1thk Citations

Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II.

Biochemistry 44 1097-105 (2005)
Related entries: 1t9n, 1tb0, 1tbt, 1te3, 1teq, 1teu, 1tg3, 1tg9, 1th9

Cited: 69 times
EuropePMC logo PMID: 15667203

Abstract

In the catalysis of the hydration of carbon dioxide and dehydration of bicarbonate by human carbonic anhydrase II (HCA II), a histidine residue (His64) shuttles protons between the zinc-bound solvent molecule and the bulk solution. To evaluate the effect of the position of the shuttle histidine and pH on proton shuttling, we have examined the catalysis and crystal structures of wild-type HCA II and two double mutants: H64A/N62H and H64A/N67H HCA II. His62 and His67 both have their side chains extending into the active-site cavity with distances from the zinc approximately equivalent to that of His64. Crystal structures were determined at pH 5.1-10.0, and the catalysis of the exchange of (18)O between CO(2) and water was assessed by mass spectrometry. Efficient proton shuttle exceeding a rate of 10(5) s(-)(1) was observed for histidine at positions 64 and 67; in contrast, relatively inefficient proton transfer at a rate near 10(3) s(-)(1) was observed for His62. The observation, in the crystal structures, of a completed hydrogen-bonded water chain between the histidine shuttle residue and the zinc-bound solvent does not appear to be required for efficient proton transfer. The data suggest that the number of intervening water molecules between the donor and acceptor supporting efficient proton transfer in HCA II is important, and furthermore suggest that a water bridge consisting of two intervening water molecules is consistent with efficient proton transfer.

Reviews citing this publication (12)

  1. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM. Chem Rev 108 946-1051 (2008)
  2. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. DeCoursey TE. Physiol Rev 93 599-652 (2013)
  3. Structural annotation of human carbonic anhydrases. Aggarwal M, Boone CD, Kondeti B, McKenna R. J Enzyme Inhib Med Chem 28 267-277 (2013)
  4. Non-Classical Inhibition of Carbonic Anhydrase. Lomelino CL, Supuran CT, McKenna R. Int J Mol Sci 17 E1150 (2016)
  5. Responsive materials for self-regulated insulin delivery. Wu W, Zhou S. Macromol Biosci 13 1464-1477 (2013)
  6. Proton transfer function of carbonic anhydrase: Insights from QM/MM simulations. Riccardi D, Yang S, Cui Q. Biochim Biophys Acta 1804 342-351 (2010)
  7. Carbonic anhydrase inhibitors: a review on the progress of patent literature (2011-2016). Lomelino C, McKenna R. Expert Opin Ther Pat 26 947-956 (2016)
  8. Crystallography and Its Impact on Carbonic Anhydrase Research. Lomelino CL, Andring JT, McKenna R. Int J Med Chem 2018 9419521 (2018)
  9. Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential. Krungkrai SR, Krungkrai J. Asian Pac J Trop Biomed 1 233-242 (2011)
  10. Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Linkuvienė V, Zubrienė A, Manakova E, Petrauskas V, Baranauskienė L, Zakšauskas A, Smirnov A, Gražulis S, Ladbury JE, Matulis D. Q Rev Biophys 51 e10 (2018)
  11. Proton transport in carbonic anhydrase: Insights from molecular simulation. Maupin CM, Voth GA. Biochim Biophys Acta 1804 332-341 (2010)
  12. Formation of Unstable and very Reactive Chemical Species Catalyzed by Metalloenzymes: A Mechanistic Overview. Fernandes HS, Teixeira CSS, Sousa SF, Cerqueira NMFSA. Molecules 24 E2462 (2019)

Articles citing this publication (57)

