1uch Citations

Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution.

EMBO J 16 3787-96 (1997)
Cited: 163 times
EuropePMC logo PMID: 9233788

Abstract

Ubiquitin C-terminal hydrolases catalyze the removal of adducts from the C-terminus of ubiquitin. We have determined the crystal structure of the recombinant human Ubiquitin C-terminal Hydrolase (UCH-L3) by X-ray crystallography at 1.8 A resolution. The structure is comprised of a central antiparallel beta-sheet flanked on both sides by alpha-helices. The beta-sheet and one of the helices resemble the well-known papain-like cysteine proteases, with the greatest similarity to cathepsin B. This similarity includes the UCH-L3 active site catalytic triad of Cys95, His169 and Asp184, and the oxyanion hole residue Gln89. Papain and UCH-L3 differ, however, in strand and helix connectivity, which in the UCH-L3 structure includes a disordered 20 residue loop (residues 147-166) that is positioned over the active site and may function in the definition of substrate specificity. Based upon analogy with inhibitor complexes of the papain-like enzymes, we propose a model describing the binding of ubiquitin to UCH-L3. The UCH-L3 active site cleft appears to be masked in the unliganded structure by two different segments of the enzyme (residues 9-12 and 90-94), thus implying a conformational change upon substrate binding and suggesting a mechanism to limit non-specific hydrolysis.

Reviews - 1uch mentioned but not cited (3)

  1. Regulation of proteolysis by human deubiquitinating enzymes. Eletr ZM, Wilkinson KD. Biochim Biophys Acta 1843 114-128 (2014)
  2. Substrate specificity of the ubiquitin and Ubl proteases. Ronau JA, Beckmann JF, Hochstrasser M. Cell Res 26 441-456 (2016)
  3. On the Study of Deubiquitinases: Using the Right Tools for the Job. Caba C, Mohammadzadeh A, Tong Y. Biomolecules 12 703 (2022)

Articles - 1uch mentioned but not cited (21)

  1. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  2. JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. Ambroggio XI, Rees DC, Deshaies RJ. PLoS Biol 2 E2 (2004)
  3. The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A. Proc Natl Acad Sci U S A 102 10493-10498 (2005)
  4. Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, Lansbury PT, Ringe D, Petsko GA. Proc Natl Acad Sci U S A 103 4675-4680 (2006)
  5. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Mao Y, Senic-Matuglia F, Di Fiore PP, Polo S, Hodsdon ME, De Camilli P. Proc Natl Acad Sci U S A 102 12700-12705 (2005)
  6. Deubiquitinating function of adenovirus proteinase. Balakirev MY, Jaquinod M, Haas AL, Chroboczek J. J Virol 76 6323-6331 (2002)
  7. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV. Lee H, Lei H, Santarsiero BD, Gatuz JL, Cao S, Rice AJ, Patel K, Szypulinski MZ, Ojeda I, Ghosh AK, Johnson ME. ACS Chem Biol 10 1456-1465 (2015)
  8. Structures of sortase B from Staphylococcus aureus and Bacillus anthracis reveal catalytic amino acid triad in the active site. Zhang R, Wu R, Joachimiak G, Mazmanian SK, Missiakas DM, Gornicki P, Schneewind O, Joachimiak A. Structure 12 1147-1156 (2004)
  9. Improved prediction of critical residues for protein function based on network and phylogenetic analyses. Thibert B, Bredesen DE, del Rio G. BMC Bioinformatics 6 213 (2005)
  10. Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes). Drag M, Mikolajczyk J, Bekes M, Reyes-Turcu FE, Ellman JA, Wilkinson KD, Salvesen GS. Biochem J 415 367-375 (2008)
  11. Evolution of genes involved in gamete interaction: evidence for positive selection, duplications and losses in vertebrates. Meslin C, Mugnier S, Callebaut I, Laurin M, Pascal G, Poupon A, Goudet G, Monget P. PLoS One 7 e44548 (2012)
