1uk1 Citations

Rational approaches to discovery of orally active and brain-penetrable quinazolinone inhibitors of poly(ADP-ribose)polymerase.

Abstract

A novel class of quinazolinone derivatives as potent poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors has been discovered. Key to success was application of a rational discovery strategy involving structure-based design, combinatorial chemistry, and classical SAR for improvement of potency and bioavailability. The new inhibitors were shown to bind to the nicotinamide-ribose binding site (NI site) and the adenosine-ribose binding site (AD site) of NAD+.

Reviews - 1uk1 mentioned but not cited (1)

  1. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Aravind L, Zhang D, de Souza RF, Anand S, Iyer LM. Curr Top Microbiol Immunol 384 3-32 (2015)

Articles - 1uk1 mentioned but not cited (7)

  1. Three-dimensional model of a substrate-bound SARS chymotrypsin-like cysteine proteinase predicted by multiple molecular dynamics simulations: catalytic efficiency regulated by substrate binding. Pang YP. Proteins 57 747-757 (2004)
  2. Crystal structure-based discovery of a novel synthesized PARP1 inhibitor (OL-1) with apoptosis-inducing mechanisms in triple-negative breast cancer. Fu L, Wang S, Wang X, Wang P, Zheng Y, Yao D, Guo M, Zhang L, Ouyang L. Sci Rep 6 3 (2016)
  3. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone. Aoyagi-Scharber M, Gardberg AS, Yip BK, Wang B, Shen Y, Fitzpatrick PA. Acta Crystallogr F Struct Biol Commun 70 1143-1149 (2014)
  4. Comparative study of the binding characteristics to and inhibitory potencies towards PARP and in vivo antidiabetogenic potencies of taurine, 3-aminobenzamide and nicotinamide. Pandya KG, Patel MR, Lau-Cam CA. J Biomed Sci 17 Suppl 1 S16 (2010)
  5. Network analysis and molecular mapping for SARS-CoV-2 to reveal drug targets and repurposing of clinically developed drugs. More SA, Patil AS, Sakle NS, Mokale SN. Virology 555 10-18 (2021)
  6. New perspectives on the plant PARP family: Arabidopsis PARP3 is inactive, and PARP1 exhibits predominant poly (ADP-ribose) polymerase activity in response to DNA damage. Gu Z, Pan W, Chen W, Lian Q, Wu Q, Lv Z, Cheng X, Ge X. BMC Plant Biol 19 364 (2019)
  7. Protein Targets of Frankincense: A Reverse Docking Analysis of Terpenoids from Boswellia Oleo-Gum Resins. Byler KG, Setzer WN. Medicines (Basel) 5 E96 (2018)


Reviews citing this publication (9)

  1. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Jagtap P, Szabó C. Nat Rev Drug Discov 4 421-440 (2005)
  2. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Smith DA, Di L, Kerns EH. Nat Rev Drug Discov 9 929-939 (2010)
  3. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Langelier MF, Pascal JM. Curr Opin Struct Biol 23 134-143 (2013)
  4. Chemical regulation of epigenetic modifications: opportunities for new cancer therapy. Zheng YG, Wu J, Chen Z, Goodman M. Med Res Rev 28 645-687 (2008)
  5. Poly(ADP-ribose) polymerase inhibition in cancer therapy: are we close to maturity? Papeo G, Forte B, Orsini P, Perrera C, Posteri H, Scolaro A, Montagnoli A. Expert Opin Ther Pat 19 1377-1400 (2009)
  6. PARP1: Structural insights and pharmacological targets for inhibition. Spiegel JO, Van Houten B, Durrant JD. DNA Repair (Amst) 103 103125 (2021)
  7. Concepts and Molecular Aspects in the Polypharmacology of PARP-1 Inhibitors. Passeri D, Camaioni E, Liscio P, Sabbatini P, Ferri M, Carotti A, Giacchè N, Pellicciari R, Gioiello A, Macchiarulo A. ChemMedChem 11 1219-1226 (2016)
  8. Targeting Non-Oncogene Addiction for Cancer Therapy. Chang HR, Jung E, Cho S, Jeon YJ, Kim Y. Biomolecules 11 129 (2021)
  9. Inhibition of poly(adenosine diphosphate-ribose) polymerase using quinazolinone nucleus. Hemalatha K, Madhumitha G. Appl Microbiol Biotechnol 100 7799-7814 (2016)

