1u6d Citations

Crystal structure of the Kelch domain of human Keap1.

J Biol Chem 279 54750-8 (2004)
Cited: 140 times
EuropePMC logo PMID: 15475350

Abstract

Keap1 is a substrate adaptor protein for an ubiquitin ligase complex that targets the Nrf2 transcription factor for degradation. Keap1 binds Nrf2 through its C-terminal Kelch domain, which contains six copies of the evolutionarily conserved kelch repeat sequence motif. The structure of the Kelch domain from human Keap1 has been determined by x-ray crystallography to a resolution of 1.85 A. The Kelch domain forms a 6-bladed beta-propeller structure, with residues at the C terminus forming the first strand in the first blade. Key structural roles have been identified for the highly conserved glycine, tyrosine, and tryptophan residues that define the kelch repeat sequence motif. In addition, we show that substitution of a single amino acid located within a loop that extends out from the bottom of the beta-propeller structure abolishes binding of Nrf2. The structure of the Kelch domain of Keap1 represents a high quality model for the superfamily of eukaryotic kelch repeat proteins and provides insight into how disease-causing mutations perturb the structural integrity of the Kelch domain.

Reviews - 1u6d mentioned but not cited (1)

  1. In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Shin WH, Christoffer CW, Kihara D. Methods 131 22-32 (2017)

Articles - 1u6d mentioned but not cited (21)

  1. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. Lo SC, Li X, Henzl MT, Beamer LJ, Hannink M. EMBO J 25 3605-3617 (2006)
  2. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Piotrowski A, Xie J, Liu YF, Poplawski AB, Gomes AR, Madanecki P, Fu C, Crowley MR, Crossman DK, Armstrong L, Babovic-Vuksanovic D, Bergner A, Blakeley JO, Blumenthal AL, Daniels MS, Feit H, Gardner K, Hurst S, Kobelka C, Lee C, Nagy R, Rauen KA, Slopis JM, Suwannarat P, Westman JA, Zanko A, Korf BR, Messiaen LM. Nat Genet 46 182-187 (2014)
  3. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Bollong MJ, Lee G, Coukos JS, Yun H, Zambaldo C, Chang JW, Chin EN, Ahmad I, Chatterjee AK, Lairson LL, Schultz PG, Moellering RE. Nature 562 600-604 (2018)
  4. Prospective type 1 and type 2 disulfides of Keap1 protein. Holland R, Hawkins AE, Eggler AL, Mesecar AD, Fabris D, Fishbein JC. Chem Res Toxicol 21 2051-2060 (2008)
  5. Structural basis of tRNA modification with CO2 fixation and methylation by wybutosine synthesizing enzyme TYW4. Suzuki Y, Noma A, Suzuki T, Ishitani R, Nureki O. Nucleic Acids Res 37 2910-2925 (2009)
  6. Isoquinoline Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-like 2 (KEAP1-NRF2) Inhibitors with High Metabolic Stability. Lazzara PR, David BP, Ankireddy A, Richardson BG, Dye K, Ratia KM, Reddy SP, Moore TW. J Med Chem 63 6547-6560 (2020)
  7. Novel beta-propeller of the BTB-Kelch protein Krp1 provides a binding site for Lasp-1 that is necessary for pseudopodial extension. Gray CH, McGarry LC, Spence HJ, Riboldi-Tunnicliffe A, Ozanne BW. J Biol Chem 284 30498-30507 (2009)
  8. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses. Johnson B, Li J, Adhikari J, Edwards MR, Zhang H, Schwarz T, Leung DW, Basler CF, Gross ML, Amarasinghe GK. J Mol Biol 428 3483-3494 (2016)
  9. Altered expression of K13 disrupts DNA replication and repair in Plasmodium falciparum. Gibbons J, Button-Simons KA, Adapa SR, Li S, Pietsch M, Zhang M, Liao X, Adams JH, Ferdig MT, Jiang RHY. BMC Genomics 19 849 (2018)
