1srl Citations

1H and 15N assignments and secondary structure of the Src SH3 domain.

FEBS Lett 324 87-92 (1993)
Cited: 66 times
EuropePMC logo PMID: 8504863

Abstract

The 1H and 15N sequential assignments of the Src SH3 domain have been determined through a combination of 2D and 3D Nuclear Magnetic Resonance (NMR) methods. The secondary structure of the protein has been identified based on long-range NOE patterns. The SH3 domain of Src consists largely of six beta-strands that form two anti-parallel beta-sheets.

Articles - 1srl mentioned but not cited (40)

  1. A simple model for calculating the kinetics of protein folding from three-dimensional structures. Muñoz V, Eaton WA. Proc. Natl. Acad. Sci. U.S.A. 96 11311-11316 (1999)
  2. Contact order revisited: influence of protein size on the folding rate. Ivankov DN, Garbuzynskiy SO, Alm E, Plaxco KW, Baker D, Finkelstein AV. Protein Sci 12 2057-2062 (2003)
  3. Insufficiently dehydrated hydrogen bonds as determinants of protein interactions. Fernández A, Scheraga HA. Proc. Natl. Acad. Sci. U.S.A. 100 113-118 (2003)
  4. How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Takagi F, Koga N, Takada S. Proc. Natl. Acad. Sci. U.S.A. 100 11367-11372 (2003)
  5. P versus Q: structural reaction coordinates capture protein folding on smooth landscapes. Cho SS, Levy Y, Wolynes PG. Proc. Natl. Acad. Sci. U.S.A. 103 586-591 (2006)
  6. Protein folding by zipping and assembly. Ozkan SB, Wu GA, Chodera JD, Dill KA. Proc Natl Acad Sci U S A 104 11987-11992 (2007)
  7. FOLD-RATE: prediction of protein folding rates from amino acid sequence. Gromiha MM, Thangakani AM, Selvaraj S. Nucleic Acids Res 34 W70-4 (2006)
  8. A test on peptide stability of AMBER force fields with implicit solvation. Shell MS, Ritterson R, Dill KA. J Phys Chem B 112 6878-6886 (2008)
  9. Three-body interactions improve the prediction of rate and mechanism in protein folding models. Ejtehadi MR, Avall SP, Plotkin SS. Proc. Natl. Acad. Sci. U.S.A. 101 15088-15093 (2004)
  10. Energy functions for protein design I: efficient and accurate continuum electrostatics and solvation. Pokala N, Handel TM. Protein Sci. 13 925-936 (2004)
  11. Quantitative criteria for native energetic heterogeneity influences in the prediction of protein folding kinetics. Cho SS, Levy Y, Wolynes PG. Proc. Natl. Acad. Sci. U.S.A. 106 434-439 (2009)
  12. Structural and dynamic determinants of protein-peptide recognition. Dagliyan O, Proctor EA, D'Auria KM, Ding F, Dokholyan NV. Structure 19 1837-1845 (2011)
  13. Direct observation of a force-induced switch in the anisotropic mechanical unfolding pathway of a protein. Jagannathan B, Elms PJ, Bustamante C, Marqusee S. Proc. Natl. Acad. Sci. U.S.A. 109 17820-17825 (2012)
  14. Collapse kinetics and chevron plots from simulations of denaturant-dependent folding of globular proteins. Liu Z, Reddy G, O'Brien EP, Thirumalai D. Proc. Natl. Acad. Sci. U.S.A. 108 7787-7792 (2011)
  15. Posttransition state desolvation of the hydrophobic core of the src-SH3 protein domain. Guo W, Lampoudi S, Shea JE. Biophys. J. 85 61-69 (2003)
  16. Folding energy landscape and network dynamics of small globular proteins. Hori N, Chikenji G, Berry RS, Takada S. Proc. Natl. Acad. Sci. U.S.A. 106 73-78 (2009)
  17. Excluded volume, local structural cooperativity, and the polymer physics of protein folding rates. Qi X, Portman JJ. Proc. Natl. Acad. Sci. U.S.A. 104 10841-10846 (2007)
  18. Predicting peptide structures in native proteins from physical simulations of fragments. Voelz VA, Shell MS, Dill KA. PLoS Comput Biol 5 e1000281 (2009)