Articles citing this publication (25)

  1. Central nervous system penetration and enhancement of temozolomide activity in childhood medulloblastoma models by poly(ADP-ribose) polymerase inhibitor AG-014699. Daniel RA, Rozanska AL, Mulligan EA, Drew Y, Thomas HD, Castelbuono DJ, Hostomsky Z, Plummer ER, Tweddle DA, Boddy AV, Clifford SC, Curtin NJ. Br J Cancer 103 1588-1596 (2010)
  2. Discovery of quinazolinone and quinoxaline derivatives as potent and selective poly(ADP-ribose) polymerase-1/2 inhibitors. Iwashita A, Hattori K, Yamamoto H, Ishida J, Kido Y, Kamijo K, Murano K, Miyake H, Kinoshita T, Warizaya M, Ohkubo M, Matsuoka N, Mutoh S. FEBS Lett 579 1389-1393 (2005)
  3. Zinc binding catalytic domain of human tankyrase 1. Lehtiö L, Collins R, van den Berg S, Johansson A, Dahlgren LG, Hammarström M, Helleday T, Holmberg-Schiavone L, Karlberg T, Weigelt J. J Mol Biol 379 136-145 (2008)
  4. Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modeling. Ishida J, Yamamoto H, Kido Y, Kamijo K, Murano K, Miyake H, Ohkubo M, Kinoshita T, Warizaya M, Iwashita A, Mihara K, Matsuoka N, Hattori K. Bioorg Med Chem 14 1378-1390 (2006)
  5. Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: A potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Penning TD, Zhu GD, Gandhi VB, Gong J, Thomas S, Lubisch W, Grandel R, Wernet W, Park CH, Fry EH, Liu X, Shi Y, Klinghofer V, Johnson EF, Donawho CK, Frost DJ, Bontcheva-Diaz V, Bouska JJ, Olson AM, Marsh KC, Luo Y, Rosenberg SH, Giranda VL. Bioorg Med Chem 16 6965-6975 (2008)
  6. AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. Spiegel JO, Durrant JD. J Cheminform 12 25 (2020)
  7. EGFR-independent Elk1/CIP2A signalling mediates apoptotic effect of an erlotinib derivative TD52 in triple-negative breast cancer cells. Liu CY, Huang TT, Huang CT, Hu MH, Wang DS, Wang WL, Tsai WC, Lee CH, Lau KY, Yang HP, Chen MH, Shiau CW, Tseng LM, Chen KF. Eur J Cancer 72 112-123 (2017)
  8. Trypanocidal properties, structure-activity relationship and computational studies of quinoxaline 1,4-di-N-oxide derivatives. Estevez Y, Quiliano M, Burguete A, Cabanillas B, Zimic M, Málaga E, Verástegui M, Pérez-Silanes S, Aldana I, Monge A, Castillo D, Deharo E. Exp Parasitol 127 745-751 (2011)
  9. Conformational activation of poly(ADP-ribose) polymerase-1 upon DNA binding revealed by small-angle X-ray scattering. Mansoorabadi SO, Wu M, Tao Z, Gao P, Pingali SV, Guo L, Liu HW. Biochemistry 53 1779-1788 (2014)
  10. The 1.8 Å cholix toxin crystal structure in complex with NAD+ and evidence for a new kinetic model. Fieldhouse RJ, Jørgensen R, Lugo MR, Merrill AR. J Biol Chem 287 21176-21188 (2012)
  11. Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors. Jeon W, Kim D. Sci Rep 10 22104 (2020)