  12. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme. Maiti TK, Permaul M, Boudreaux DA, Mahanic C, Mauney S, Das C. FEBS J 278 4917-4926 (2011)
  13. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Padhorny D, Kazennov A, Zerbe BS, Porter KA, Xia B, Mottarella SE, Kholodov Y, Ritchie DW, Vajda S, Kozakov D. Proc Natl Acad Sci U S A 113 E4286-93 (2016)
  14. Efficient identification of critical residues based only on protein structure by network analysis. Cusack MP, Thibert B, Bredesen DE, Del Rio G. PLoS One 2 e421 (2007)
  15. Analysis of the "thermodynamic information content" of a Homo sapiens structural database reveals hierarchical thermodynamic organization. Larson SA, Hilser VJ. Protein Sci 13 1787-1801 (2004)
  16. Contribution of active site glutamine to rate enhancement in ubiquitin C-terminal hydrolases. Boudreaux DA, Chaney J, Maiti TK, Das C. FEBS J 279 1106-1118 (2012)
  17. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. BMC Struct Biol 12 6 (2012)
  18. Entropic stabilization of a deubiquitinase provides conformational plasticity and slow unfolding kinetics beneficial for functioning on the proteasome. Lee YC, Chang CY, Chen SY, Pan YR, Ho MR, Hsu SD. Sci Rep 7 45174 (2017)
  19. Structural basis for specific inhibition of the deubiquitinase UCHL1. Grethe C, Schmidt M, Kipka GM, O'Dea R, Gallant K, Janning P, Gersch M. Nat Commun 13 5950 (2022)
  20. Farrerol directly activates the deubiqutinase UCHL3 to promote DNA repair and reprogramming when mediated by somatic cell nuclear transfer. Zhang W, Wang M, Song Z, Fu Q, Chen J, Zhang W, Gao S, Sun X, Yang G, Zhang Q, Yang J, Tang H, Wang H, Kou X, Wang H, Mao Z, Xu X, Gao S, Jiang Y. Nat Commun 14 1838 (2023)
  21. Structural Insights into the Phosphorylation-Enhanced Deubiquitinating Activity of UCHL3 and Ubiquitin Chain Cleavage Preference Analysis. Ren Y, Yu B, Zhou L, Wang F, Wang Y. Int J Mol Sci 23 10789 (2022)


Reviews citing this publication (38)

  1. The ubiquitin system. Hershko A, Ciechanover A. Annu Rev Biochem 67 425-479 (1998)
  2. Breaking the chains: structure and function of the deubiquitinases. Komander D, Clague MJ, Urbé S. Nat Rev Mol Cell Biol 10 550-563 (2009)
  3. The 26S proteasome: a molecular machine designed for controlled proteolysis. Voges D, Zwickl P, Baumeister W. Annu Rev Biochem 68 1015-1068 (1999)
  4. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Reyes-Turcu FE, Ventii KH, Wilkinson KD. Annu Rev Biochem 78 363-397 (2009)
  5. Mechanism and function of deubiquitinating enzymes. Amerik AY, Hochstrasser M. Biochim Biophys Acta 1695 189-207 (2004)
  6. Deubiquitylases from genes to organism. Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Physiol Rev 93 1289-1315 (2013)
  7. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Schwartz AL, Ciechanover A. Annu Rev Med 50 57-74 (1999)
  8. Deubiquitinating enzymes: a new class of biological regulators. D'Andrea A, Pellman D. Crit Rev Biochem Mol Biol 33 337-352 (1998)
  9. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Love KR, Catic A, Schlieker C, Ploegh HL. Nat Chem Biol 3 697-705 (2007)
  10. UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Day IN, Thompson RJ. Prog Neurobiol 90 327-362 (2010)
  11. Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Zhao Y, Morgan MA, Sun Y. Antioxid Redox Signal 21 2383-2400 (2014)
  12. Deubiquitinating enzymes--the importance of driving in reverse along the ubiquitin-proteasome pathway. Wing SS. Int J Biochem Cell Biol 35 590-605 (2003)
  13. Deubiquitinating enzymes: their diversity and emerging roles. Chung CH, Baek SH. Biochem Biophys Res Commun 266 633-640 (1999)
