1ur1 Citations

The mechanisms by which family 10 glycoside hydrolases bind decorated substrates.

J Biol Chem 279 9597-605 (2004)
Related entries: 1uqy, 1uqz, 1ur2

Cited: 96 times
EuropePMC logo PMID: 14668328

Abstract

Endo-beta-1,4-xylanases (xylanases), which cleave beta-1,4 glycosidic bonds in the xylan backbone, are important components of the repertoire of enzymes that catalyze plant cell wall degradation. The mechanism by which these enzymes are able to hydrolyze a range of decorated xylans remains unclear. Here we reveal the three-dimensional structure, determined by x-ray crystallography, and the catalytic properties of the Cellvibrio mixtus enzyme Xyn10B (CmXyn10B), the most active GH10 xylanase described to date. The crystal structure of the enzyme in complex with xylopentaose reveals that at the +1 subsite the xylose moiety is sandwiched between hydrophobic residues, which is likely to mediate tighter binding than in other GH10 xylanases. The crystal structure of the xylanase in complex with a range of decorated xylooligosaccharides reveals how this enzyme is able to hydrolyze substituted xylan. Solvent exposure of the O-2 groups of xylose at the +4, +3, +1, and -3 subsites may allow accommodation of the alpha-1,2-linked 4-O-methyl-d-glucuronic acid side chain in glucuronoxylan at these locations. Furthermore, the uronic acid makes hydrogen bonds and hydrophobic interactions with the enzyme at the +1 subsite, indicating that the sugar decorations in glucuronoxylan are targeted to this proximal aglycone binding site. Accommodation of 3'-linked l-arabinofuranoside decorations is observed in the -2 subsite and could, most likely, be tolerated when bound to xylosides in -3 and +4. A notable feature of the binding mode of decorated substrates is the way in which the subsite specificities are tailored both to prevent the formation of "dead-end" reaction products and to facilitate synergy with the xylan degradation-accessory enzymes such as alpha-glucuronidase. The data described in this report and in the accompanying paper indicate that the complementarity in the binding of decorated substrates between the glycone and aglycone regions appears to be a conserved feature of GH10 xylanases.

Articles - 1ur1 mentioned but not cited (1)

  1. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution. Gallardo O, Pastor FI, Polaina J, Diaz P, Łysek R, Vogel P, Isorna P, González B, Sanz-Aparicio J. J Biol Chem 285 2721-2733 (2010)


Reviews citing this publication (7)

  1. Xylanases, xylanase families and extremophilic xylanases. Collins T, Gerday C, Feller G. FEMS Microbiol Rev 29 3-23 (2005)
  2. Bioethanol. Gray KA, Zhao L, Emptage M. Curr Opin Chem Biol 10 141-146 (2006)
  3. The biochemistry and structural biology of plant cell wall deconstruction. Gilbert HJ. Plant Physiol 153 444-455 (2010)
  4. Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Pollet A, Delcour JA, Courtin CM. Crit Rev Biotechnol 30 176-191 (2010)
  5. Plant cell walls to ethanol. Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K. Biochem J 442 241-252 (2012)
  6. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Nordberg Karlsson E, Schmitz E, Linares-Pastén JA, Adlercreutz P. Appl Microbiol Biotechnol 102 9081-9088 (2018)
  7. Structural Considerations on the Use of Endo-Xylanases for the Production of prebiotic Xylooligosaccharides from Biomass. Linares-Pasten JA, Aronsson A, Karlsson EN. Curr Protein Pept Sci 19 48-67 (2018)

Articles citing this publication (88)