  12. Synthesis and structure-activity relationships of novel poly(ADP-ribose) polymerase-1 inhibitors. Tao M, Park CH, Bihovsky R, Wells GJ, Husten J, Ator MA, Hudkins RL. Bioorg Med Chem Lett 16 938-942 (2006)
  13. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Madhavi S, Sreenivasulu R, Yazala JP, Raju RR. Saudi Pharm J 25 275-279 (2017)
  14. 4-Phenyl-1,2,3,6-tetrahydropyridine, an excellent fragment to improve the potency of PARP-1 inhibitors. Ishida J, Hattori K, Yamamoto H, Iwashita A, Mihara K, Matsuoka N. Bioorg Med Chem Lett 15 4221-4225 (2005)
  15. In silico identification of poly(ADP-ribose)polymerase-1 inhibitors and their chemosensitizing effects against cisplatin-resistant human gastric cancer cells. Le TV, Suh JH, Kim N, Park HJ. Bioorg Med Chem Lett 23 2642-2646 (2013)
  16. Novel PARP-1 inhibitors based on a 2-propanoyl-3H-quinazolin-4-one scaffold. Giannini G, Battistuzzi G, Vesci L, Milazzo FM, De Paolis F, Barbarino M, Guglielmi MB, Carollo V, Gallo G, Artali R, Dallavalle S. Bioorg Med Chem Lett 24 462-466 (2014)
  17. Rational design of conformationally restricted quinazolinone inhibitors of poly(ADP-ribose)polymerase. Hattori K, Kido Y, Yamamoto H, Ishida J, Iwashita A, Mihara K. Bioorg Med Chem Lett 17 5577-5581 (2007)
  18. Active site fingerprinting and pharmacophore screening strategies for the identification of dual inhibitors of protein kinase C (ΡΚCβ) and poly (ADP-ribose) polymerase-1 (PARP-1). Chadha N, Silakari O. Mol Divers 20 747-761 (2016)
  19. Biological effects of MC2050, a quinazoline-based PARP-1 inhibitor, in human neuroblastoma and EBV-positive Burkitt's lymphoma cells. Mosca L, Rotili D, Tempera I, Masci A, Fontana M, Chiaraluce R, Mastromarino P, d'Erme M, Mai A. ChemMedChem 6 606-611 (2011)
  20. Developing novel approaches to improve binding energy estimation and virtual screening: a PARP case study. Novikov FN, Stroylov VS, Stroganov OV, Kulkov V, Chilov GG. J Mol Model 15 1337-1347 (2009)
  21. Novel PARP-1 Inhibitor Scaffolds Disclosed by a Dynamic Structure-Based Pharmacophore Approach. Baptista SJ, Silva MM, Moroni E, Meli M, Colombo G, Dinis TC, Salvador JA. PLoS One 12 e0170846 (2017)
  22. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1. Fatima S, Bathini R, Sivan SK, Manga V. J Recept Signal Transduct Res 32 214-224 (2012)
  23. Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Maleki A, Aghaei M, Hafizi-Atabak HR, Ferdowsi M. Ultrason Sonochem 37 260-266 (2017)
  24. Docking study and binding free energy calculation of poly (ADP-ribose) polymerase inhibitors. Ohno K, Mitsui T, Tanida Y, Matsuura A, Fujitani H, Niimi T, Orita M. J Mol Model 17 383-389 (2011)
  25. Structural and phylogenetic relationship of ORF 31 from the Anticarsia gemmatalis MNPV to poly (ADP-ribose) polymerases (PARP). de Castro Oliveira JV, de Melo FL, Romano CM, Iamarino A, Rizzi TS, Yeda FP, Hársi CM, Wolff JL, de Andrade Zanotto PM. Virus Genes 37 177-184 (2008)