  14. Polyubiquitin binding and disassembly by deubiquitinating enzymes. Reyes-Turcu FE, Wilkinson KD. Chem Rev 109 1495-1508 (2009)
  15. The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Fang Y, Fu D, Shen XZ. Biochim Biophys Acta 1806 1-6 (2010)
  16. Towards novel anti-cancer strategies based on cystatin function. Keppler D. Cancer Lett 235 159-176 (2006)
  17. Chemistry and biology of the ubiquitin signal. Spasser L, Brik A. Angew Chem Int Ed Engl 51 6840-6862 (2012)
  18. Deubiquitinating enzymes in cellular signaling and disease regulation. Hanpude P, Bhattacharya S, Dey AK, Maiti TK. IUBMB Life 67 544-555 (2015)
  19. PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications. Kessler BM, Edelmann MJ. Cell Biochem Biophys 60 21-38 (2011)
  20. Structure characterization of the 26S proteasome. Kim HM, Yu Y, Cheng Y. Biochim Biophys Acta 1809 67-79 (2011)
  21. Structures and folding pathways of topologically knotted proteins. Virnau P, Mallam A, Jackson S. J Phys Condens Matter 23 033101 (2011)
  22. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Fang Y, Shen X. Cancer Metastasis Rev 36 669-682 (2017)
  23. Chemical and semisynthetic approaches to study and target deubiquitinases. Gopinath P, Ohayon S, Nawatha M, Brik A. Chem Soc Rev 45 4171-4198 (2016)
  24. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Wang KK, Yang Z, Sarkis G, Torres I, Raghavan V. Expert Opin Ther Targets 21 627-638 (2017)
  25. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease. Magraoui FE, Reidick C, Meyer HE, Platta HW. Cells 4 596-621 (2015)
  26. Thorough overview of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein as tandem biomarkers recently cleared by US Food and Drug Administration for the evaluation of intracranial injuries among patients with traumatic brain injury. Wang KKW, Kobeissy FH, Shakkour Z, Tyndall JA. Acute Med Surg 8 e622 (2021)
  27. Mechanisms for regulating deubiquitinating enzymes. Wolberger C. Protein Sci 23 344-353 (2014)
  28. Structures of proteases for ubiqutin and ubiquitin-like modifiers. Ha BH, Kim EE. BMB Rep 41 435-443 (2008)
  29. Advances in Cancer Treatment by Targeting the Neddylation Pathway. Gai W, Peng Z, Liu CH, Zhang L, Jiang H. Front Cell Dev Biol 9 653882 (2021)
  30. Switching off malignant mesothelioma: exploiting the hypoxic microenvironment. Nabavi N, Bennewith KL, Churg A, Wang Y, Collins CC, Mutti L. Genes Cancer 7 340-354 (2016)
  31. The structure and function of deubiquitinases: lessons from budding yeast. Suresh HG, Pascoe N, Andrews B. Open Biol 10 200279 (2020)
  32. Putting proteomics on target: activity-based profiling of ubiquitin and ubiquitin-like processing enzymes. Kessler BM. Expert Rev Proteomics 3 213-221 (2006)
  33. Deubiquitinases in Neurodegeneration. Bello AI, Goswami R, Brown SL, Costanzo K, Shores T, Allan S, Odah R, Mohan RD. Cells 11 556 (2022)
  34. Ubiquitin at Fox Chase. Rose I. Cell Death Differ 12 1198-1201 (2005)
  35. Using protein motion to read, write, and erase ubiquitin signals. Phillips AH, Corn JE. J Biol Chem 290 26437-26444 (2015)
  36. The enzymes in ubiquitin-like post-translational modifications. Chen Y. Biosci Trends 1 16-25 (2007)
  37. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Oncol Lett 25 123 (2023)
  38. Deubiquitylating Enzymes in Cancer and Immunity. Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Adv Sci (Weinh) 10 e2303807 (2023)

Articles citing this publication (101)

  1. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT. Cell 111 209-218 (2002)
  2. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW, Müller J. Nature 465 243-247 (2010)