  1. Glycan complexity dictates microbial resource allocation in the large intestine. Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe EC, Baslé A, Morland C, Day AM, Zheng H, Rogers TE, Thompson P, Hawkins AR, Yadav MP, Henrissat B, Martens EC, Dupree P, Gilbert HJ, Bolam DN. Nat Commun 6 7481 (2015)
  2. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP. Proc Natl Acad Sci U S A 107 15293-15298 (2010)
  3. Enzymatic deconstruction of xylan for biofuel production. Dodd D, Cann IK. Glob Change Biol Bioenergy 1 2-17 (2009)
  4. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Busse-Wicher M, Gomes TC, Tryfona T, Nikolovski N, Stott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P. Plant J 79 492-506 (2014)
  5. The synergistic action of accessory enzymes enhances the hydrolytic potential of a "cellulase mixture" but is highly substrate specific. Hu J, Arantes V, Pribowo A, Saddler JN. Biotechnol Biofuels 6 112 (2013)
  6. Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. St John FJ, Rice JD, Preston JF. J Bacteriol 188 8617-8626 (2006)
  7. Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Beaugrand J, Chambat G, Wong VW, Goubet F, Rémond C, Paës G, Benamrouche S, Debeire P, O'Donohue M, Chabbert B. Carbohydr Res 339 2529-2540 (2004)
  8. Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proctor MR, Taylor EJ, Nurizzo D, Turkenburg JP, Lloyd RM, Vardakou M, Davies GJ, Gilbert HJ. Proc Natl Acad Sci U S A 102 2697-2702 (2005)
  9. Structure elucidation of arabinoxylan isomers by normal phase HPLC-MALDI-TOF/TOF-MS/MS. Maslen SL, Goubet F, Adam A, Dupree P, Stephens E. Carbohydr Res 342 724-735 (2007)
  10. Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls. Hervé C, Rogowski A, Gilbert HJ, Paul Knox J. Plant J 58 413-422 (2009)
  11. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE. J Mol Biol 375 1293-1305 (2008)
  12. Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains. McKee LS, Peña MJ, Rogowski A, Jackson A, Lewis RJ, York WS, Krogh KB, Viksø-Nielsen A, Skjøt M, Gilbert HJ, Marles-Wright J. Proc Natl Acad Sci U S A 109 6537-6542 (2012)
  13. Mode of action of endo-beta-1,4-xylanases of families 10 and 11 on acidic xylooligosaccharides. Kolenová K, Vrsanská M, Biely P. J Biotechnol 121 338-345 (2006)
  14. Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization. Stjohn FJ, Rice JD, Preston JF. Appl Environ Microbiol 72 1496-1506 (2006)
  15. Structure and function of an arabinoxylan-specific xylanase. Correia MA, Mazumder K, Brás JL, Firbank SJ, Zhu Y, Lewis RJ, York WS, Fontes CM, Gilbert HJ. J Biol Chem 286 22510-22520 (2011)
  16. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. Zhu N, Yang J, Ji L, Liu J, Yang Y, Yuan H. Biotechnol Biofuels 9 243 (2016)
  17. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B. Biochimie 91 1187-1196 (2009)
  18. Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase. St John FJ, Hurlbert JC, Rice JD, Preston JF, Pozharski E. J Mol Biol 407 92-109 (2011)
  19. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Manikandan K, Bhardwaj A, Gupta N, Lokanath NK, Ghosh A, Reddy VS, Ramakumar S. Protein Sci 15 1951-1960 (2006)
  20. A rice family 9 glycoside hydrolase isozyme with broad substrate specificity for hemicelluloses in type II cell walls. Yoshida K, Komae K. Plant Cell Physiol 47 1541-1554 (2006)
  21. Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Chen S, Kaufman MG, Miazgowicz KL, Bagdasarian M, Walker ED. Bioresour Technol 128 145-155 (2013)
  22. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8. Ihsanawati, Kumasaka T, Kaneko T, Morokuma C, Yatsunami R, Sato T, Nakamura S, Tanaka N. Proteins 61 999-1009 (2005)