  10. Factors influencing protein tyrosine nitration--structure-based predictive models. Bayden AS, Yakovlev VA, Graves PR, Mikkelsen RB, Kellogg GE. Free Radic Biol Med 50 749-762 (2011)
  11. Identifying tandem Ankyrin repeats in protein structures. Chakrabarty B, Parekh N. BMC Bioinformatics 15 6599 (2014)
  12. Docking Flexible Cyclic Peptides with AutoDock CrankPep. Zhang Y, Sanner MF. J Chem Theory Comput 15 5161-5168 (2019)
  13. Multiple binding modes of a small molecule to human Keap1 revealed by X-ray crystallography and molecular dynamics simulation. Satoh M, Saburi H, Tanaka T, Matsuura Y, Naitow H, Shimozono R, Yamamoto N, Inoue H, Nakamura N, Yoshizawa Y, Aoki T, Tanimura R, Kunishima N. FEBS Open Bio 5 557-570 (2015)
  14. Interaction Energetics and Druggability of the Protein-Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2). Zhong M, Lynch A, Muellers SN, Jehle S, Luo L, Hall DR, Iwase R, Carolan JP, Egbert M, Wakefield A, Streu K, Harvey CM, Ortet PC, Kozakov D, Vajda S, Allen KN, Whitty A. Biochemistry 59 563-581 (2020)
  15. Itaconate ameliorates methicillin-resistant Staphylococcus aureus-induced acute lung injury through the Nrf2/ARE pathway. Liu G, Wu Y, Jin S, Sun J, Wan BB, Zhang J, Wang Y, Gao ZQ, Chen D, Li S, Pang Q, Wang Z. Ann Transl Med 9 712 (2021)
  16. Crystal-contact engineering to obtain a crystal form of the Kelch domain of human Keap1 suitable for ligand-soaking experiments. Hörer S, Reinert D, Ostmann K, Hoevels Y, Nar H. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 592-596 (2013)
  17. Alleviation of Memory Deficit by Bergenin via the Regulation of Reelin and Nrf-2/NF-κB Pathway in Transgenic Mouse Model. Shal B, Khan A, Khan AU, Ullah R, Ali G, Islam SU, Haq IU, Ali H, Seo EK, Khan S. Int J Mol Sci 22 6603 (2021)
  18. Extraction and Identification of Three New Urechis unicinctus Visceral Peptides and Their Antioxidant Activity. Li J, Lu J, Asakiya C, Huang K, Zhou X, Liu Q, He X. Mar Drugs 20 293 (2022)
  19. Cafestol Inhibits High-Glucose-Induced Cardiac Fibrosis in Cardiac Fibroblasts and Type 1-Like Diabetic Rats. Liu JC, Chen PY, Hao WR, Liu YC, Lyu PC, Hong HJ. Evid Based Complement Alternat Med 2020 4503747 (2020)
  20. Disease-associated KBTBD4 mutations in medulloblastoma elicit neomorphic ubiquitylation activity to promote CoREST degradation. Chen Z, Ioris RM, Richardson S, Van Ess AN, Vendrell I, Kessler BM, Buffa FM, Busino L, Clifford SC, Bullock AN, D'Angiolella V. Cell Death Differ 29 1955-1969 (2022)
  21. Oridonin inhibits inflammation of epithelial cells via dual-targeting of CD31 Keap1 to ameliorate acute lung injury. Zhao Y, Jin H, Lei K, Bai LP, Pan H, Wang C, Zhu X, Tang Y, Guo Z, Cai J, Li T. Front Immunol 14 1163397 (2023)


Reviews citing this publication (48)

  1. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Kensler TW, Wakabayashi N, Biswal S. Annu Rev Pharmacol Toxicol 47 89-116 (2007)
  2. Role of nrf2 in oxidative stress and toxicity. Ma Q. Annu Rev Pharmacol Toxicol 53 401-426 (2013)
  3. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Zhang DD. Drug Metab Rev 38 769-789 (2006)
  4. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Yamamoto M, Kensler TW, Motohashi H. Physiol Rev 98 1169-1203 (2018)
  5. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Hayes JD, McMahon M. Trends Biochem Sci 34 176-188 (2009)
  6. The cytoprotective role of the Keap1-Nrf2 pathway. Baird L, Dinkova-Kostova AT. Arch Toxicol 85 241-272 (2011)
  7. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Kobayashi M, Yamamoto M. Adv Enzyme Regul 46 113-140 (2006)