  3. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mossessova E, Lima CD. Mol Cell 5 865-876 (2000)
  4. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE, Shi Y. Cell 111 1041-1054 (2002)
  5. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC. J Virol 79 15189-15198 (2005)
  6. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC, Stevens RC, Mesecar AD. Proc Natl Acad Sci U S A 103 5717-5722 (2006)
  7. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Yao T, Song L, Xu W, DeMartino GN, Florens L, Swanson SK, Washburn MP, Conaway RC, Conaway JW, Cohen RE. Nat Cell Biol 8 994-1002 (2006)
  8. The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Yu H, Mashtalir N, Daou S, Hammond-Martel I, Ross J, Sui G, Hart GW, Rauscher FJ, Drobetsky E, Milot E, Shi Y, Affar el B. Mol Cell Biol 30 5071-5085 (2010)
  9. Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Quesada V, Díaz-Perales A, Gutiérrez-Fernández A, Garabaya C, Cal S, López-Otín C. Biochem Biophys Res Commun 314 54-62 (2004)
  10. Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Pierrat B, Riedl R, Vinzenz D, Worpenberg S, Kroemer M. Structure 14 1293-1302 (2006)
  11. Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Misaghi S, Ottosen S, Izrael-Tomasevic A, Arnott D, Lamkanfi M, Lee J, Liu J, O'Rourke K, Dixit VM, Wilson AC. Mol Cell Biol 29 2181-2192 (2009)
  12. A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Reverter D, Lima CD. Structure 12 1519-1531 (2004)
  13. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. Misaghi S, Galardy PJ, Meester WJ, Ovaa H, Ploegh HL, Gaudet R. J Biol Chem 280 1512-1520 (2005)
  14. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, Jensen JP, Matunis MJ, Weissman AM, Wolberger C, Pickart CM. EMBO J 22 5241-5250 (2003)
  15. Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Amerik AY, Li SJ, Hochstrasser M. Biol Chem 381 981-992 (2000)
  16. DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1. Wu K, Yamoah K, Dolios G, Gan-Erdene T, Tan P, Chen A, Lee CG, Wei N, Wilkinson KD, Wang R, Pan ZQ. J Biol Chem 278 28882-28891 (2003)
  17. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Yao T, Song L, Jin J, Cai Y, Takahashi H, Swanson SK, Washburn MP, Florens L, Conaway RC, Cohen RE, Conaway JW. Mol Cell 31 909-917 (2008)
  18. Cleavage of the C-terminus of NEDD8 by UCH-L3. Wada H, Kito K, Caskey LS, Yeh ET, Kamitani T. Biochem Biophys Res Commun 251 688-692 (1998)
  19. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Nishikawa K, Li H, Kawamura R, Osaka H, Wang YL, Hara Y, Hirokawa T, Manago Y, Amano T, Noda M, Aoki S, Wada K. Biochem Biophys Res Commun 304 176-183 (2003)
  20. Structure of a herpesvirus-encoded cysteine protease reveals a unique class of deubiquitinating enzymes. Schlieker C, Weihofen WA, Frijns E, Kattenhorn LM, Gaudet R, Ploegh HL. Mol Cell 25 677-687 (2007)
  21. Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Reverter D, Lima CD. Nat Struct Mol Biol 13 1060-1068 (2006)
  22. Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7. Lamberto I, Liu X, Seo HS, Schauer NJ, Iacob RE, Hu W, Das D, Mikhailova T, Weisberg EL, Engen JR, Anderson KC, Chauhan D, Dhe-Paganon S, Buhrlage SJ. Cell Chem Biol 24 1490-1500.e11 (2017)
  23. A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing. Kroeger TS, Watkins KP, Friso G, van Wijk KJ, Barkan A. Proc Natl Acad Sci U S A 106 4537-4542 (2009)
  24. The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. Yan N, Doelling JH, Falbel TG, Durski AM, Vierstra RD. Plant Physiol 124 1828-1843 (2000)
  25. Structural and functional analysis of ataxin-2 and ataxin-3. Albrecht M, Golatta M, Wüllner U, Lengauer T. Eur J Biochem 271 3155-3170 (2004)