  23. Evidence that GH115 α-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. Rogowski A, Baslé A, Farinas CS, Solovyova A, Mortimer JC, Dupree P, Gilbert HJ, Bolam DN. J Biol Chem 289 53-64 (2014)
  24. Oligosaccharide relative quantitation using isotope tagging and normal-phase liquid chromatography/mass spectrometry. Ridlova G, Mortimer JC, Maslen SL, Dupree P, Stephens E. Rapid Commun Mass Spectrom 22 2723-2730 (2008)
  25. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Lee CC, Smith M, Kibblewhite-Accinelli RE, Williams TG, Wagschal K, Robertson GH, Wong DW. Curr Microbiol 52 112-116 (2006)
  26. Mode of action of acetylxylan esterases on acetyl glucuronoxylan and acetylated oligosaccharides generated by a GH10 endoxylanase. Biely P, Cziszárová M, Uhliariková I, Agger JW, Li XL, Eijsink VG, Westereng B. Biochim Biophys Acta 1830 5075-5086 (2013)
  27. Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: crystal structure of the CBM22-1-GH10 modules complexed with xylohexaose. Najmudin S, Pinheiro BA, Prates JA, Gilbert HJ, Romão MJ, Fontes CM. J Struct Biol 172 353-362 (2010)
  28. Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase. Urbániková L, Vršanská M, Mørkeberg Krogh KB, Hoff T, Biely P. FEBS J 278 2105-2116 (2011)
  29. Synergy between xylanases from glycoside hydrolase family 10 and family 11 and a feruloyl esterase in the release of phenolic acids from cereal arabinoxylan. Faulds CB, Mandalari G, Lo Curto RB, Bisignano G, Christakopoulos P, Waldron KW. Appl Microbiol Biotechnol 71 622-629 (2006)
  30. A GH115 α-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. McKee LS, Sunner H, Anasontzis GE, Toriz G, Gatenholm P, Bulone V, Vilaplana F, Olsson L. Biotechnol Biofuels 9 2 (2016)
  31. Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens. Santos CR, Hoffmam ZB, de Matos Martins VP, Zanphorlin LM, de Paula Assis LH, Honorato RV, Lopes de Oliveira PS, Ruller R, Ruller R, Murakami MT. J Biol Chem 289 32186-32200 (2014)
  32. A family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants. Vardakou M, Flint J, Christakopoulos P, Lewis RJ, Gilbert HJ, Murray JW. J Mol Biol 352 1060-1067 (2005)
  33. Characterization of a family GH5 xylanase with activity on neutral oligosaccharides and evaluation as a pulp bleaching aid. Gallardo O, Fernández-Fernández M, Valls C, Valenzuela SV, Roncero MB, Vidal T, Díaz P, Pastor FI. Appl Environ Microbiol 76 6290-6294 (2010)
  34. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Kim DY, Han MK, Oh HW, Bae KS, Jeong TS, Kim SU, Shin DH, Kim IH, Rhee YH, Son KH, Park HY. Bioresour Technol 101 8814-8821 (2010)
  35. Probing the structural basis for the difference in thermostability displayed by family 10 xylanases. Xie H, Flint J, Vardakou M, Lakey JH, Lewis RJ, Gilbert HJ, Dumon C. J Mol Biol 360 157-167 (2006)
  36. An enzyme activity capable of endotransglycosylation of heteroxylan polysaccharides is present in plant primary cell walls. Johnston SL, Prakash R, Chen NJ, Kumagai MH, Turano HM, Cooney JM, Atkinson RG, Paull RE, Cheetamun R, Bacic A, Brummell DA, Schröder R. Planta 237 173-187 (2013)
  37. Cellular components of probiotics control Yersinia ruckeri infection in rainbow trout, Oncorhynchus mykiss (Walbaum). Abbass A, Sharifuzzaman SM, Austin B. J Fish Dis 33 31-37 (2010)
  38. Regular Motifs in Xylan Modulate Molecular Flexibility and Interactions with Cellulose Surfaces. Martínez-Abad A, Berglund J, Toriz G, Gatenholm P, Henriksson G, Lindström M, Wohlert J, Vilaplana F. Plant Physiol 175 1579-1592 (2017)