  1. Insights towards sulfonamide drug specificity in α-carbonic anhydrases. Aggarwal M, Kondeti B, McKenna R. Bioorg Med Chem 21 1526-1533 (2013)
  2. Crystal structure of human carbonic anhydrase XIII and its complex with the inhibitor acetazolamide. Di Fiore A, Monti SM, Hilvo M, Parkkila S, Romano V, Scaloni A, Pedone C, Scozzafava A, Supuran CT, De Simone G. Proteins 74 164-175 (2009)
  3. Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Shah N, Kuntz DA, Rose DR. Proc Natl Acad Sci U S A 105 9570-9575 (2008)
  4. Elucidation of the proton transport mechanism in human carbonic anhydrase II. Maupin CM, McKenna R, Silverman DN, Voth GA. J Am Chem Soc 131 7598-7608 (2009)
  5. Toward theoretical analysis of long-range proton transfer kinetics in biomolecular pumps. König PH, Ghosh N, Hoffmann M, Elstner M, Tajkhorshid E, Frauenheim T, Cui Q. J Phys Chem A 110 548-563 (2006)
  6. "Proton holes" in long-range proton transfer reactions in solution and enzymes: A theoretical analysis. Riccardi D, König P, Prat-Resina X, Yu H, Elstner M, Frauenheim T, Cui Q. J Am Chem Soc 128 16302-16311 (2006)
  7. Neutron structure of human carbonic anhydrase II: implications for proton transfer. Fisher SZ, Kovalevsky AY, Domsic JF, Mustyakimov M, McKenna R, Silverman DN, Langan PA. Biochemistry 49 415-421 (2010)
  8. Design of a carbonic anhydrase IX active-site mimic to screen inhibitors for possible anticancer properties. Genis C, Sippel KH, Case N, Cao W, Avvaru BS, Tartaglia LJ, Govindasamy L, Tu C, Agbandje-McKenna M, Silverman DN, Rosser CJ, McKenna R. Biochemistry 48 1322-1331 (2009)
  9. His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps. Bergo VB, Sineshchekov OA, Kralj JM, Partha R, Spudich EN, Rothschild KJ, Spudich JL. J Biol Chem 284 2836-2843 (2009)
  10. Characterization of CamH from Methanosarcina thermophila, founding member of a subclass of the {gamma} class of carbonic anhydrases. Zimmerman SA, Tomb JF, Ferry JG. J Bacteriol 192 1353-1360 (2010)
  11. Peregrination of the selectivity filter delineates the pore of the human voltage-gated proton channel hHV1. Morgan D, Musset B, Kulleperuma K, Smith SM, Rajan S, Cherny VV, Pomès R, DeCoursey TE. J Gen Physiol 142 625-640 (2013)
  12. Proton transfer in catalysis and the role of proton shuttles in carbonic anhydrase. Mikulski RL, Silverman DN. Biochim Biophys Acta 1804 422-426 (2010)
  13. Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase. Schueler C, Becker HM, McKenna R, Deitmer JW. PLoS One 6 e27167 (2011)
  14. Chemical rescue of enzymes: proton transfer in mutants of human carbonic anhydrase II. Maupin CM, Castillo N, Taraphder S, Tu C, McKenna R, Silverman DN, Voth GA. J Am Chem Soc 133 6223-6234 (2011)
  15. High-density chemical cross-linking for modeling protein interactions. Mintseris J, Gygi SP. Proc Natl Acad Sci U S A 117 93-102 (2020)
  16. Preferred orientations of His64 in human carbonic anhydrase II. Maupin CM, Voth GA. Biochemistry 46 2938-2947 (2007)
  17. Role of hydrophilic residues in proton transfer during catalysis by human carbonic anhydrase II. Zheng J, Avvaru BS, Tu C, McKenna R, Silverman DN. Biochemistry 47 12028-12036 (2008)
  18. Water networks in fast proton transfer during catalysis by human carbonic anhydrase II. Mikulski R, West D, Sippel KH, Avvaru BS, Aggarwal M, Tu C, McKenna R, Silverman DN. Biochemistry 52 125-131 (2013)
  19. 13C NMR characterization of an exchange reaction between CO and CO2 catalyzed by carbon monoxide dehydrogenase. Seravalli J, Ragsdale SW. Biochemistry 47 6770-6781 (2008)
  20. Neutron structure of human carbonic anhydrase II: a hydrogen-bonded water network "switch" is observed between pH 7.8 and 10.0. Fisher Z, Kovalevsky AY, Mustyakimov M, Silverman DN, McKenna R, Langan P. Biochemistry 50 9421-9423 (2011)