  19. Force-dependent switch in protein unfolding pathways and transition-state movements. Zhuravlev PI, Hinczewski M, Chakrabarti S, Marqusee S, Thirumalai D. Proc. Natl. Acad. Sci. U.S.A. 113 E715-24 (2016)
  20. The dual role of a loop with low loop contact distance in folding and domain swapping. Linhananta A, Zhou H, Zhou Y. Protein Sci 11 1695-1701 (2002)
  21. Exploring the energy landscapes of protein folding simulations with Bayesian computation. Burkoff NS, Várnai C, Wells SA, Wild DL. Biophys. J. 102 878-886 (2012)
  22. Intramolecular cross-linking evaluated as a structural probe of the protein folding transition state. Shandiz AT, Capraro BR, Sosnick TR. Biochemistry 46 13711-13719 (2007)
  23. Propensity to form amyloid fibrils is encoded as excitations in the free energy landscape of monomeric proteins. Zhuravlev PI, Reddy G, Straub JE, Thirumalai D. J. Mol. Biol. 426 2653-2666 (2014)
  24. NMR evidence for forming highly populated helical conformations in the partially folded hNck2 SH3 domain. Liu J, Song J. Biophys. J. 95 4803-4812 (2008)
  25. Site-specific ubiquitination affects protein energetics and proteasomal degradation. Carroll EC, Greene ER, Martin A, Marqusee S. Nat Chem Biol 16 866-875 (2020)
  26. Analysis of single molecule folding studies with replica correlation functions. Lenz P, Cho SS, Wolynes PG. Chem Phys Lett 471 310-314 (2009)
  27. Polymer uncrossing and knotting in protein folding, and their role in minimal folding pathways. Mohazab AR, Plotkin SS. PLoS One 8 e53642 (2013)
  28. Reconstruction and stability of secondary structure elements in the context of protein structure prediction. Podtelezhnikov AA, Wild DL. Biophys. J. 96 4399-4408 (2009)
  29. A hybrid, bottom-up, structurally accurate, Go¯-like coarse-grained protein model. Sanyal T, Mittal J, Shell MS. J Chem Phys 151 044111 (2019)
  30. Electrostatic effects in the folding of the SH3 domain of the c-Src tyrosine kinase: pH-dependence in 3D-domain swapping and amyloid formation. Bacarizo J, Martinez-Rodriguez S, Martin-Garcia JM, Andujar-Sanchez M, Ortiz-Salmeron E, Neira JL, Camara-Artigas A. PLoS ONE 9 e113224 (2014)
  31. Simulating protein folding initiation sites using an alpha-carbon-only knowledge-based force field. Buck PM, Bystroff C. Proteins 76 331-342 (2009)
  32. Constraining local structure can speed up folding by promoting structural polarization of the folding pathway. Buck PM, Bystroff C. Protein Sci. 20 959-969 (2011)
  33. An alternative approach to protein folding. Kang Y, Fortmann CM. Biomed Res Int 2013 583045 (2013)
  34. Environmental Fluctuations and Stochastic Resonance in Protein Folding. Dave K, Davtyan A, Papoian GA, Gruebele M, Platkov M. Chemphyschem 17 1341-1348 (2016)
  35. Fold and flexibility: what can proteins' mechanical properties tell us about their folding nucleus? Sacquin-Mora S. J R Soc Interface 12 (2015)
  36. Letter Native, sequential protein folding via anchored N and C protein termini. Alberti S. Proc. Natl. Acad. Sci. U.S.A. 113 E3189-91 (2016)
  37. Structural insights into the recognition of β3 integrin cytoplasmic tail by the SH3 domain of Src kinase. Katyal P, Puthenveetil R, Vinogradova O. Protein Sci. 22 1358-1365 (2013)
  38. Folding kinetics of an entangled protein. Salicari L, Baiesi M, Orlandini E, Trovato A. PLoS Comput Biol 19 e1011107 (2023)
  39. Pathfinder: Protein folding pathway prediction based on conformational sampling. Huang Z, Cui X, Xia Y, Zhao K, Zhang G. PLoS Comput Biol 19 e1011438 (2023)
  40. Protein folding mechanism revealed by single-molecule force spectroscopy experiments. Sun H, Guo Z, Hong H, Yu P, Xue Z, Chen H. Biophys Rep 7 399-412 (2021)