  8. Stress-activated cap'n'collar transcription factors in aging and human disease. Sykiotis GP, Bohmann D. Sci Signal 3 re3 (2010)
  9. Molecular mechanisms of Nrf2-mediated antioxidant response. Li W, Kong AN. Mol Carcinog 48 91-104 (2009)
  10. Phototropin blue-light receptors. Christie JM. Annu Rev Plant Biol 58 21-45 (2007)
  11. Dual roles of Nrf2 in cancer. Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. Pharmacol Res 58 262-270 (2008)
  12. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Antioxid Redox Signal 13 1763-1811 (2010)
  13. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Magesh S, Chen Y, Hu L. Med Res Rev 32 687-726 (2012)
  14. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Baird L, Yamamoto M. Mol Cell Biol 40 e00099-20 (2020)
  15. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Antioxid Redox Signal 13 1713-1748 (2010)
  16. Structural basis of Keap1 interactions with Nrf2. Canning P, Sorrell FJ, Bullock AN. Free Radic Biol Med 88 101-107 (2015)
  17. The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Copple IM, Goldring CE, Kitteringham NR, Park BK. Toxicology 246 24-33 (2008)
  18. Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Ma Q, He X. Pharmacol Rev 64 1055-1081 (2012)
  19. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Wang K, Zhang T, Dong Q, Nice EC, Huang C, Wei Y. Cell Death Dis 4 e537 (2013)
  20. Structural assembly of cullin-RING ubiquitin ligase complexes. Zimmerman ES, Schulman BA, Zheng N. Curr Opin Struct Biol 20 714-721 (2010)
  21. The role of chalcones in suppression of NF-κB-mediated inflammation and cancer. Yadav VR, Prasad S, Sung B, Aggarwal BB. Int Immunopharmacol 11 295-309 (2011)
  22. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Dinkova-Kostova AT, Kostov RV, Canning P. Arch Biochem Biophys 617 84-93 (2017)
  23. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Joshi G, Johnson JA. Recent Pat CNS Drug Discov 7 218-229 (2012)
  24. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Abed DA, Goldstein M, Albanyan H, Jin H, Hu L. Acta Pharm Sin B 5 285-299 (2015)
  25. Cysteine-based regulation of the CUL3 adaptor protein Keap1. Sekhar KR, Rachakonda G, Freeman ML. Toxicol Appl Pharmacol 244 21-26 (2010)
  26. Beyond repression of Nrf2: An update on Keap1. Kopacz A, Kloska D, Forman HJ, Jozkowicz A, Grochot-Przeczek A. Free Radic Biol Med 157 63-74 (2020)
  27. Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Raghunath A, Sundarraj K, Arfuso F, Sethi G, Perumal E. Cancers (Basel) 10 E481 (2018)
  28. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Dayalan Naidu S, Dinkova-Kostova AT. Open Biol 10 200105 (2020)
  29. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. Sova M, Saso L. Drug Des Devel Ther 12 3181-3197 (2018)
  30. Plasmodium falciparum Resistance to Artemisinin Derivatives and Piperaquine: A Major Challenge for Malaria Elimination in Cambodia. Duru V, Witkowski B, Ménard D. Am J Trop Med Hyg 95 1228-1238 (2016)
  31. The role of natural products in revealing NRF2 function. Zhang DD, Chapman E. Nat Prod Rep 37 797-826 (2020)
  32. NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Robertson H, Dinkova-Kostova AT, Hayes JD. Cancers (Basel) 12 E3609 (2020)
  33. Nrf2 Regulation by Curcumin: Molecular Aspects for Therapeutic Prospects. Shahcheraghi SH, Salemi F, Peirovi N, Ayatollahi J, Alam W, Khan H, Saso L. Molecules 27 167 (2021)
