1tmq Citations

A novel strategy for inhibition of alpha-amylases: yellow meal worm alpha-amylase in complex with the Ragi bifunctional inhibitor at 2.5 A resolution.

Abstract

Background

alpha-Amylases catalyze the hydrolysis of alpha-D-(1,4)-glucan linkages in starch and related compounds. There is a wide range of industrial and medical applications for these enzymes and their inhibitors. The Ragi bifunctional alpha-amylase/trypsin inhibitor (RBI) is the prototype of the cereal inhibitor superfamily and is the only member of this family that inhibits both trypsin and alpha-amylases. The mode of inhibition of alpha-amylases by these cereal inhibitors has so far been unknown.

Results

The crystal structure of yellow meal worm alpha-amylase (TMA) in complex with RBI was determined at 2.5 A resolution. RBI almost completely fills the substrate-binding site of TMA. Specifically, the free N terminus and the first residue (Ser1) of RBI interact with all three acidic residues of the active site of TMA (Asp185, Glu222 and Asp287). The complex is further stabilized by extensive interactions between the enzyme and inhibitor. Although there is no significant structural reorientation in TMA upon inhibitor binding, the N-terminal segment of RBI, which is highly flexible in the free inhibitor, adopts a 3(10)-helical conformation in the complex. RBI's trypsin-binding loop is located opposite the alpha-amylase-binding site, allowing simultaneous binding of alpha-amylase and trypsin.

Conclusion

The binding of RBI to TMA constitutes a new inhibition mechanism for alpha-amylases and should be general for all alpha-amylase inhibitors of the cereal inhibitor superfamily. Because RBI inhibits two important digestive enzymes of animals, it constitutes an efficient plant defense protein and may be used to protect crop plants from predatory insects.

Reviews - 1tmq mentioned but not cited (1)

Articles - 1tmq mentioned but not cited (28)

  1. Benchmarking and analysis of protein docking performance in Rosetta v3.2. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray JJ. PLoS One 6 e22477 (2011)
  2. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  3. Protein-protein docking using region-based 3D Zernike descriptors. Venkatraman V, Yang YD, Sael L, Kihara D. BMC Bioinformatics 10 407 (2009)
  4. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  5. MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data. Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y. Protein Pept Lett 21 766-778 (2014)
  6. Designing coarse grained-and atom based-potentials for protein-protein docking. Tobi D. BMC Struct Biol 10 40 (2010)
  7. Consensus scoring for enriching near-native structures from protein-protein docking decoys. Liang S, Meroueh SO, Wang G, Qiu C, Zhou Y. Proteins 75 397-403 (2009)
  8. Binding interface prediction by combining protein-protein docking results. Hwang H, Vreven T, Weng Z. Proteins 82 57-66 (2014)
  9. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions. Laine E, Carbone A. PLoS Comput Biol 11 e1004580 (2015)
  10. Protein Docking Model Evaluation by Graph Neural Networks. Wang X, Flannery ST, Kihara D. Front Mol Biosci 8 647915 (2021)
  11. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  12. Replica exchange improves sampling in low-resolution docking stage of RosettaDock. Zhang Z, Lange OF. PLoS One 8 e72096 (2013)
  13. Defining structural and evolutionary modules in proteins: a community detection approach to explore sub-domain architecture. Hleap JS, Susko E, Blouin C. BMC Struct Biol 13 20 (2013)
  14. Prediction of Protein-Protein Interaction Sites Using Convolutional Neural Network and Improved Data Sets. Xie Z, Deng X, Shu K. Int J Mol Sci 21 E467 (2020)
  15. Structural deformation upon protein-protein interaction: a structural alphabet approach. Martin J, Regad L, Lecornet H, Camproux AC. BMC Struct Biol 8 12 (2008)
  16. Crystal structure of barley limit dextrinase-limit dextrinase inhibitor (LD-LDI) complex reveals insights into mechanism and diversity of cereal type inhibitors. Møller MS, Vester-Christensen MB, Jensen JM, Hachem MA, Henriksen A, Svensson B. J Biol Chem 290 12614-12629 (2015)
  17. Refining near-native protein-protein docking decoys by local resampling and energy minimization. Liang S, Wang G, Zhou Y. Proteins 76 309-316 (2009)
  18. How to use not-always-reliable binding site information in protein-protein docking prediction. Li L, Huang Y, Xiao Y. PLoS One 8 e75936 (2013)
  19. Homology modeling and molecular dynamics simulations of the N-terminal domain of wheat high molecular weight glutenin subunit 10. Cazalis R, Aussenac T, Rhazi L, Marin A, Gibrat JF. Protein Sci 12 34-43 (2003)
  20. Predicting Protein-Protein Interaction Sites Using Sequence Descriptors and Site Propensity of Neighboring Amino Acids. Kuo TH, Li KB. Int J Mol Sci 17 E1788 (2016)
  21. Identification and visualization of protein binding regions with the ArDock server. Reille S, Garnier M, Robert X, Gouet P, Martin J, Launay G. Nucleic Acids Res 46 W417-W422 (2018)
  22. Applying Side-chain Flexibility in Motifs for Protein Docking. Liu H, Lin F, Yang JL, Wang HR, Liu XL. Genomics Insights 8 1-10 (2015)
  23. An ultra-high affinity protein-protein interface displaying sequence-robustness. Møller MS, Olesen SV, André I. Protein Sci 30 1144-1156 (2021)
  24. Optimised amino acid specific weighting factors for unbound protein docking. Heuser P, Schomburg D. BMC Bioinformatics 7 344 (2006)
  25. Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction. Tsuchiya Y, Kanamori E, Nakamura H, Kinoshita K. Adv Appl Bioinform Chem 2 79-100 (2009)
  26. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints. Uchikoga N, Matsuzaki Y, Ohue M, Hirokawa T, Akiyama Y. PLoS One 8 e69365 (2013)
  27. Sampling the conformation of protein surface residues for flexible protein docking. Francis-Lyon P, Gu S, Hass J, Amenta N, Koehl P. BMC Bioinformatics 11 575 (2010)
  28. The Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) Has Digestive Capacity to Degrade Complex Substrates: Functional Characterization and Heterologous Expression of an α-Amylase. Soto-Robles LV, López MF, Torres-Banda V, Cano-Ramírez C, Obregón-Molina G, Zúñiga G. Int J Mol Sci 22 E36 (2020)