Reviews citing this publication (2)

  1. The hydrogen exchange core and protein folding. Li R, Woodward C. Protein Sci. 8 1571-1590 (1999)
  2. Structure and function of the SH3 domain. Musacchio A, Wilmanns M, Saraste M. Prog. Biophys. Mol. Biol. 61 283-297 (1994)

Articles citing this publication (24)

  1. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Grantcharova VP, Riddle DS, Santiago JV, Baker D. Nat. Struct. Biol. 5 714-720 (1998)
  2. The SH3 domain of Src tyrosyl protein kinase interacts with the N-terminal splice region of the PDE4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE4A5). O'Connell JC, McCallum JF, McPhee I, Wakefield J, Houslay ES, Wishart W, Bolger G, Frame M, Houslay MD. Biochem. J. 318 ( Pt 1) 255-261 (1996)
  3. Hierarchy of structure loss in MD simulations of src SH3 domain unfolding. Tsai J, Levitt M, Baker D. J. Mol. Biol. 291 215-225 (1999)
  4. Solution structure and ligand-binding site of the carboxy-terminal SH3 domain of GRB2. Kohda D, Terasawa H, Ichikawa S, Ogura K, Hatanaka H, Mandiyan V, Ullrich A, Schlessinger J, Inagaki F. Structure 2 1029-1040 (1994)
  5. Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts. Wittekind M, Mapelli C, Lee V, Goldfarb V, Friedrichs MS, Meyers CA, Mueller L. J. Mol. Biol. 267 933-952 (1997)
  6. Partial unfolding of diverse SH3 domains on a wide timescale. Wales TE, Engen JR. J. Mol. Biol. 357 1592-1604 (2006)
  7. Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR. Cordier F, Wang C, Grzesiek S, Nicholson LK. J. Mol. Biol. 304 497-505 (2000)
  8. Migfilin interacts with Src and contributes to cell-matrix adhesion-mediated survival signaling. Zhao J, Zhang Y, Ithychanda SS, Tu Y, Chen K, Qin J, Wu C. J. Biol. Chem. 284 34308-34320 (2009)
  9. Hydrogen exchange and ligand binding: ligand-dependent and ligand-independent protection in the Src SH3 domain. Wildes D, Marqusee S. Protein Sci. 14 81-88 (2005)
  10. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA. J. Mol. Biol. 278 253-265 (1998)
  11. G-protein coupled receptor-mediated activation of PI 3-kinase in neutrophils. Thelen M, Didichenko SA. Ann. N. Y. Acad. Sci. 832 368-382 (1997)
  12. beta-Hairpins, alpha-helices, and the intermediates among the secondary structures in the energy landscape of a peptide from a distal beta-hairpin of SH3 domain. Ikeda K, Galzitskaya OV, Nakamura H, Higo J. J Comput Chem 24 310-318 (2003)
  13. The effect of surface tethering on the folding of the src-SH3 protein domain. Zhuang Z, Jewett AI, Soto P, Shea JE. Phys Biol 6 015004 (2009)
  14. Intertwined dimeric structure for the SH3 domain of the c-Src tyrosine kinase induced by polyethylene glycol binding. Cámara-Artigas A, Martín-García JM, Morel B, Ruiz-Sanz J, Luque I. FEBS Lett. 583 749-753 (2009)
  15. Homology modeling of the Abl-SH3 domain. Pisabarro MT, Ortiz AR, Serrano L, Wade RC. Proteins 20 203-215 (1994)
  16. Atomic resolution structures of the c-Src SH3 domain in complex with two high-affinity peptides from classes I and II. Bacarizo J, Camara-Artigas A. Acta Crystallogr. D Biol. Crystallogr. 69 756-766 (2013)
  17. The "first in-last out" hypothesis on protein folding revisited. Pintar A, Pongor S. Proteins 60 584-590 (2005)
  18. The Tyrosine Kinase c-Src Specifically Binds to the Active Integrin αIIbβ3 to Initiate Outside-in Signaling in Platelets. Wu Y, Span LM, Nygren P, Zhu H, Moore DT, Cheng H, Roder H, DeGrado WF, Bennett JS. J. Biol. Chem. 290 15825-15834 (2015)
  19. Solvent-exposed backbone loosens the hydration shell of soluble folded proteins. Fernández A, Chen J, Crespo A. J Chem Phys 126 245103 (2007)
  20. 3D domain swapping in a chimeric c-Src SH3 domain takes place through two hinge loops. Cámara-Artigas A, Martínez-Rodríguez S, Ortiz-Salmerón E, Martín-García JM. J. Struct. Biol. 186 195-203 (2014)
  21. From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors. Zafra Ruano A, Cilia E, Couceiro JR, Ruiz Sanz J, Schymkowitz J, Rousseau F, Luque I, Lenaerts T. PLoS Comput. Biol. 12 e1004938 (2016)
  22. Long-range PEG Stapling: Macrocyclization for Increased Protein Conformational Stability and Resistance to Proteolysis. Xiao Q, Ashton DS, Jones ZB, Thompson KP, Price JL. RSC Chem Biol 1 273-280 (2020)
  23. Structural study of hNck2 SH3 domain protein in solution by circular dichroism and X-ray solution scattering. Matsumura Y, Shinjo M, Matsui T, Ichimura K, Song J, Kihara H. Biophys. Chem. 175-176 39-46 (2013)
  24. Protein folding in mode space: a collective coordinate approach to structure prediction. Abseher R, Nilges M. Proteins 49 365-377 (2002)


Related citations provided by authors (1)

  1. Solution structure of the SH3 domain of Src and identification of its ligand-binding site.. Yu H, Rosen MK, Shin TB, Seidel-Dugan C, Brugge JS, Schreiber SL Science 258 1665-8 (1992)