  34. Evolution of domain combinations in protein kinases and its implications for functional diversity. Deshmukh K, Anamika K, Srinivasan N. Prog Biophys Mol Biol 102 1-15 (2010)
  35. Role of NRF2 in Lung Cancer. Sánchez-Ortega M, Carrera AC, Garrido A. Cells 10 1879 (2021)
  36. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1). Bresciani A, Missineo A, Gallo M, Cerretani M, Fezzardi P, Tomei L, Cicero DO, Altamura S, Santoprete A, Ingenito R, Bianchi E, Pacifici R, Dominguez C, Munoz-Sanjuan I, Harper S, Toledo-Sherman L, Park LC. Arch Biochem Biophys 631 31-41 (2017)
  37. Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals. Lee DY, Song MY, Kim EH. Antioxidants (Basel) 10 743 (2021)
  38. Molecular Mechanisms Underlying Hepatocellular Carcinoma Induction by Aberrant NRF2 Activation-Mediated Transcription Networks: Interaction of NRF2-KEAP1 Controls the Fate of Hepatocarcinogenesis. Haque E, Karim MR, Salam Teeli A, Śmiech M, Leszczynski P, Winiarczyk D, Parvanov ED, Atanasov AG, Taniguchi H. Int J Mol Sci 21 E5378 (2020)
  39. The Effects of Nuclear Factor Erythroid 2 (NFE2)-Related Factor 2 (Nrf2) Activation in Preclinical Models of Peripheral Neuropathic Pain. Basu P, Averitt DL, Maier C, Basu A. Antioxidants (Basel) 11 430 (2022)
  40. E3 Ubiquitin Ligases in Neurological Diseases: Focus on Gigaxonin and Autophagy. Lescouzères L, Bomont P. Front Physiol 11 1022 (2020)
  41. The Role of Organosulfur Compounds as Nrf2 Activators and Their Antioxidant Effects. Egbujor MC, Petrosino M, Zuhra K, Saso L. Antioxidants (Basel) 11 1255 (2022)
  42. The role of modulation of antioxidant enzyme systems in the treatment of neurodegenerative diseases. Obuobi S, Karatayev S, Chai CL, Ee PL, Mátyus P. J Enzyme Inhib Med Chem 31 194-204 (2016)
  43. Overview of Recent Progress in Protein-Expression Technologies for Small-Molecule Screening. Cuozzo JW, Soutter HH. J Biomol Screen 19 1000-1013 (2014)
  44. Signalling pathways involved in paracetamol-induced hepatotoxicity: new insights on the role of protein tyrosine phosphatase 1B. Mobasher MA, Valverde ÁM. Arch Physiol Biochem 120 51-63 (2014)
  45. From In Silico to a Cellular Model: Molecular Docking Approach to Evaluate Antioxidant Bioactive Peptides. Tonolo F, Grinzato A, Bindoli A, Rigobello MP. Antioxidants (Basel) 12 665 (2023)
  46. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. Mukherjee AG, Gopalakrishnan AV. Med Oncol 40 248 (2023)
  47. The roles of KLHL family members in human cancers. Ye G, Wang J, Yang W, Li J, Ye M, Jin X. Am J Cancer Res 12 5105-5139 (2022)
  48. The bridge between cell survival and cell death: reactive oxygen species-mediated cellular stress. Vardar Acar N, Özgül RK. EXCLI J 22 520-555 (2023)

Articles citing this publication (70)

  1. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Ménard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Ménard D. Nature 505 50-55 (2014)
  2. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang MI, Kobayashi A, Yokoyama S, Yamamoto M. Mol Cell 21 689-700 (2006)
  3. Sequence and structural analysis of BTB domain proteins. Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Privé GG. Genome Biol 6 R82 (2005)
  4. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. Mol Cell Biol 26 2887-2900 (2006)
  5. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD. Mol Cell 34 663-673 (2009)
  6. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H. Proc Natl Acad Sci U S A 109 21534-21539 (2012)
  7. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. Canning P, Cooper CDO, Krojer T, Murray JW, Pike ACW, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Marsden BD, Gileadi O, Knapp S, von Delft F, Bullock AN. J Biol Chem 288 7803-7814 (2013)