Reviews citing this publication (9)

  1. Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases. Franco OL, Rigden DJ, Melo FR, Grossi-De-Sá MF. Eur J Biochem 269 397-412 (2002)
  2. The eight-cysteine motif, a versatile structure in plant proteins. José-Estanyol M, Gomis-Rüth FX, Puigdomènech P. Plant Physiol Biochem 42 355-365 (2004)
  3. Evolutionary mechanisms acting on proteinase inhibitor variability. Christeller JT. FEBS J 272 5710-5722 (2005)
  4. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants. Grosse-Holz FM, van der Hoorn RA. New Phytol 210 794-807 (2016)
  5. Does NMR mean "not for molecular replacement"? Using NMR-based search models to solve protein crystal structures. Chen YW, Dodson EJ, Kleywegt GJ. Structure 8 R213-20 (2000)
  6. Plant Defensins from a Structural Perspective. Kovaleva V, Bukhteeva I, Kit OY, Nesmelova IV. Int J Mol Sci 21 E5307 (2020)
  7. Structural biology of starch-degrading enzymes and their regulation. Møller MS, Svensson B. Curr Opin Struct Biol 40 33-42 (2016)
  8. The Amylases of Insects. Da Lage JL. Int J Insect Sci 10 1179543318804783 (2018)
  9. Fungitoxic and insecticidal plant polypeptides. Becker-Ritt AB, Carlini CR. Biopolymers 98 367-384 (2012)

Articles citing this publication (43)

