1t0w Citations

NMR and modeling studies of protein-carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides.

Abstract

HEV32, a 32-residue, truncated hevein lacking eleven C-terminal amino acids, was synthesized by solid-phase methodology and correctly folded with three cysteine bridge pairs. The affinities of HEV32 for small chitin fragments--in the forms of N,N',N"-triacetylchitotriose ((GlcNAc)3) (millimolar) and N,N',N",N"',N"",N""'-hexaacetylchitohexaose ((GlcNAc)6) (micromolar)--as measured by NMR and fluorescence methods, are comparable with those of native hevein. The HEV32 ligand-binding process is enthalpy driven, while entropy opposes binding. The NMR structure of ligand-bound HEV32 in aqueous solution was determined to be highly similar to the NMR structure of ligand-bound hevein. Solvated molecular-dynamics simulations were performed in order to monitor the changes in side-chain conformation of the binding site of HEV32 and hevein upon interaction with ligands. The calculations suggest that the Trp21 side-chain orientation of HEV32 in the free form differs from that in the bound state; this agrees with fluorescence and thermodynamic data. HEV32 provides a simple molecular model for studying protein-carbohydrate interactions and for understanding the physiological relevance of small native hevein domains lacking C-terminal residues.

Reviews - 1t0w mentioned but not cited (1)

  1. Relevant B cell epitopes in allergic disease. Pomés A. Int Arch Allergy Immunol 152 1-11 (2010)

Articles - 1t0w mentioned but not cited (7)

  1. Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network. Malik A, Ahmad S. BMC Struct. Biol. 7 1 (2007)
  2. Serological, genomic and structural analyses of the major mite allergen Der p 23. Mueller GA, Randall TA, Glesner J, Pedersen LC, Perera L, Edwards LL, DeRose EF, Chapman MD, London RE, Pomés A. Clin. Exp. Allergy 46 365-376 (2016)
  3. Interfaces between allergen structure and diagnosis: know your epitopes. Pomés A, Chruszcz M, Gustchina A, Wlodawer A. Curr Allergy Asthma Rep 15 506 (2015)
  4. Human Chitotriosidase: Catalytic Domain or Carbohydrate Binding Module, Who's Leading HCHT's Biological Function. Crasson O, Courtade G, Léonard RR, Aachmann FL, Legrand F, Parente R, Baurain D, Galleni M, Sørlie M, Vandevenne M. Sci Rep 7 2768 (2017)
  5. Activity Augmentation of Amphioxus Peptidoglycan Recognition Protein BbtPGRP3 via Fusion with a Chitin Binding Domain. Wang WJ, Cheng W, Luo M, Yan Q, Yu HM, Li Q, Cao DD, Huang S, Xu A, Mariuzza RA, Chen Y, Zhou CZ. PLoS ONE 10 e0140953 (2015)
  6. Atomistic simulation of carbohydrate-protein complex formation: Hevein-32 domain. Solanke CO, Trapl D, Šućur Z, Mareška V, Tvaroška I, Spiwok V. Sci Rep 9 18918 (2019)
  7. Dual Insecticidal Effects of Adenanthera pavonina Kunitz-Type Inhibitor on Plodia interpunctella is Mediated by Digestive Enzymes Inhibition and Chitin-Binding Properties. de Oliveira CFR, de Oliveira Flores TM, Henrique Cardoso M, Garcia Nogueira Oshiro K, Russi R, de França AFJ, Dos Santos EA, Luiz Franco O, de Oliveira AS, Migliolo L. Molecules 24 (2019)


Reviews citing this publication (9)