  8. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Ogura T, Tong KI, Mio K, Maruyama Y, Kurokawa H, Sato C, Yamamoto M. Proc Natl Acad Sci U S A 107 2842-2847 (2010)
  9. Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Marcotte D, Zeng W, Hus JC, McKenzie A, Hession C, Jin P, Bergeron C, Lugovskoy A, Enyedy I, Cuervo H, Wang D, Atmanene C, Roecklin D, Vecchi M, Vivat V, Kraemer J, Winkler D, Hong V, Chao J, Lukashev M, Silvian L. Bioorg Med Chem 21 4011-4019 (2013)
  10. Electrophilic tuning of the chemoprotective natural product sulforaphane. Ahn YH, Hwang Y, Liu H, Wang XJ, Zhang Y, Stephenson KK, Boronina TN, Cole RN, Dinkova-Kostova AT, Talalay P, Cole PA. Proc Natl Acad Sci U S A 107 9590-9595 (2010)
  11. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1. Lo SC, Hannink M. Mol Cell Biol 26 1235-1244 (2006)
  12. Multistep and multimode cortical anchoring of tea1p at cell tips in fission yeast. Snaith HA, Samejima I, Sawin KE. EMBO J 24 3690-3699 (2005)
  13. Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. Kevei E, Gyula P, Hall A, Kozma-Bognár L, Kim WY, Eriksson ME, Tóth R, Hanano S, Fehér B, Southern MM, Bastow RM, Viczián A, Hibberd V, Davis SJ, Somers DE, Nagy F, Millar AJ. Plant Physiol 140 933-945 (2006)
  14. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Sun Z, Wu T, Zhao F, Lau A, Birch CM, Zhang DD. Mol Cell Biol 31 1800-1811 (2011)
  15. Molecular assessment of artemisinin resistance markers, polymorphisms in the k13 propeller, and a multidrug-resistance gene in the eastern and western border areas of Myanmar. Nyunt MH, Hlaing T, Oo HW, Tin-Oo LL, Phway HP, Wang B, Zaw NN, Han SS, Tun T, San KK, Kyaw MP, Han ET. Clin Infect Dis 60 1208-1215 (2015)
  16. Optimization of fluorescently labeled Nrf2 peptide probes and the development of a fluorescence polarization assay for the discovery of inhibitors of Keap1-Nrf2 interaction. Inoyama D, Chen Y, Huang X, Beamer LJ, Kong AN, Hu L. J Biomol Screen 17 435-447 (2012)
  17. Novel role of the muskelin-RanBP9 complex as a nucleocytoplasmic mediator of cell morphology regulation. Valiyaveettil M, Bentley AA, Gursahaney P, Hussien R, Chakravarti R, Kureishy N, Prag S, Adams JC. J Cell Biol 182 727-739 (2008)
  18. Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization. Twigg SR, Lloyd D, Jenkins D, Elçioglu NE, Cooper CD, Al-Sannaa N, Annagür A, Gillessen-Kaesbach G, Hüning I, Knight SJ, Goodship JA, Keavney BD, Beales PL, Gileadi O, McGowan SJ, Wilkie AO. Am J Hum Genet 91 897-905 (2012)
  19. Nrf2 activation supports cell survival during hypoxia and hypoxia/reoxygenation in cardiomyoblasts; the roles of reactive oxygen and nitrogen species. Kolamunne RT, Dias IH, Vernallis AB, Grant MM, Griffiths HR. Redox Biol 1 418-426 (2013)
  20. Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation. Schumacher FR, Sorrell FJ, Alessi DR, Bullock AN, Kurz T. Biochem J 460 237-246 (2014)
  21. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Qin JJ, Cheng XD, Zhang J, Zhang WD. Cell Commun Signal 17 121 (2019)
  22. Surveillance of artemisinin resistance in Plasmodium falciparum in India using the kelch13 molecular marker. Mishra N, Prajapati SK, Kaitholia K, Bharti RS, Srivastava B, Phookan S, Anvikar AR, Dev V, Sonal GS, Dhariwal AC, White NJ, Valecha N. Antimicrob Agents Chemother 59 2548-2553 (2015)