  1. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Phys Chem Chem Phys 18 22129-22139 (2016)
  2. Activity of wheat alpha-amylase inhibitors towards bruchid alpha-amylases and structural explanation of observed specificities. Franco OL, Rigden DJ, Melo FR, Bloch C, Silva CP, Grossi de Sá MF. Eur J Biochem 267 2166-2173 (2000)
  3. Initial proteome analysis of mature barley seeds and malt. Østergaard O, Melchior S, Roepstorff P, Svensson B. Proteomics 2 733-739 (2002)
  4. Structural similarities and evolutionary relationships in chloride-dependent alpha-amylases. D'Amico S, Gerday C, Feller G. Gene 253 95-105 (2000)
  5. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Liu YJ, Cheng CS, Lai SM, Hsu MP, Chen CS, Lyu PC. Proteins 63 777-786 (2006)
  6. Ara h 2: crystal structure and IgE binding distinguish two subpopulations of peanut allergic patients by epitope diversity. Mueller GA, Gosavi RA, Pomés A, Wünschmann S, Moon AF, London RE, Pedersen LC. Allergy 66 878-885 (2011)
  7. Non-specific lipid transfer proteins in maize. Wei K, Zhong X. BMC Plant Biol 14 281 (2014)
  8. DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo. Maskos K, Huber-Wunderlich M, Glockshuber R. J Mol Biol 325 495-513 (2003)
  9. Specific inhibition of insect alpha-amylases: yellow meal worm alpha-amylase in complex with the amaranth alpha-amylase inhibitor at 2.0 A resolution. Pereira PJ, Lozanov V, Patthy A, Huber R, Bode W, Pongor S, Strobl S. Structure 7 1079-1088 (1999)
  10. Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Lin KF, Lee TR, Tsai PH, Hsu MP, Chen CS, Lyu PC. Proteins 68 530-540 (2007)
  11. Purification, biochemical characterisation and partial primary structure of a new alpha-amylase inhibitor from Secale cereale (rye). Iulek J, Franco OL, Silva M, Slivinski CT, Bloch C, Rigden DJ, Grossi de Sá MF. Int J Biochem Cell Biol 32 1195-1204 (2000)
  12. Effects of black-eyed pea trypsin/chymotrypsin inhibitor on proteolytic activity and on development of Anthonomus grandis. Franco OL, dos Santos RC, Batista JA, Mendes AC, de Araújo MA, Monnerat RG, Grossi-de-Sá MF, de Freitas SM. Phytochemistry 63 343-349 (2003)
  13. Insight into the molecular evolution of non-specific lipid transfer proteins via comparative analysis between rice and sorghum. Wang HW, Hwang SG, Karuppanapandian T, Liu A, Kim W, Jang CS. DNA Res 19 179-194 (2012)
  14. Evolution of alpha-amylases: architectural features and key residues in the stabilization of the (beta/alpha)(8) scaffold. Pujadas G, Palau J. Mol Biol Evol 18 38-54 (2001)
  15. Mammalian metallopeptidase inhibition at the defense barrier of Ascaris parasite. Sanglas L, Aviles FX, Huber R, Gomis-Rüth FX, Arolas JL. Proc Natl Acad Sci U S A 106 1743-1747 (2009)
  16. Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: Kinetic, equilibrium and structural characterization of binding. Cuccioloni M, Mozzicafreddo M, Ali I, Bonfili L, Cecarini V, Eleuteri AM, Angeletti M. Food Chem 213 571-578 (2016)
  17. Digestive alpha-amylases of the flour moth Ephestia kuehniella--adaptation to alkaline environment and plant inhibitors. Pytelková J, Hubert J, Lepsík M, Sobotník J, Sindelka R, Krízková I, Horn M, Mares M. FEBS J 276 3531-3546 (2009)
  18. Molecular cloning of alpha-amylases from cotton boll weevil, Anthonomus grandis and structural relations to plant inhibitors: an approach to insect resistance. Oliveira-Neto OB, Batista JA, Rigden DJ, Franco OL, Falcão R, Fragoso RR, Mello LV, dos Santos RC, Grossi-de-Sá MF. J Protein Chem 22 77-87 (2003)
  19. De novo design of alpha-amylase inhibitor: a small linear mimetic of macromolecular proteinaceous ligands. Dolecková-Maresová L, Pavlík M, Horn M, Mares M. Chem Biol 12 1349-1357 (2005)
  20. Specific inhibition of barley alpha-amylase 2 by barley alpha-amylase/subtilisin inhibitor depends on charge interactions and can be conferred to isozyme 1 by mutation. Rodenburg KW, Vallée F, Juge N, Aghajari N, Guo X, Haser R, Svensson B. Eur J Biochem 267 1019-1029 (2000)
  21. Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. Li G, Hou M, Liu Y, Pei Y, Ye M, Zhou Y, Huang C, Zhao Y, Ma H. BMC Genomics 20 375 (2019)
  22. Molecular cloning and expression of an alpha-amylase inhibitor from rye with potential for controlling insect pests. Dias SC, Franco OL, Magalhães CP, de Oliveira-Neto OB, Laumann RA, Figueira EL, Melo FR, Grossi-De-Sá MF. Protein J 24 113-123 (2005)
  23. Structure and enzyme properties of Zabrotes subfasciatus alpha-amylase. Pelegrini PB, Murad AM, Grossi-de-Sá MF, Mello LV, Romeiro LA, Noronha EF, Caldas RA, Franco OL. Arch Insect Biochem Physiol 61 77-86 (2006)
