D, Chang X, Wang H, Dang R, Wang X, Xiao S, Du E, Yang Z. BMC Vet Res 12 39 (2016)
  66. Sialoglycovirology of Lectins: Sialyl Glycan Binding of Enveloped and Non-enveloped Viruses. Sriwilaijaroen N, Suzuki Y. Methods Mol Biol 2132 483-545 (2020)
  67. Identification of genetic mutations associated with attenuation and changes in tropism of Urabe mumps virus. Shah D, Vidal S, Link MA, Rubin SA, Wright KE. J Med Virol 81 130-138 (2009)
  68. A structure-based rationale for sialic acid independent host-cell entry of Sosuga virus. Stelfox AJ, Bowden TA. Proc Natl Acad Sci U S A 116 21514-21520 (2019)
  69. Mutations in the putative dimer-dimer interfaces of the measles virus hemagglutinin head domain affect membrane fusion triggering. Nakashima M, Shirogane Y, Hashiguchi T, Yanagi Y. J Biol Chem 288 8085-8091 (2013)
  70. Gallus gallus NEU3 sialidase as model to study protein evolution mechanism based on rapid evolving loops. Giacopuzzi E, Barlati S, Preti A, Venerando B, Monti E, Borsani G, Bresciani R. BMC Biochem 12 45 (2011)
  71. Genetic analysis of avian paramyxovirus-1 (Newcastle disease virus) isolates obtained from swine populations in China related to commonly utilized commercial vaccine strains. Ding Z, Cong YL, Chang S, Wang GM, Wang Z, Zhang QP, Wu H, Sun YZ. Virus Genes 41 369-376 (2010)
  72. Human parainfluenza virus fusion complex glycoproteins imaged in action on authentic viral surfaces. Marcink TC, Wang T, des Georges A, Porotto M, Moscona A. PLoS Pathog 16 e1008883 (2020)
  73. Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutinin-neuraminidase (HN) glycoprotein. Sun J, Han Z, Qi T, Zhao R, Liu S. J Biol Chem 292 20141-20161 (2017)
  74. Genomic characterisation of a lentogenic Newcastle disease virus strain HX01 isolated from sick pigs in China. Chen S, Hao H, Wang X, Du E, Liu H, Yang T, Liu Y, Fu X, Zhang P, Yang Z. Virus Genes 46 264-270 (2013)
  75. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection. Yun BL, Guan XL, Liu YZ, Zhang Y, Wang YQ, Qi XL, Cui HY, Liu CJ, Zhang YP, Gao HL, Gao L, Li K, Gao YL, Wang XM. J Biol Chem 291 14815-14825 (2016)
  76. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase. Rota P, La Rocca P, Piccoli M, Montefiori M, Cirillo F, Olsen L, Orioli M, Allevi P, Anastasia L. ChemMedChem 13 236-240 (2018)
  77. Synthesis and chemical characterization of several perfluorinated sialic acid glycals and evaluation of their in vitro antiviral activity against Newcastle disease virus. Rota P, Papini N, La Rocca P, Montefiori M, Cirillo F, Piccoli M, Scurati R, Olsen L, Allevi P, Anastasia L. Medchemcomm 8 1505-1513 (2017)
  78. Newcastle Disease Virus Hemagglutinin Neuraminidase as a Potential Cancer Targeting Agent. Baradaran A, Yusoff K, Shafee N, Rahim RA. J Cancer 7 462-466 (2016)
  79. Newcastle disease virus-like particles induce dendritic cell maturation and enhance viral-specific immune response. Qian J, Ding J, Yin R, Sun Y, Xue C, Xu X, Wang J, Ding C, Yu S, Liu X, Hu S, Cong Y, Ding Z. Virus Genes 53 555-564 (2017)
  80. Roles of the highly conserved amino acids in the second receptor binding site of the Newcastle disease virus HN protein. Liu Y, Chi M, Liu Y, Wen H, Zhao L, Song Y, Liu N, Wang Z. Virol J 16 164 (2019)
  81. Screening and mechanistic study of key sites of the hemagglutinin-neuraminidase protein related to the virulence of Newcastle disease virus. Yan C, Liu H, Jia Y, Prince-Theodore DW, Yang M, Addoma Adam FE, Ren J, Cao X, Wang X, Xiao S, Zhang S, Yang Z. Poult Sci 99 3374-3384 (2020)
  82. 1-Formyl-β-carboline Derivatives Block Newcastle Disease Virus Proliferation through Suppressing Viral Adsorption and Entry Processes. Wang C, Wang T, Dai J, An Z, Hu R, Duan L, Chen H, Wang X, Chu Z, Liu H, Wang J, Li N, Yang Z, Wang J. Biomolecules 11 1687 (2021)
  83. Comprehensive Analysis and Characterization of Linear Antigenic Domains on HN Protein from Genotype VII Newcastle Disease Virus Using Yeast Surface Display System. Li T, Wang G, Shi B, Liu P, Si W, Wang B, Jiang L, Zhou L, Xiu J, Liu H. PLoS One 10 e0131723 (2015)
  84. Discerning intersecting fusion-activation pathways in the Nipah virus using machine learning. Varma S, Botlani M, Leighty RE. Proteins 82 3241-3254 (2014)