  23. Letter Kinetic analyses of Keap1-Nrf2 interaction and determination of the minimal Nrf2 peptide sequence required for Keap1 binding using surface plasmon resonance. Chen Y, Inoyama D, Kong AN, Beamer LJ, Hu L. Chem Biol Drug Des 78 1014-1021 (2011)
  24. Molecular evolution and selection patterns of plant F-box proteins with C-terminal kelch repeats. Schumann N, Navarro-Quezada A, Ullrich K, Kuhl C, Quint M. Plant Physiol 155 835-850 (2011)
  25. A comprehensive analysis of interaction and localization of Arabidopsis SKP1-like (ASK) and F-box (FBX) proteins. Kuroda H, Yanagawa Y, Takahashi N, Horii Y, Matsui M. PLoS One 7 e50009 (2012)
  26. Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced colitis. Zhang Y, Yan T, Sun D, Xie C, Wang T, Liu X, Wang J, Wang Q, Luo Y, Wang P, Yagai T, Krausz KW, Yang X, Gonzalez FJ. Free Radic Biol Med 148 33-41 (2020)
  27. Dominant Noonan syndrome-causing LZTR1 mutations specifically affect the Kelch domain substrate-recognition surface and enhance RAS-MAPK signaling. Motta M, Fidan M, Bellacchio E, Pantaleoni F, Schneider-Heieck K, Coppola S, Borck G, Salviati L, Zenker M, Cirstea IC, Tartaglia M. Hum Mol Genet 28 1007-1022 (2019)
  28. Nrf2 activation through the inhibition of Keap1-Nrf2 protein-protein interaction. Lee S, Hu L. Med Chem Res 29 846-867 (2020)
  29. Analysis of the protein kinome of Entamoeba histolytica. Anamika K, Bhattacharya A, Srinivasan N. Proteins 71 995-1006 (2008)
  30. Selective proteasomal degradation of the B'β subunit of protein phosphatase 2A by the E3 ubiquitin ligase adaptor Kelch-like 15. Oberg EA, Nifoussi SK, Gingras AC, Strack S. J Biol Chem 287 43378-43389 (2012)
  31. Hcfc1b, a zebrafish ortholog of HCFC1, regulates craniofacial development by modulating mmachc expression. Quintana AM, Geiger EA, Achilly N, Rosenblatt DS, Maclean KN, Stabler SP, Artinger KB, Appel B, Shaikh TH. Dev Biol 396 94-106 (2014)
  32. Identification of LOV KELCH PROTEIN2 (LKP2)-interacting factors that can recruit LKP2 to nuclear bodies. Fukamatsu Y, Mitsui S, Yasuhara M, Tokioka Y, Ihara N, Fujita S, Kiyosue T. Plant Cell Physiol 46 1340-1349 (2005)
  33. The mycosporine-like amino acids porphyra-334 and shinorine are antioxidants and direct antagonists of Keap1-Nrf2 binding. Gacesa R, Lawrence KP, Georgakopoulos ND, Yabe K, Dunlap WC, Barlow DJ, Wells G, Young AR, Long PF. Biochimie 154 35-44 (2018)
  34. NRF2: KEAPing Tumors Protected. Pillai R, Hayashi M, Zavitsanou AM, Papagiannakopoulos T. Cancer Discov 12 625-643 (2022)
  35. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Quintana AM, Yu HC, Brebner A, Pupavac M, Geiger EA, Watson A, Castro VL, Cheung W, Chen SH, Watkins D, Pastinen T, Skovby F, Appel B, Rosenblatt DS, Shaikh TH. Hum Mol Genet 26 2838-2849 (2017)
  36. Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation. Jiang ZY, Chu HX, Xi MY, Yang TT, Jia JM, Huang JJ, Guo XK, Zhang XJ, You QD, Sun HP. PLoS One 8 e75076 (2013)
  37. Advances in mechanisms of anti-oxidation. Ma Q. Discov Med 17 121-130 (2014)
  38. Keap1-MCM3 interaction is a potential coordinator of molecular machineries of antioxidant response and genomic DNA replication in metazoa. Tamberg N, Tahk S, Koit S, Kristjuhan K, Kasvandik S, Kristjuhan A, Ilves I. Sci Rep 8 12136 (2018)
  39. Interaction of an intracellular pentraxin with a BTB-Kelch protein is associated with ubiquitylation, aggregation and neuronal apoptosis. Tseng LA, Bixby JL. Mol Cell Neurosci 47 254-264 (2011)
  40. Comparative structural and evolutionary analyses predict functional sites in the artemisinin resistance malaria protein K13. Coppée R, Jeffares DC, Miteva MA, Sabbagh A, Clain J. Sci Rep 9 10675 (2019)