  24. Efficient secretory expression of functional barley limit dextrinase inhibitor by high cell-density fermentation of Pichia pastoris. Jensen JM, Vester-Christensen MB, Møller MS, Bønsager BC, Christensen HE, Hachem MA, Svensson B. Protein Expr Purif 79 217-222 (2011)
  25. Mutational analysis of target enzyme recognition of the beta-trefoil fold barley alpha-amylase/subtilisin inhibitor. Bønsager BC, Nielsen PK, Abou Hachem M, Fukuda K, Praetorius-Ibba M, Svensson B. J Biol Chem 280 14855-14864 (2005)
  26. Purification and characterization of the beta-trefoil fold protein barley alpha-amylase/subtilisin inhibitor overexpressed in Escherichia coli. Bønsager BC, Praetorius-Ibba M, Nielsen PK, Svensson B. Protein Expr Purif 30 185-193 (2003)
  27. Protein-protein docking by shape-complementarity and property matching. Geppert T, Proschak E, Schneider G. J Comput Chem 31 1919-1928 (2010)
  28. Digestive proteolytic and amylolytic activities of Helicoverpa armigera in response to feeding on different soybean cultivars. Naseri B, Fathipour Y, Moharramipour S, Hosseininaveh V, Gatehouse AM. Pest Manag Sci 66 1316-1323 (2010)
  29. Molecular identification of four different alpha-amylase inhibitors from baru (Dipteryx alata) seeds with activity toward insect enzymes. Bonavides KB, Pelegrini PB, Laumann RA, Grossi-de-Sá MF, Bloch C, Melo JA, Quirino BF, Noronha EF, Franco OL. J Biochem Mol Biol 40 494-500 (2007)
  30. Genomic and functional characterization of coleopteran insect-specific α-amylase inhibitor gene from Amaranthus species. Bhide AJ, Channale SM, Yadav Y, Bhattacharjee K, Pawar PK, Maheshwari VL, Gupta VS, Ramasamy S, Giri AP. Plant Mol Biol 94 319-332 (2017)
  31. Sina and Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina and Pinb in wheat. Gasparis S, Orczyk W, Nadolska-Orczyk A. BMC Plant Biol 13 190 (2013)
  32. Towards Tuneable Retaining Glycosidase-Inhibiting Peptides by Mimicry of a Plant Flavonol Warhead. Yoshisada R, van Gijzel L, Jongkees SAK. Chembiochem 18 2333-2339 (2017)
  33. Development of an affinity evaluation and prediction system by using the shape complementarity characteristic between proteins. Tsukamoto K, Yoshikawa T, Hourai Y, Fukui K, Akiyama Y. J Bioinform Comput Biol 6 1133-1156 (2008)
  34. Effect of Cereal α-Amylase/Trypsin Inhibitors on Developmental Characteristics and Abundance of Digestive Enzymes of Mealworm Larvae (Tenebrio molitor L.). Sagu ST, Landgräber E, Henkel IM, Huschek G, Homann T, Bußler S, Schlüter OK, Rawel H. Insects 12 454 (2021)
  35. Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme. da Silva MC, Del Sarto RP, Lucena WA, Rigden DJ, Teixeira FR, Bezerra Cde A, Albuquerque EV, Grossi-de-Sa MF. J Biotechnol 167 377-385 (2013)
  36. Recognition and binding of the PF2 lectin to α-amylase from Zabrotes subfasciatus (Coleoptera:Bruchidae) larval midgut. Lagarda-Diaz I, Geiser D, Guzman-Partida AM, Winzerling J, Vazquez-Moreno L. J Insect Sci 14 204 (2014)
  37. A novel biosensor based on glucose oxidase for activity determination of α - amylase. Altug C, Mengulluoglu U, Kurt E, Kaya S, Dinckaya E. Artif Cells Blood Substit Immobil Biotechnol 39 298-303 (2011)
  38. Purification and characterization of midgut α-amylase in a predatory bug, Andralus spinidens. Sorkhabi-Abdolmaleki S, Zibaee A, Hoda H, Fazeli-Dinan M. J Insect Sci 14 65 (2014)
  39. Acyclic peptide inhibitors of amylases. Pohl N. Chem Biol 12 1257-1258 (2005)
  40. Genome-Wide Identification of Common Bean PvLTP Family Genes and Expression Profiling Analysis in Response to Drought Stress. Dong X, Zhu H, Hao X, Wang Y, Ma X, Zhao J, Chang J. Genes (Basel) 13 2394 (2022)
  41. Molecular cloning and characterization of an alpha-amylase inhibitor (TkAAI) gene from Trichosanthes kirilowii Maxim. Zhang Y, Wang K, Huang Q, Shu S. Biotechnol Lett 44 1127-1138 (2022)
  42. Structural and Functional Characterization of Drosophila melanogaster α-Amylase. Rhimi M, Da Lage JL, Haser R, Feller G, Aghajari N. Molecules 28 5327 (2023)
  43. Systematic and functional analysis of non-specific lipid transfer protein family genes in sugarcane under Xanthomonas albilineans infection and salicylic acid treatment. Li J, Zhao JY, Shi Y, Fu HY, Huang MT, Meng JY, Gao SJ. Front Plant Sci 13 1014266 (2022)


Related citations provided by authors (1)

  1. The Alpha-Amylase from the Yellow Meal Worm: Complete Primary Structure, Crystallization and Preliminary X-Ray Analysis. Strobl S, Gomis-Ruth FX, Maskos K, Frank G, Huber R, Glockshuber R FEBS Lett. 409 109-114 (1997)