  21. Structure-Activity Relationships of Benzenesulfonamide-Based Inhibitors towards Carbonic Anhydrase Isoform Specificity. Bhatt A, Mahon BP, Cruzeiro VW, Cornelio B, Laronze-Cochard M, Ceruso M, Sapi J, Rance GA, Khlobystov AN, Fontana A, Roitberg A, Supuran CT, McKenna R. Chembiochem 18 213-222 (2017)
  22. Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II. Fisher Z, Boone CD, Biswas SM, Venkatakrishnan B, Aggarwal M, Tu C, Agbandje-McKenna M, Silverman D, McKenna R. Protein Eng Des Sel 25 347-355 (2012)
  23. Structural and kinetic analysis of proton shuttle residues in the active site of human carbonic anhydrase III. Elder I, Fisher Z, Laipis PJ, Tu C, McKenna R, Silverman DN. Proteins 68 337-343 (2007)
  24. Biosynthetic incorporation of fluorohistidine into proteins in E. coli: a new probe of macromolecular structure. Eichler JF, Cramer JC, Kirk KL, Bann JG. Chembiochem 6 2170-2173 (2005)
  25. Origins of enhanced proton transport in the Y7F mutant of human carbonic anhydrase II. Maupin CM, Saunders MG, Thorpe IF, McKenna R, Silverman DN, Voth GA. J Am Chem Soc 130 11399-11408 (2008)
  26. Proton transfer from exogenous donors in catalysis by human carbonic anhydrase II. Elder I, Tu C, Ming LJ, McKenna R, Silverman DN. Arch Biochem Biophys 437 106-114 (2005)
  27. Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4. Noor SI, Pouyssegur J, Deitmer JW, Becker HM. FEBS J 284 149-162 (2017)
  28. Structural and kinetic study of the extended active site for proton transfer in human carbonic anhydrase II. Domsic JF, Williams W, Fisher SZ, Tu C, Agbandje-McKenna M, Silverman DN, McKenna R. Biochemistry 49 6394-6399 (2010)
  29. Joint neutron crystallographic and NMR solution studies of Tyr residue ionization and hydrogen bonding: Implications for enzyme-mediated proton transfer. Michalczyk R, Unkefer CJ, Bacik JP, Schrader TE, Ostermann A, Kovalevsky AY, McKenna R, Fisher SZ. Proc Natl Acad Sci U S A 112 5673-5678 (2015)
  30. Mechanism of Action of Non-Synonymous Single Nucleotide Variations Associated with α-Carbonic Anhydrase II Deficiency. Sanyanga TA, Nizami B, Bishop ÖT. Molecules 24 E3987 (2019)
  31. Tracking solvent and protein movement during CO2 release in carbonic anhydrase II crystals. Kim CU, Song H, Avvaru BS, Gruner SM, Park S, McKenna R. Proc Natl Acad Sci U S A 113 5257-5262 (2016)
  32. Crystal Structure of Carbonic Anhydrase II in Complex with an Activating Ligand: Implications in Neuronal Function. Bhatt A, Mondal UK, Supuran CT, Ilies MA, McKenna R. Mol Neurobiol 55 7431-7437 (2018)
  33. Inhibition pattern of sulfamide-related compounds in binding to carbonic anhydrase isoforms I, II, VII, XII and XIV. Gavernet L, Gonzalez Funes JL, Palestro PH, Bruno Blanch LE, Estiu GL, Maresca A, Barrios I, Supuran CT. Bioorg Med Chem 21 1410-1418 (2013)
  34. The Crystal Structure of a hCA VII Variant Provides Insights into the Molecular Determinants Responsible for Its Catalytic Behavior. Buonanno M, Di Fiore A, Langella E, D'Ambrosio K, Supuran CT, Monti SM, De Simone G. Int J Mol Sci 19 E1571 (2018)
  35. Functional role of Asp160 and the deprotonation mechanism of ammonium in the Escherichia coli ammonia channel protein AmtB. Lin Y, Cao Z, Mo Y. J Phys Chem B 113 4922-4929 (2009)
  36. Identifying Zn-bound histidine residues in metalloproteins using hydrogen-deuterium exchange mass spectrometry. Dong J, Callahan KL, Borotto NB, Vachet RW. Anal Chem 86 766-773 (2014)
  37. Location of binding sites in small molecule rescue of human carbonic anhydrase II. Bhatt D, Fisher SZ, Tu C, McKenna R, Silverman DN. Biophys J 92 562-570 (2007)
  38. Effect of active-site mutation at Asn67 on the proton transfer mechanism of human carbonic anhydrase II. Maupin CM, Zheng J, Tu C, McKenna R, Silverman DN, Voth GA. Biochemistry 48 7996-8005 (2009)
  39. Proton transfer in a Thr200His mutant of human carbonic anhydrase II. Bhatt D, Tu C, Fisher SZ, Hernandez Prada JA, McKenna R, Silverman DN. Proteins 61 239-245 (2005)