  41. RCC1-like repeat proteins: a pangenomic, structurally diverse new superfamily of beta-propeller domains. Stevens TJ, Paoli M. Proteins 70 378-387 (2008)
  42. Saccharomyces cerevisiae Kelch proteins and Bud14 protein form a stable 520-kDa formin regulatory complex that controls actin cable assembly and cell morphogenesis. Gould CJ, Chesarone-Cataldo M, Alioto SL, Salin B, Sagot I, Goode BL. J Biol Chem 289 18290-18301 (2014)
  43. Stability of HIB-Cul3 E3 ligase adaptor HIB Is Regulated by Self-degradation and Availability of Its Substrates. Zhou Z, Xu C, Chen P, Liu C, Pang S, Yao X, Zhang Q. Sci Rep 5 12709 (2015)
  44. Potential Cancer- and Alzheimer's Disease-Targeting Phosphodiesterase Inhibitors from Uvaria alba: Insights from In Vitro and Consensus Virtual Screening. Quimque MT, Notarte KI, Letada A, Fernandez RA, Pilapil DY, Pueblos KR, Agbay JC, Dahse HM, Wenzel-Storjohann A, Tasdemir D, Khan A, Wei DQ, Gose Macabeo AP. ACS Omega 6 8403-8417 (2021)
  45. Detection of autoantibodies to the BTB-kelch protein KLHL7 in cancer sera. Bredholt G, Storstein A, Haugen M, Krossnes BK, Husebye E, Knappskog P, Vedeler CA. Scand J Immunol 64 325-335 (2006)
  46. Hypomorph mutation-directed small-molecule protein-protein interaction inducers to restore mutant SMAD4-suppressed TGF-β signaling. Tang C, Mo X, Niu Q, Wahafu A, Yang X, Qui M, Ivanov AA, Du Y, Fu H. Cell Chem Biol 28 636-647.e5 (2021)
  47. Regulation of post-translational modifications of muskelin by protein kinase C. Prag S, De Arcangelis A, Georges-Labouesse E, Adams JC. Int J Biochem Cell Biol 39 366-378 (2007)
  48. Sequence analysis of the gliding protein Gli349 in Mycoplasma mobile. Metsugi S, Uenoyama A, Adan-Kubo J, Miyata M, Yura K, Kono H, Go N. Biophysics (Nagoya-shi) 1 33-43 (2005)
  49. Phosphorylation of KLHL3 at serine 433 impairs its interaction with the acidic motif of WNK4: a molecular dynamics study. Wang L, Peng JB. Protein Sci 26 163-173 (2017)
  50. Mathematical modeling reveals quantitative properties of KEAP1-NRF2 signaling. Liu S, Pi J, Zhang Q. Redox Biol 47 102139 (2021)
  51. Phenyl Bis-Sulfonamide Keap1-Nrf2 Protein-Protein Interaction Inhibitors with an Alternative Binding Mode. Georgakopoulos N, Talapatra S, Dikovskaya D, Dayalan Naidu S, Higgins M, Gatliff J, Ayhan A, Nikoloudaki R, Schaap M, Valko K, Javid F, Dinkova-Kostova AT, Kozielski F, Wells G. J Med Chem 65 7380-7398 (2022)
  52. Structural mapping of Kelch13 mutations associated with artemisinin resistance in malaria. Singh GP, Goel P, Sharma A. J Struct Funct Genomics 17 51-56 (2016)
  53. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown. Gumz F, Krausze J, Eisenschmidt D, Backenköhler A, Barleben L, Brandt W, Wittstock U. Plant Mol Biol 89 67-81 (2015)
  54. Molecular effects of cancer-associated somatic mutations on the structural and target recognition properties of Keap1. Khan H, Killoran RC, Brickenden A, Fan J, Yang D, Choy WY. Biochem J 467 141-151 (2015)
  55. Cell surface proteins in archaeal and bacterial genomes comprising "LVIVD", "RIVW" and "LGxL" tandem sequence repeats are predicted to fold as beta-propeller. Adindla S, Inampudi KK, Guruprasad L. Int J Biol Macromol 41 454-468 (2007)
  56. Development of a Homogeneous Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) Assay for the Inhibition of Keap1-Nrf2 Protein-Protein Interaction. Lee S, Abed DA, Beamer LJ, Hu L. SLAS Discov 26 100-112 (2021)