  26. The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Zhu M, Shao F, Innes RW, Dixon JE, Xu Z. Proc Natl Acad Sci U S A 101 302-307 (2004)
  27. Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Vander Linden RT, Hemmis CW, Schmitt B, Ndoja A, Whitby FG, Robinson H, Cohen RE, Yao T, Hill CP. Mol Cell 57 901-911 (2015)
  28. Functional sites in protein families uncovered via an objective and automated graph theoretic approach. Wangikar PP, Tendulkar AV, Ramya S, Mali DN, Sarawagi S. J Mol Biol 326 955-978 (2003)
  29. Leukocystatin, a new Class II cystatin expressed selectively by hematopoietic cells. Halfon S, Ford J, Foster J, Dowling L, Lucian L, Sterling M, Xu Y, Weiss M, Ikeda M, Liggett D, Helms A, Caux C, Lebecque S, Hannum C, Menon S, McClanahan T, Gorman D, Zurawski G. J Biol Chem 273 16400-16408 (1998)
  30. Intrinsic disorder in protein interactions: insights from a comprehensive structural analysis. Fong JH, Shoemaker BA, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV, Panchenko AR. PLoS Comput Biol 5 e1000316 (2009)
  31. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation. Boudreaux DA, Maiti TK, Davies CW, Das C. Proc Natl Acad Sci U S A 107 9117-9122 (2010)
  32. Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. Todi SV, Scaglione KM, Blount JR, Basrur V, Conlon KP, Pastore A, Elenitoba-Johnson K, Paulson HL. J Biol Chem 285 39303-39313 (2010)
  33. Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development. Liu Y, Wang F, Zhang H, He H, Ma L, Deng XW. Plant J 55 844-856 (2008)
  34. B. subtilis ykuD protein at 2.0 A resolution: insights into the structure and function of a novel, ubiquitous family of bacterial enzymes. Bielnicki J, Devedjiev Y, Derewenda U, Dauter Z, Joachimiak A, Derewenda ZS. Proteins 62 144-151 (2006)
  35. Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features. Lei J, Lei J, Mesters JR, Drosten C, Anemüller S, Ma Q, Hilgenfeld R. Antiviral Res 109 72-82 (2014)
  36. Molecular mechanisms of ubiquitin-dependent membrane traffic. Hurley JH, Stenmark H. Annu Rev Biophys 40 119-142 (2011)
  37. Crystal structure of human uroporphyrinogen decarboxylase. Whitby FG, Phillips JD, Kushner JP, Hill CP. EMBO J 17 2463-2471 (1998)
  38. The MEROPS batch BLAST: a tool to detect peptidases and their non-peptidase homologues in a genome. Rawlings ND, Morton FR. Biochimie 90 243-259 (2008)
  39. Thiopurine analogue inhibitors of severe acute respiratory syndrome-coronavirus papain-like protease, a deubiquitinating and deISGylating enzyme. Chen X, Chou CY, Chang GG. Antivir Chem Chemother 19 151-156 (2009)
  40. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. Kumanomidou T, Mizushima T, Komatsu M, Suzuki A, Tanida I, Sou YS, Ueno T, Kominami E, Tanaka K, Yamane T. J Mol Biol 355 612-618 (2006)
  41. Divergent N-terminal sequences target an inducible testis deubiquitinating enzyme to distinct subcellular structures. Lin H, Keriel A, Morales CR, Bedard N, Zhao Q, Hingamp P, Lefrançois S, Combaret L, Wing SS. Mol Cell Biol 20 6568-6578 (2000)
  42. Expression and functional analysis of Uch-L3 during mouse development. Kurihara LJ, Semenova E, Levorse JM, Tilghman SM. Mol Cell Biol 20 2498-2504 (2000)
  43. Identification by functional proteomics of a deubiquitinating/deNeddylating enzyme in Plasmodium falciparum. Artavanis-Tsakonas K, Misaghi S, Comeaux CA, Catic A, Spooner E, Duraisingh MT, Ploegh HL. Mol Microbiol 61 1187-1195 (2006)
  44. Crystal structure of human otubain 2. Nanao MH, Tcherniuk SO, Chroboczek J, Dideberg O, Dessen A, Balakirev MY. EMBO Rep 5 783-788 (2004)