  1. Multivalent ligand presentation as a central concept to study intricate carbohydrate-protein interactions. Jayaraman N. Chem Soc Rev 38 3463-3483 (2009)
  2. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. Biochim. Biophys. Acta 1850 186-235 (2015)
  3. Antimicrobial Peptides from Plants. Tam JP, Wang S, Wong KH, Tan WL. Pharmaceuticals (Basel) 8 711-757 (2015)
  4. The battle for chitin recognition in plant-microbe interactions. Sánchez-Vallet A, Mesters JR, Thomma BP. FEMS Microbiol. Rev. 39 171-183 (2015)
  5. Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Arnaud J, Audfray A, Imberty A. Chem Soc Rev 42 4798-4813 (2013)
  6. Carbohydrate-protein interactions: a 3D view by NMR. Roldós V, Cañada FJ, Jiménez-Barbero J. Chembiochem 12 990-1005 (2011)
  7. Protein-carbohydrate interactions studied by NMR: from molecular recognition to drug design. del Carmen Fernández-Alonso M, Díaz D, Berbis MÁ, Marcelo F, Cañada J, Jiménez-Barbero J. Curr. Protein Pept. Sci. 13 816-830 (2012)
  8. "Rules of Engagement" of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. Marchetti R, Perez S, Arda A, Imberty A, Jimenez-Barbero J, Silipo A, Molinaro A. ChemistryOpen 5 274-296 (2016)
  9. Plant Antimicrobial Peptides: Insights into Structure-Function Relationships for Practical Applications. Slezina MP, Odintsova TI. Curr Issues Mol Biol 45 3674-3704 (2023)

Articles citing this publication (22)

  1. Three-dimensional structure of the bacterial cell wall peptidoglycan. Meroueh SO, Bencze KZ, Hesek D, Lee M, Fisher JF, Stemmler TL, Mobashery S. Proc. Natl. Acad. Sci. U.S.A. 103 4404-4409 (2006)
  2. A synthetic lectin analog for biomimetic disaccharide recognition. Ferrand Y, Crump MP, Davis AP. Science 318 619-622 (2007)
  3. Carbohydrate-pi interactions: what are they worth? Laughrey ZR, Kiehna SE, Riemen AJ, Waters ML. J. Am. Chem. Soc. 130 14625-14633 (2008)
  4. A simple approach to well-defined sugar-coated surfaces for interaction studies. Vila-Perelló M, Gutiérrez Gallego R, Andreu D. Chembiochem 6 1831-1838 (2005)
  5. Aromatic-carbohydrate interactions: an NMR and computational study of model systems. Vandenbussche S, Díaz D, Fernández-Alonso MC, Pan W, Vincent SP, Cuevas G, Cañada FJ, Jiménez-Barbero J, Bartik K. Chemistry 14 7570-7578 (2008)
  6. Identification of a chitinase-modifying protein from Fusarium verticillioides: truncation of a host resistance protein by a fungalysin metalloprotease. Naumann TA, Wicklow DT, Price NP. J. Biol. Chem. 286 35358-35366 (2011)
  7. In silico identification of novel hevein-like peptide precursors. Porto WF, Souza VA, Nolasco DO, Franco OL. Peptides 38 127-136 (2012)
  8. Structure of full-length class I chitinase from rice revealed by X-ray crystallography and small-angle X-ray scattering. Kezuka Y, Kojima M, Mizuno R, Suzuki K, Watanabe T, Nonaka T. Proteins 78 2295-2305 (2010)
  9. On the importance of carbohydrate-aromatic interactions for the molecular recognition of oligosaccharides by proteins: NMR studies of the structure and binding affinity of AcAMP2-like peptides with non-natural naphthyl and fluoroaromatic residues. Chávez MI, Andreu C, Vidal P, Aboitiz N, Freire F, Groves P, Asensio JL, Asensio G, Muraki M, Cañada FJ, Jiménez-Barbero J. Chemistry 11 7060-7074 (2005)
  10. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins. Naumann TA. Mol. Plant Pathol. 12 365-372 (2011)
  11. The attack of the phytopathogens and the trumpet solo: Identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern. Mandal SM, Porto WF, Dey P, Maiti MK, Ghosh AK, Franco OL. Biochimie 95 1939-1948 (2013)
  12. The chitin-binding capability of Cy-AMP1 from cycad is essential to antifungal activity. Yokoyama S, Iida Y, Kawasaki Y, Minami Y, Watanabe K, Yagi F. J Pept Sci 15 492-497 (2009)
  13. Genome-wide identification and domain organization of lectin domains in cucumber. Dang L, Van Damme EJM. Plant Physiol. Biochem. 108 165-176 (2016)
  14. Structural monitoring of oligosaccharides through 13C enrichment and NMR observation of acetyl groups. Yu F, Prestegard JH. Biophys. J. 91 1952-1959 (2006)
  15. Truncation of class IV chitinases from Arabidopsis by secreted fungal proteases. Naumann TA, Price NP. Mol. Plant Pathol. 13 1135-1139 (2012)
  16. A new model for mapping the peptide backbone: predicting proton chemical shifts in proteins. Barneto JL, Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC. Org. Biomol. Chem. 8 857-863 (2010)
  17. Molecular simulations of hevein/(GlcNAc)3 complex with weakened OH/O and CH/π hydrogen bonds: implications for their role in complex stabilization. Mareška V, Tvaroška I, Králová B, Spiwok V. Carbohydr. Res. 408 1-7 (2015)
  18. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. van Munster JM, Sanders P, ten Kate GA, Dijkhuizen L, van der Maarel MJ. Carbohydr. Res. 407 73-78 (2015)
  19. Messages From the Past: New Insights in Plant Lectin Evolution. Van Holle S, Van Damme EJM. Front Plant Sci 10 36 (2019)
  20. NMR and Fluorescence Spectroscopies Reveal the Preorganized Binding Site in Family 14 Carbohydrate-Binding Module from Human Chitotriosidase. Madland E, Crasson O, Vandevenne M, Sørlie M, Aachmann FL. ACS Omega 4 21975-21984 (2019)
  21. NMR assignments and ligand-binding studies on a two-domain family GH19 chitinase allergen from Japanese cedar (Cryptomeria japonica) pollen. Takashima T, Ohnuma T, Fukamizo T. Biomol NMR Assign 11 85-90 (2017)
  22. Sensitivity of a glassy carbon electrode covered with a chitin film improved by the addition of carbon powder. Sugawara K, Kawai M, Hirabayashi G, Kuramitz H. Anal Sci 25 105-108 (2009)