  57. Selective disruption of NRF2-KEAP1 interaction leads to NASH resolution and reduction of liver fibrosis in mice. Seedorf K, Weber C, Vinson C, Berger S, Vuillard LM, Kiss A, Creusot S, Broux O, Geant A, Ilic C, Lemaitre K, Richard J, Hammoutene A, Mahieux J, Martiny V, Durand D, Melchiore F, Nyerges M, Paradis V, Provost N, Duvivier V, Delerive P. JHEP Rep 5 100651 (2023)
  58. Engineering new protein-protein interactions on the β-propeller fold by yeast cell surface display. Zhang K, Li H, Bhuripanyo K, Zhao B, Chen TF, Zheng N, Yin J. Chembiochem 14 426-430 (2013)
  59. Targeted substrate degradation by Kelch controls the actin cytoskeleton during ring canal expansion. Hudson AM, Mannix KM, Gerdes JA, Kottemann MC, Cooley L. Development 146 dev169219 (2019)
  60. Unveiling the Distinct Mechanisms by which Disease-Causing Mutations in the Kelch Domain of KLHL3 Disrupt the Interaction with the Acidic Motif of WNK4 through Molecular Dynamics Simulation. Wang L, Jiang C, Cai R, Chen XZ, Peng JB. Biochemistry 58 2105-2115 (2019)
  61. Novel splice isoforms of pig myoneurin and their diverse mRNA expression patterns. Guo X, Li M, Gao P, Cao G, Cheng Z, Zhang W, Liu J, Liu X, Li B. Asian-Australas J Anim Sci 31 1581-1590 (2018)
  62. A Novel Homozygous KLHL3 Mutation as a Cause of Autosomal Recessive Pseudohypoaldosteronism Type II Diagnosed Late in Life. Etges A, Hellmig N, Walenda G, Haddad BG, Machtens JP, Morosan T, Rump LC, Scholl UI. Nephron 146 418-428 (2022)
  63. RASopathy Cohort of Patients Enrolled in a Brazilian Reference Center for Rare Diseases: A Novel Familial LZTR1 Variant and Recurrent Mutations. Chaves Rabelo N, Gomes ME, de Oliveira Moraes I, Cantagalli Pfisterer J, Loss de Morais G, Antunes D, Caffarena ER, Llerena J, Gonzalez S. Appl Clin Genet 15 153-170 (2022)
  64. Regulation of Cell Proliferation and Nrf2-Mediated Antioxidant Defense: Conservation of Keap1 Cysteines and Nrf2 Binding Site in the Context of the Evolution of KLHL Family. Shilovsky GA, Dibrova DV. Life (Basel) 13 1045 (2023)
  65. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly. Adamson RJ, Payne NC, Bartual SG, Mazitschek R, Bullock AN. Free Radic Biol Med 204 215-225 (2023)
  66. Sequence Variants in MEGF8 and GJA1 Underlying Syndactyly. Bilal M, Haack TB, Buchert R, Peralta S, Uddin N, Ali RH, Liaqat K, Ahmad W. Mol Syndromol 14 201-207 (2023)
  67. A new NRF2 activator for the treatment of human metabolic dysfunction-associated fatty liver disease. Hammoutene A, Laouirem S, Albuquerque M, Colnot N, Brzustowski A, Valla D, Provost N, Delerive P, Paradis V, QUID-NASH Research Group. JHEP Rep 5 100845 (2023)
  68. Indications for a genetic basis for big bacteria and description of the giant cable bacterium Candidatus Electrothrix gigas sp. nov. Geelhoed JS, Thorup CA, Bjerg JJ, Schreiber L, Nielsen LP, Schramm A, Meysman FJR, Marshall IPG. Microbiol Spectr e0053823 (2023)
  69. Oxidative Stress-Induced Misfolding and Inclusion Formation of Nrf2 and Keap1. Ngo V, Karunatilleke NC, Brickenden A, Choy WY, Duennwald ML. Antioxidants (Basel) 11 243 (2022)
  70. Structural Model for Recruitment of RIT1 to the LZTR1 E3 Ligase: Evidences from an Integrated Computational Approach. Paladino A, D'Angelo F, Noviello TMR, Iavarone A, Ceccarelli M. J Chem Inf Model 61 1875-1888 (2021)


Related citations provided by authors (1)

  1. Crystallization and initial crystallographic analysis of the Kelch domain from human Keap1.. Li X, Zhang D, Hannink M, Beamer LJ Acta Crystallogr D Biol Crystallogr 60 2346-8 (2004)