  45. Chemical synthesis of ubiquitinated peptides with varying lengths and types of ubiquitin chains to explore the activity of deubiquitinases. Bavikar SN, Spasser L, Haj-Yahya M, Karthikeyan SV, Moyal T, Kumar KS, Brik A. Angew Chem Int Ed Engl 51 758-763 (2012)
  46. Small-molecule inhibitors and probes for ubiquitin- and ubiquitin-like-specific proteases. Borodovsky A, Ovaa H, Meester WJ, Venanzi ES, Bogyo MS, Hekking BG, Ploegh HL, Kessler BM, Overkleeft HS. Chembiochem 6 287-291 (2005)
  47. Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations. Popp MW, Artavanis-Tsakonas K, Ploegh HL. J Biol Chem 284 3593-3602 (2009)
  48. Homology modelling and structural analysis of human arylamine N-acetyltransferase NAT1: evidence for the conservation of a cysteine protease catalytic domain and an active-site loop. Rodrigues-Lima F, Deloménie C, Goodfellow GH, Grant DM, Dupret JM. Biochem J 356 327-334 (2001)
  49. Jostling for position: optimizing linker location in the design of estrogen receptor-targeting PROTACs. Cyrus K, Wehenkel M, Choi EY, Lee H, Swanson H, Kim KB. ChemMedChem 5 979-985 (2010)
  50. Characterization and structural studies of the Plasmodium falciparum ubiquitin and Nedd8 hydrolase UCHL3. Artavanis-Tsakonas K, Weihofen WA, Antos JM, Coleman BI, Comeaux CA, Duraisingh MT, Gaudet R, Ploegh HL. J Biol Chem 285 6857-6866 (2010)
  51. Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Zhou ZR, Zhang YH, Liu S, Song AX, Hu HY. Biochem J 441 143-149 (2012)
  52. Pheromone-dependent ubiquitination of the mitogen-activated protein kinase kinase Ste7. Wang Y, Dohlman HG. J Biol Chem 277 15766-15772 (2002)
  53. Structural and functional analysis of two glutamate racemase isozymes from Bacillus anthracis and implications for inhibitor design. May M, Mehboob S, Mulhearn DC, Wang Z, Yu H, Thatcher GR, Santarsiero BD, Johnson ME, Mesecar AD. J Mol Biol 371 1219-1237 (2007)
  54. The deubiquitinase UCHL5/UCH37 positively regulates Hedgehog signaling by deubiquitinating Smoothened. Zhou Z, Yao X, Pang S, Chen P, Jiang W, Shan Z, Zhang Q. J Mol Cell Biol 10 243-257 (2018)
  55. Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Nishio K, Kim SW, Kawai K, Mizushima T, Yamane T, Hamazaki J, Murata S, Tanaka K, Morimoto Y. Biochem Biophys Res Commun 390 855-860 (2009)
  56. Characterization of a novel Ser-cisSer-Lys catalytic triad in comparison with the classical Ser-His-Asp triad. Shin S, Yun YS, Koo HM, Kim YS, Choi KY, Oh BH. J Biol Chem 278 24937-24943 (2003)
  57. Characterization of novel proteins based on known protein structures. Koppensteiner WA, Lackner P, Wiederstein M, Sippl MJ. J Mol Biol 296 1139-1152 (2000)
  58. Facile synthesis of native and protease-resistant ubiquitylated peptides. Weller CE, Huang W, Chatterjee C. Chembiochem 15 1263-1267 (2014)
  59. MICAN: a protein structure alignment algorithm that can handle Multiple-chains, Inverse alignments, C(α) only models, Alternative alignments, and Non-sequential alignments. Minami S, Sawada K, Chikenji G. BMC Bioinformatics 14 24 (2013)
  60. Structural characterization of human Uch37. Burgie SE, Bingman CA, Soni AB, Phillips GN. Proteins 80 649-654 (2012)
  61. Mutant ubiquitin (UBB+1) associated with neurodegenerative disorders is hydrolyzed by ubiquitin C-terminal hydrolase L3 (UCH-L3). Dennissen FJ, Kholod N, Hermes DJ, Kemmerling N, Steinbusch HW, Dantuma NP, van Leeuwen FW. FEBS Lett 585 2568-2574 (2011)
  62. Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers. Bett JS, Ritorto MS, Ewan R, Jaffray EG, Virdee S, Chin JW, Knebel A, Kurz T, Trost M, Tatham MH, Hay RT. Biochem J 466 489-498 (2015)
  63. Deubiquitinating activity of the SARS-CoV papain-like protease. Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC. Adv Exp Med Biol 581 37-41 (2006)