  39. In muro deacetylation of xylan affects lignin properties and improves saccharification of aspen wood. Pawar PM, Derba-Maceluch M, Chong SL, Gandla ML, Bashar SS, Sparrman T, Ahvenainen P, Hedenström M, Özparpucu M, Rüggeberg M, Serimaa R, Lawoko M, Tenkanen M, Jönsson LJ, Mellerowicz EJ. Biotechnol Biofuels 10 98 (2017)
  40. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification. Pawar PM, Ratke C, Balasubramanian VK, Chong SL, Gandla ML, Adriasola M, Sparrman T, Hedenström M, Szwaj K, Derba-Maceluch M, Gaertner C, Mouille G, Ezcurra I, Tenkanen M, Jönsson LJ, Mellerowicz EJ. New Phytol 214 1491-1505 (2017)
  41. Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Mirande C, Mosoni P, Béra-Maillet C, Bernalier-Donadille A, Forano E. Appl Microbiol Biotechnol 87 2097-2105 (2010)
  42. Characterization of modular bifunctional processive endoglucanase Cel5 from Hahella chejuensis KCTC 2396. Ghatge SS, Telke AA, Kang SH, Arulalapperumal V, Lee KW, Govindwar SP, Um Y, Oh DB, Shin HD, Kim SW. Appl Microbiol Biotechnol 98 4421-4435 (2014)
  43. Active Site Mapping of Xylan-Deconstructing Enzymes with Arabinoxylan Oligosaccharides Produced by Automated Glycan Assembly. Senf D, Ruprecht C, de Kruijff GH, Simonetti SO, Schuhmacher F, Seeberger PH, Pfrengle F. Chemistry 23 3197-3205 (2017)
  44. The mechanism by which a distinguishing arabinofuranosidase can cope with internal di-substitutions in arabinoxylans. Dos Santos CR, de Giuseppe PO, de Souza FHM, Zanphorlin LM, Domingues MN, Pirolla RAS, Honorato RV, Tonoli CCC, de Morais MAB, de Matos Martins VP, Fonseca LM, Büchli F, de Oliveira PSL, Gozzo FC, Murakami MT. Biotechnol Biofuels 11 223 (2018)
  45. Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library. Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA. Appl Microbiol Biotechnol 97 2423-2431 (2013)
  46. Cloning of Bacillus licheniformis xylanase gene and characterization of recombinant enzyme. Lee CC, Kibblewhite-Accinelli RE, Smith MR, Wagschal K, Orts WJ, Wong DW. Curr Microbiol 57 301-305 (2008)
  47. Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase. Falck P, Aronsson A, Grey C, Stålbrand H, Nordberg Karlsson E, Adlercreutz P. Bioresour Technol 174 118-125 (2014)
  48. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Sermsathanaswadi J, Baramee S, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Kosugi A. Enzyme Microb Technol 96 75-84 (2017)
  49. Xylanase increased the ileal digestibility of nonstarch polysaccharides and concentration of low molecular weight nondigestible carbohydrates in pigs fed high levels of wheat distillers dried grains with solubles. Pedersen MB, Yu S, Arent S, Dalsgaard S, Bach Knudsen KE, Lærke HN. J Anim Sci 93 2885-2893 (2015)
  50. Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. Alvarez TM, Goldbeck R, dos Santos CR, Paixão DA, Gonçalves TA, Franco Cairo JP, Almeida RF, de Oliveira Pereira I, Jackson G, Cota J, Büchli F, Citadini AP, Ruller R, Ruller R, Polo CC, de Oliveira Neto M, Murakami MT, Squina FM. PLoS One 8 e70014 (2013)
  51. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Tian L, Liu S, Wang S, Wang L. Sci Rep 6 23605 (2016)
  52. Simultaneous production of endo-beta-1,4-xylanase and branched xylooligosaccharides by Thermomyces lanuginosus. Puchart V, Biely P. J Biotechnol 137 34-43 (2008)
  53. The nature of the carbohydrate binding module determines the catalytic efficiency of xylanase Z of Clostridium thermocellum. Khan MI, Sajjad M, Sadaf S, Zafar R, Niazi UH, Akhtar MW. J Biotechnol 168 403-408 (2013)