  40. Comparison of solution and crystal properties of Co(II)-substituted human carbonic anhydrase II. Avvaru BS, Arenas DJ, Tu C, Tanner DB, McKenna R, Silverman DN. Arch Biochem Biophys 502 53-59 (2010)
  41. Exploring the binding sites and proton diffusion on insulin amyloid fibril surfaces by naphthol-based photoacid fluorescence and molecular simulations. Amdursky N, Rashid MH, Stevens MM, Yarovsky I. Sci Rep 7 6245 (2017)
  42. Decarboxylation of Lactones over Zn/ZSM-5: Elucidation of the Structure of the Active Site and Molecular Interactions. Ye L, Song Q, Lo BTW, Zheng J, Kong D, Murray CA, Tang CC, Tsang SCE. Angew Chem Int Ed Engl 56 10711-10716 (2017)
  43. Exploration of the residues modulating the catalytic features of human carbonic anhydrase XIII by a site-specific mutagenesis approach. De Simone G, Di Fiore A, Truppo E, Langella E, Vullo D, Supuran CT, Monti SM. J Enzyme Inhib Med Chem 34 1506-1510 (2019)
  44. Interactions of oligomers of organic polyethers with histidine amino acid. Zobnina VG, Kosevich MV, Chagovets VV, Boryak OA, Vékey K, Gömöry Á, Kulyk AN. Rapid Commun Mass Spectrom 26 532-540 (2012)
  45. A High-Resolution Crystal Structure of a Psychrohalophilic α-Carbonic Anhydrase from Photobacterium profundum Reveals a Unique Dimer Interface. Somalinga V, Buhrman G, Arun A, Rose RB, Grunden AM. PLoS One 11 e0168022 (2016)
  46. Carbonic anhydrase II does not regulate nitrite-dependent nitric oxide formation and vasodilation. Wang L, Sparacino-Watkins CE, Wang J, Wajih N, Varano P, Xu Q, Cecco E, Tejero J, Soleimani M, Kim-Shapiro DB, Gladwin MT. Br J Pharmacol 177 898-911 (2020)
  47. α1 Subunit Histidine 55 at the Interface between Extracellular and Transmembrane Domains Affects Preactivation and Desensitization of the GABAA Receptor. Kaczor PT, Wolska AD, Mozrzymas JW. ACS Chem Neurosci 12 562-572 (2021)
  48. Kinetic study of catalytic CO2 hydration by metal-substituted biomimetic carbonic anhydrase model complexes. Park D, Lee MS. R Soc Open Sci 6 190407 (2019)
  49. Modeling the structure and proton transfer pathways of the mutant His-107-Tyr of human carbonic anhydrase II. Halder P, Taraphder S. J Mol Model 19 289-298 (2013)
  50. Structural and enzymatic characterization of acetolactate decarboxylase from Bacillus subtilis. Ji F, Li M, Feng Y, Wu S, Wang T, Pu Z, Wang J, Yang Y, Xue S, Bao Y. Appl Microbiol Biotechnol 102 6479-6491 (2018)
  51. Structural insights into the effect of active-site mutation on the catalytic mechanism of carbonic anhydrase. Kim JK, Lee C, Lim SW, Andring JT, Adhikari A, McKenna R, Kim CU. IUCrJ 7 985-994 (2020)
  52. Studies on structure-function relationships of acetolactate decarboxylase from Enterobacter cloacae. Ji F, Feng Y, Li M, Yang Y, Wang T, Wang J, Bao Y, Xue S. RSC Adv 8 39066-39073 (2018)
  53. Amyloid Fibrils Formed by Short Prion-Inspired Peptides Are Metalloenzymes. Navarro S, Díaz-Caballero M, Peccati F, Roldán-Martín L, Sodupe M, Ventura S. ACS Nano 17 16968-16979 (2023)
  54. Energetics and dynamics of the proton shuttle of carbonic anhydrase II. Raum HN, Fisher SZ, Weininger U. Cell Mol Life Sci 80 286 (2023)
  55. Imidazole-amino acids. Conformational switch under tautomer and pH change. Staś M, Najgebauer P, Siodłak D. Amino Acids 55 33-49 (2023)
  56. Pyrrolyl and Indolyl α-γ-Diketo Acid Derivatives Acting as Selective Inhibitors of Human Carbonic Anhydrases IX and XII. Ialongo D, Messore A, Madia VN, Tudino V, Nocentini A, Gratteri P, Giovannuzzi S, Supuran CT, Nicolai A, Scarpa S, Taurone S, Camarda M, Artico M, Papa V, Saccoliti F, Scipione L, Di Santo R, Costi R. Pharmaceuticals (Basel) 16 188 (2023)
  57. Sulfonamide-Based Azaheterocyclic Schiff Base Derivatives as Potential Carbonic Anhydrase Inhibitors: Synthesis, Cytotoxicity, and Enzyme Inhibitory Kinetics. Abas M, Rafique H, Shamas S, Roshan S, Ashraf Z, Iqbal Z, Raza H, Hassan M, Afzal K, Rizvanov AA, Asad MHHB. Biomed Res Int 2020 8104107 (2020)