Related citations provided by authors (5)

  1. The interaction of hevein with N-acetylglucosamine-containing oligosaccharides. Solution structure of hevein complexed to chitobiose. Asensio JL, Canada FJ, Bruix M, Rodriguez-Romero A, Jimenez-Barbero J Eur. J. Biochem. 230 621-633 (1995)
  2. H NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from amaranthus caudatus. Martins JC, Maes D, Loris R, Pepermans HA, Wyns L, Willem R, Verheyden P J. Mol. Biol. 258 322-333 (1996)
  3. NMR investigations of protein-carbohydrate interactions: refined three-dimensional structure of the complex between hevein and methyl beta-chitobioside. Asensio JL, Canada FJ, Bruix M, Gonzalez C, Khiar N, Rodriguez-Romero A, Jimenez-Barbero J Glycobiology 8 569-577 (1998)
  4. NMR Investigations of Protein-Carbohydrate Interactions: Studies on the Relevance of Trp/Tyr Variations in Lectin Binding Sites as Deduced from Titration Microcalorimetry and NMR Studies on Hevein Domains. Determination of the NMR Structure of the Complex between Pseudohevein and N'N',N''-triacetylchitotriose. Asensio JL, Siebert H-C, von der Lieth C-W, Laynez J, Bruix M, Soedjanaamadja UM, Beintema JJ, Canada FJ, Gabius H-J, Jimenez-Barbero J Proteins 40 218-236 (2000)
  5. Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. Asensio JL, Canada FJ, Siebert H-C, Laynez J, Poveda A, Nieto PM, Soedjanaamadja UM, Gabius H-J, Jimenez-Barbero J Chem. Biol. 7 529-543 (2000)