  64. The binding site for UCH-L3 on ubiquitin: mutagenesis and NMR studies on the complex between ubiquitin and UCH-L3. Wilkinson KD, Laleli-Sahin E, Urbauer J, Larsen CN, Shih GH, Haas AL, Walsh ST, Wand AJ. J Mol Biol 291 1067-1077 (1999)
  65. Identification of novel chemical inhibitors for ubiquitin C-terminal hydrolase-L3 by virtual screening. Hirayama K, Aoki S, Nishikawa K, Matsumoto T, Wada K. Bioorg Med Chem 15 6810-6818 (2007)
  66. Catalog of 680 variations among eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes in the Japanese population. Saito S, Iida A, Sekine A, Kawauchi S, Higuchi S, Ogawa C, Nakamura Y. J Hum Genet 48 249-270 (2003)
  67. Mechanism of the Rpn13-induced activation of Uch37. Jiao L, Ouyang S, Shaw N, Song G, Feng Y, Niu F, Qiu W, Zhu H, Hung LW, Zuo X, Eleonora Shtykova V, Zhu P, Dong YH, Xu R, Liu ZJ. Protein Cell 5 616-630 (2014)
  68. The hippocampal proteomic analysis of senescence-accelerated mouse: implications of Uchl3 and mitofilin in cognitive disorder and mitochondria dysfunction in SAMP8. Wang Q, Liu Y, Zou X, Wang Q, An M, Guan X, He J, Tong Y, Ji J. Neurochem Res 33 1776-1782 (2008)
  69. Ubiquitin dimers control the hydrolase activity of UCH-L3. Setsuie R, Sakurai M, Sakaguchi Y, Wada K. Neurochem Int 54 314-321 (2009)
  70. Usp25m protease regulates ubiquitin-like processing of TUG proteins to control GLUT4 glucose transporter translocation in adipocytes. Habtemichael EN, Li DT, Alcázar-Román A, Westergaard XO, Li M, Petersen MC, Li H, DeVries SG, Li E, Julca-Zevallos O, Wolenski JS, Bogan JS. J Biol Chem 293 10466-10486 (2018)
  71. Characterization of the ubiquitin-specific protease activity of the mouse/human Unp/Unph oncoprotein. Gilchrist CA, Baker RT. Biochim Biophys Acta 1481 297-309 (2000)
  72. Molecular and immunochemical evidences demonstrate that endooligopeptidase A is the predominant cytosolic oligopeptidase of rabbit brain. Hayashi MA, Portaro FC, Tambourgi DV, Sucupira M, Yamane T, Fernandes BL, Ferro ES, Rebouças NA, de Camargo AC. Biochem Biophys Res Commun 269 7-13 (2000)
  73. Reaction mechanism of caspases: insights from QM/MM Car-Parrinello simulations. Sulpizi M, Laio A, VandeVondele J, Cattaneo A, Rothlisberger U, Carloni P. Proteins 52 212-224 (2003)
  74. SARS-CoV-2 Papain-Like Protease Potential Inhibitors-In Silico Quantitative Assessment. Stasiulewicz A, Maksymiuk AW, Nguyen ML, Bełza B, Sulkowska JI. Int J Mol Sci 22 3957 (2021)
  75. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Morrow ME, Kim MI, Ronau JA, Sheedlo MJ, White RR, Chaney J, Paul LN, Lill MA, Artavanis-Tsakonas K, Das C. Biochemistry 52 3564-3578 (2013)
  76. Altered ubiquitin/proteasome expression in anastomotic intimal hyperplasia. Stone DH, Sivamurthy N, Contreras MA, Fitzgerald L, LoGerfo FW, Quist WC. J Vasc Surg 34 1016-1022 (2001)
  77. Decoding the ubiquitin-mediated pathway of arthropod disease vectors. Choy A, Severo MS, Sun R, Girke T, Gillespie JJ, Pedra JH. PLoS One 8 e78077 (2013)
  78. Skeletal muscles of Uchl3 knockout mice show polyubiquitinated protein accumulation and stress responses. Setsuie R, Suzuki M, Tsuchiya Y, Wada K. Neurochem Int 56 911-918 (2010)
  79. Cloning, expression, and mapping of a mouse gene, Uchl4, highly homologous to human and mouse Uchl3. Osawa Y, Wang YL, Osaka H, Aoki S, Wada K. Biochem Biophys Res Commun 283 627-633 (2001)
  80. Stimulation of the murine Uchl1 gene promoter by the B-Myb transcription factor. Long EM, Long MA, Tsirigotis M, Gray DA. Lung Cancer 42 9-21 (2003)
  81. Structural and biochemical characterization of SADS-CoV papain-like protease 2. Wang L, Hu W, Fan C. Protein Sci 29 1228-1241 (2020)