  85. Identification of a new amino acid mutation in the HN protein of NDV involved in pathogenicity. Chen X, Jia Y, Wei N, Ye C, Hao H, Xiao S, Wang X, Liu H, Yang Z. Vet Res 52 147 (2021)
  86. Effect of amino acid sequence variations at position 149 on the fusogenic activity of the subtype B avian metapneumovirus fusion protein. Yun B, Gao Y, Liu Y, Guan X, Wang Y, Qi X, Gao H, Liu C, Cui H, Zhang Y, Gao Y, Wang X. Arch Virol 160 2445-2453 (2015)
  87. Parainfluenza virus entry at the onset of infection. Marcink TC, Porotto M, Moscona A. Adv Virus Res 111 1-29 (2021)
  88. Identification of the amino acids residues involved in hemagglutinin-neuraminidase of Newcastle disease virus binding to sulfated Chuanmingshen violaceum polysaccharides. Song X, Liu L, Hu W, Liang X, He C, Yin L, Ye G, Zou Y, Li L, Tang H, Jia R, Yin Z. Poult Sci 100 101255 (2021)
  89. Subnanometer structure of an enveloped virus fusion complex on viral surface reveals new entry mechanisms. Marcink TC, Zipursky G, Cheng W, Stearns K, Stenglein S, Golub K, Cohen F, Bovier F, Pfalmer D, Greninger AL, Porotto M, des Georges A, Moscona A. Sci Adv 9 eade2727 (2023)
  90. BotCl, the First Chlorotoxin-like Peptide Inhibiting Newcastle Disease Virus: The Emergence of a New Scorpion Venom AMPs Family. Jlassi A, Mekni-Toujani M, Ferchichi A, Gharsallah C, Malosse C, Chamot-Rooke J, ElAyeb M, Ghram A, Srairi-Abid N, Daoud S. Molecules 28 4355 (2023)
  91. C-terminal truncation of the hemagglutinin-neuraminidase (HN) protein enhances the virulence and immunogenicity of Newcastle disease virus (NDV) vaccine strain V4. Ren X, Zeng Z, Shang Y, Yao L, Li L, Zhang W, Guo Y, Wang H, Zhang R, Shao H, Hu S, Luo Q, Wen G. Arch Virol 168 203 (2023)
  92. Direct interaction of the molecular chaperone GRP78/BiP with the Newcastle disease virus hemagglutinin-neuraminidase protein plays a vital role in viral attachment to and infection of culture cells. Han C, Xie Z, Lv Y, Liu D, Chen R. Front Immunol 14 1259237 (2023)
  93. Identification of Embryonic Chicken Proteases Activating Newcastle Disease Virus and Their Roles in the Pathogenicity of Virus Used as In Ovo Vaccine. Feng H, Yao L, Zeng Z, Jiang L, Shang Y, Wang H, Li L, Wang Z, Wang X, Yang H, Zhao Q, Ren X, Zhang T, Zhang R, Guo Y, Lu Q, Hu Q, Zhang W, Ding C, Shao H, Cheng G, Luo Q, Wen G. J Virol 97 e0032423 (2023)
  94. Identification of an additional N-glycosylation site and thermostable mutations within the hemagglutinin-neuraminidase gene of the Newcastle disease virus belonging to the VII.1.1 sub-genotype. Babaeimarzangou SS, Allymehr M, Molouki A, Talebi A, Fallah Mehrabadi MH. Vet Res Forum 14 447-456 (2023)
  95. Interplay of Modified Sialic Acid Inhibitors and the Human Parainfluenza Virus 1 Hemagglutinin-Neuraminidase Active Site. Rota P, La Rocca P, Bonfante F, Pagliari M, Cirillo F, Piccoli M, Ghiroldi A, Franco V, Pappone C, Allevi P, Anastasia L. ACS Med Chem Lett 14 1383-1388 (2023)
  96. Kinetic analysis of paramyxovirus-sialoglycan receptor interactions reveals virion motility. Wu X, Goebbels M, Chao L, Wennekes T, van Kuppeveld FJM, de Vries E, de Haan CAM. PLoS Pathog 19 e1011273 (2023)
  97. Potency of bacterial sialidase Clostridium perfringens as antiviral of Newcastle disease infections using embryonated chicken egg in ovo model. Kurnia RS, Tarigan S, Nugroho CMH, Silaen OSM, Natalia L, Ibrahim F, Sudarmono PP. Vet World 15 1896-1905 (2022)
  98. The artificial amino acid change in the sialic acid-binding domain of the hemagglutinin neuraminidase of newcastle disease virus increases its specificity to HCT 116 colorectal cancer cells and tumor suppression effect. Jung BK, An YH, Jang SH, Jang JJ, Kim S, Jeon JH, Kim J, Song JJ, Jang H. Virol J 21 7 (2024)


Related citations provided by authors (2)

  1. Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase.. Crennell S, Takimoto T, Portner A, Taylor G Nat Struct Biol 7 1068-74 (2000)
  2. Crystallization of Newcastle disease virus hemagglutinin-neuraminidase glycoprotein.. Takimoto T, Taylor GL, Crennell SJ, Scroggs RA, Portner A Virology 270 208-14 (2000)