  54. Transcriptomic profiles of Heterobasidion annosum under abiotic stresses and during saprotrophic growth in bark, sapwood and heartwood. Raffaello T, Chen H, Kohler A, Asiegbu FO. Environ Microbiol 16 1654-1667 (2014)
  55. Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose. Biely P, Cziszárová M, Agger JW, Li XL, Puchart V, Vršanská M, Eijsink VG, Westereng B. Biochim Biophys Acta 1840 516-525 (2014)
  56. Xylo- and arabinoxylooligosaccharides from wheat bran by endoxylanases, utilisation by probiotic bacteria, and structural studies of the enzymes. Mathew S, Aronsson A, Karlsson EN, Adlercreutz P. Appl Microbiol Biotechnol 102 3105-3120 (2018)
  57. Biocatalytic properties and substrate-binding ability of a modular GH10 β-1,4-xylanase from an insect-symbiotic bacterium, Streptomyces mexicanus HY-14. Kim DY, Shin DH, Jung S, Lee JS, Cho HY, Bae KS, Sung CK, Rhee YH, Son KH, Park HY. J Microbiol 52 863-870 (2014)
  58. Characterization of glycosynthase mutants derived from glycoside hydrolase family 10 xylanases. Sugimura M, Nishimoto M, Kitaoka M. Biosci Biotechnol Biochem 70 1210-1217 (2006)
  59. Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System. Fredriksen L, Stokke R, Jensen MS, Westereng B, Jameson JK, Steen IH, Eijsink VGH. Appl Environ Microbiol 85 e02970-18 (2019)
  60. The Mechanism by Which Arabinoxylanases Can Recognize Highly Decorated Xylans. Labourel A, Crouch LI, Brás JL, Jackson A, Rogowski A, Gray J, Yadav MP, Henrissat B, Fontes CM, Gilbert HJ, Najmudin S, Baslé A, Cuskin F. J Biol Chem 291 22149-22159 (2016)
  61. A ¹H NMR study of the specificity of α-l-arabinofuranosidases on natural and unnatural substrates. Borsenberger V, Dornez E, Desrousseaux ML, Massou S, Tenkanen M, Courtin CM, Dumon C, O'Donohue MJ, Fauré R. Biochim Biophys Acta 1840 3106-3114 (2014)
  62. Exploring Multimodularity in Plant Cell Wall Deconstruction: STRUCTURAL AND FUNCTIONAL ANALYSIS OF Xyn10C CONTAINING THE CBM22-1-CBM22-2 TANDEM. Sainz-Polo MA, González B, Menéndez M, Pastor FI, Sanz-Aparicio J. J Biol Chem 290 17116-17130 (2015)
  63. Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Oh HW, Heo SY, Kim DY, Park DS, Bae KS, Park HY. Antonie Van Leeuwenhoek 93 437-442 (2008)
  64. Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis. Gong W, Zhang H, Tian L, Liu S, Wu X, Li F, Wang L. Electrophoresis 37 1640-1650 (2016)
  65. Insight into the functional roles of Glu175 in the hyperthermostable xylanase XYL10C-ΔN through structural analysis and site-saturation mutagenesis. You S, Chen CC, Tu T, Wang X, Ma R, Cai HY, Guo RT, Luo HY, Yao B. Biotechnol Biofuels 11 159 (2018)
  66. Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome. Wu H, Ioannou E, Henrissat B, Montanier CY, Bozonnet S, O'Donohue MJ, Dumon C. Appl Environ Microbiol 87 e01714-20 (2021)
  67. Characterization of efficient xylanases from industrial-scale pulp and paper wastewater treatment microbiota. Wang J, Liang J, Li Y, Tian L, Wei Y. AMB Express 11 19 (2021)
  68. Cloning and enzymatic characterization of four thermostable fungal endo-1,4-β-xylanases. Sydenham R, Zheng Y, Riemens A, Tsang A, Powlowski J, Storms R. Appl Microbiol Biotechnol 98 3613-3628 (2014)
  69. Hydrolytic properties of a hybrid xylanase and its parents. Sun JY, Liu MQ, Weng XY. Appl Biochem Biotechnol 152 428-439 (2009)
  70. Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp. MEY-1. Wang X, Zheng F, Wang Y, Tu T, Ma R, Su X, You S, Yao B, Xie X, Luo H. PLoS One 12 e0189806 (2017)
  71. Improving Hydrolysis Characteristics of Xylanases by Site-Directed Mutagenesis in Binding-Site Subsites from Streptomyces L10608. Xiong K, Xiong S, Gao S, Li Q, Sun B, Li X. Int J Mol Sci 19 E834 (2018)