  82. A novel ubiquitin carboxyl terminal hydrolase is involved in toad oocyte maturation. Sun ZG, Kong WH, Zhang YJ, Yan S, Lu JN, Gu Z, Lin F, Tso JK. Cell Res 12 199-206 (2002)
  83. Conservation and developmental expression of ubiquitin isopeptidases in Schistosoma mansoni. Pereira RV, Vieira HG, Oliveira VF, Gomes Mde S, Passos LK, Borges Wde C, Guerra-Sá R. Mem Inst Oswaldo Cruz 109 1-8 (2014)
  84. Molecular dynamics studies of caspase-3. Sulpizi M, Rothlisberger U, Carloni P. Biophys J 84 2207-2215 (2003)
  85. Nedd8 hydrolysis by UCH proteases in Plasmodium parasites. Karpiyevich M, Adjalley S, Mol M, Ascher DB, Mason B, van der Heden van Noort GJ, Laman H, Ovaa H, Lee MCS, Artavanis-Tsakonas K. PLoS Pathog 15 e1008086 (2019)
  86. Characterization of multimetric variants of ubiquitin carboxyl-terminal hydrolase L1 in water by small-angle neutron scattering. Naito S, Mochizuki H, Yasuda T, Mizuno Y, Furusaka M, Ikeda S, Adachi T, Shimizu HM, Suzuki J, Fujiwara S, Okada T, Nishikawa K, Aoki S, Wada K. Biochem Biophys Res Commun 339 717-725 (2006)
  87. Conformational flexibility and changes underlying activation of the SUMO-specific protease SENP1 by remote substrate binding. Chen CH, Namanja AT, Chen Y. Nat Commun 5 4968 (2014)
  88. Ubiquitin at Fox Chase. Rose IA. Proc Natl Acad Sci U S A 102 11575-11577 (2005)
  89. Changes in salivary analytes in canine parvovirus: A high-resolution quantitative proteomic study. Franco-Martínez L, Tvarijonaviciute A, Horvatić A, Guillemin N, Cerón JJ, Escribano D, Eckersall D, Kocatürk M, Yilmaz Z, Lamy E, Martínez-Subiela S, Mrljak V. Comp Immunol Microbiol Infect Dis 60 1-10 (2018)
  90. Connecting the Dots: Interplay between Ubiquitylation and SUMOylation at DNA Double-Strand Breaks. Tang JB, Greenberg RA. Genes Cancer 1 787-796 (2010)
  91. Historical Article Early work on the ubiquitin proteasome system, an interview with Irwin Rose. Interview by CDD. Rose I. Cell Death Differ 12 1162-1166 (2005)
  92. Site-directed mutagenesis establishes cysteine-110 as essential for enzyme activity in human gamma-glutamyl hydrolase. Chave KJ, Galivan J, Ryan TJ. Biochem J 343 Pt 3 551-555 (1999)
  93. Backbone assignments of the 26 kDa neuron-specific ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1). Andersson FI, Jackson SE, Hsu ST. Biomol NMR Assign 4 41-43 (2010)
  94. Bioinformatic mapping of a more precise Aspergillus niger degradome. Dong Z, Yang S, Lee BH. Sci Rep 11 693 (2021)
  95. Further characterization of the putative human isopeptidase T catalytic site. Lacombe T, Gabriel JM. FEBS Lett 531 469-474 (2002)
  96. Molecular cloning of chick UCH-6 which shares high similarity with human UCH-L3: its unusual substrate specificity and tissue distribution. Baek SH, Yoo YJ, Tanaka K, Chung CH. Biochem Biophys Res Commun 264 235-240 (1999)
  97. News Two-stepping with E1. VanDemark AP, Hill CP. Nat Struct Biol 10 244-246 (2003)
  98. Backbone 1H, 13C, and 15N resonance assignments for the 26-kD human de-ubiquitinating enzyme UCH-L3. Harris R, Eidhoff U, Vinzenz D, Renatus M, Gerhartz B, Hommel U, Driscoll PC. Biomol NMR Assign 1 51-53 (2007)
  99. Family-Specific Gains and Losses of Protein Domains in the Legume and Grass Plant Families. Yadav A, Fernández-Baca D, Cannon SB. Evol Bioinform Online 16 1176934320939943 (2020)
  100. Tobacco ubiquitin-specific protease 12 (NbUBP12) positively modulates drought resistance. Lim CW, Baek W, Lee SC. Plant Signal Behav 16 1974725 (2021)
  101. Synthesis of isopeptide epoxide peptidomimetics. Majumdar D, Alexander MD, Coward JK. J Org Chem 74 617-627 (2009)