  72. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-D-Xylp, from rye arabinoxylan. Imjongjairak S, Jommuengbout P, Karpilanondh P, Katsuzaki H, Sakka M, Kimura T, Pason P, Tachaapaikoon C, Romsaiyud J, Ratanakhanokchai K, Sakka K. Enzyme Microb Technol 72 1-9 (2015)
  73. Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies. Lee CC, Kibblewhite RE, Paavola CD, Orts WJ, Wagschal K. Mol Biotechnol 58 489-496 (2016)
  74. Purification, biochemical characterization, and structure of recombinant endo-1,4-β-xylanase XylE. Fedorova TV, Chulkin AM, Vavilova EA, Maisuradze IG, Trofimov AA, Zorov IN, Khotchenkov VP, Polyakov KM, Benevolensky SV, Koroleva OV, Lamzin VS. Biochemistry (Mosc) 77 1190-1198 (2012)
  75. Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference. Zhang Y, An J, Yang G, Zhang X, Xie Y, Chen L, Feng Y. Acta Biochim Biophys Sin (Shanghai) 48 948-957 (2016)
  76. Structure-based substrate specificity analysis of GH11 xylanase from Streptomyces olivaceoviridis E-86. Fujimoto Z, Kishine N, Teramoto K, Tsutsui S, Kaneko S. Appl Microbiol Biotechnol 105 1943-1952 (2021)
  77. A xylanase gene directly cloned from the genomic DNA of alkaline wastewater sludge showing application potential in the paper industry. Zhao Y, Luo H, Meng K, Shi P, Wang G, Yang P, Yuan T, Yao B. Appl Biochem Biotechnol 165 35-46 (2011)
  78. Cooperation of hydrolysis modes among xylanases reveals the mechanism of hemicellulose hydrolysis by Penicillium chrysogenum P33. Yang Y, Yang J, Wang R, Liu J, Zhang Y, Liu L, Wang F, Yuan H. Microb Cell Fact 18 159 (2019)
  79. Non-Alcoholic Beverages from Fermented Cereals with Increased Oligosaccharide Content. Basinskiene L, Juodeikiene G, Vidmantiene D, Tenkanen M, Makaravicius T, Bartkiene E. Food Technol Biotechnol 54 36-44 (2016)
  80. Obtaining cellulose binding and hydrolyzing activity of a family 11 hybrid xylanase by fusion with xylan binding domain. Liu MQ, Dai XJ, Liu GF, Wang Q. Protein Expr Purif 88 85-92 (2013)
  81. The role of conserved arginine residue in loop 4 of glycoside hydrolase family 10 xylanases. Nishimoto M, Kitaoka M, Fushinobu S, Hayashi K. Biosci Biotechnol Biochem 69 904-910 (2005)
  82. Characterization and pH-dependent substrate specificity of alkalophilic xylanase from Bacillus alcalophilus. Lee DS, Lee KH, Cho EJ, Kim HM, Kim CS, Bae HJ. J Ind Microbiol Biotechnol 39 1465-1475 (2012)
  83. Synergistic mechanism of GH11 xylanases with different action modes from Aspergillus niger An76. Zhang S, Zhao S, Shang W, Yan Z, Wu X, Li Y, Chen G, Liu X, Wang L. Biotechnol Biofuels 14 118 (2021)
  84. A thermostable and CBM2-linked GH10 xylanase from Thermobifida fusca for paper bleaching. Wu X, Shi Z, Tian W, Liu M, Huang S, Liu X, Yin H, Wang L. Front Bioeng Biotechnol 10 939550 (2022)
  85. Probing the beta-1,3:1,4 glucanase, CtLic26A, with a thio-oligosaccharide and enzyme variants. Money VA, Cartmell A, Guerreiro CI, Ducros VM, Fontes CM, Gilbert HJ, Davies GJ. Org Biomol Chem 6 851-853 (2008)
  86. Acetylated Xylan Degradation by Glycoside Hydrolase Family 10 and 11 Xylanases from the White-rot Fungus Phanerochaete chrysosporium. Kojima K, Sunagawa N, Yoshimi Y, Tryfona T, Samejima M, Dupree P, Igarashi K. J Appl Glycosci (1999) 69 35-43 (2022)
  87. Action of different types of endoxylanases on eucalyptus xylan in situ. Puchart V, Fraňová L, Mørkeberg Krogh KBR, Hoff T, Biely P. Appl Microbiol Biotechnol 102 1725-1736 (2018)
  88. Profiling of cool-season forage arabinoxylans via a validated HPAEC-PAD method. Joyce GE, Kagan IA, Flythe MD, Davis BE, Schendel RR. Front Plant Sci 14 1116995 (2023)