1sr5 Citations

The ternary complex of antithrombin-anhydrothrombin-heparin reveals the basis of inhibitor specificity.

Nat Struct Mol Biol 11 863-7 (2004)
Cited: 81 times
EuropePMC logo PMID: 15311268

Abstract

Antithrombin, the principal physiological inhibitor of the blood coagulation proteinase thrombin, requires heparin as a cofactor. We report the crystal structure of the rate-determining encounter complex formed between antithrombin, anhydrothrombin and an optimal synthetic 16-mer oligosaccharide. The antithrombin reactive center loop projects from the serpin body and adopts a canonical conformation that makes extensive backbone and side chain contacts from P5 to P6' with thrombin's restrictive specificity pockets, including residues in the 60-loop. These contacts rationalize many earlier mutagenesis studies on thrombin specificity. The 16-mer oligosaccharide is just long enough to form the predicted bridge between the high-affinity pentasaccharide-binding site on antithrombin and the highly basic exosite 2 on thrombin, validating the design strategy for this synthetic heparin. The protein-protein and protein-oligosaccharide interactions together explain the basis for heparin activation of antithrombin as a thrombin inhibitor.

Reviews - 1sr5 mentioned but not cited (2)

  1. Molecular simulations of carbohydrates and protein-carbohydrate interactions: motivation, issues and prospects. Fadda E, Woods RJ. Drug Discov Today 15 596-609 (2010)
  2. Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. Whisstock JC, Silverman GA, Bird PI, Bottomley SP, Kaiserman D, Luke CJ, Pak SC, Reichhart JM, Huntington JA. J Biol Chem 285 24307-24312 (2010)

Articles - 1sr5 mentioned but not cited (5)

  1. Identification of serpin determinants of specificity and selectivity for furin inhibition through studies of α1PDX (α1-protease inhibitor Portland)-serpin B8 and furin active-site loop chimeras. Izaguirre G, Qi L, Lima M, Olson ST. J Biol Chem 288 21802-21814 (2013)
  2. Engineering trypsin for inhibitor resistance. Batt AR, St Germain CP, Gokey T, Guliaev AB, Baird T. Protein Sci 24 1463-1474 (2015)
  3. Heparin Blocks the Inhibition of Tissue Kallikrein 1 by Kallistatin through Electrostatic Repulsion. Ma L, Wu J, Zheng Y, Shu Z, Wei Z, Sun Y, Carrell RW, Zhou A. Biomolecules 10 E828 (2020)
  4. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)
  5. DNA accelerates the protease inhibition of a bacterial serpin chloropin. Xu J, Ye W, Yang TT, Yan T, Cai H, Zhou A, Yang Y. Front Mol Biosci 10 1157186 (2023)


Reviews citing this publication (23)

  1. Demystifying heparan sulfate-protein interactions. Xu D, Esko JD. Annu Rev Biochem 83 129-157 (2014)
  2. Thrombin. Di Cera E. Mol Aspects Med 29 203-254 (2008)
  3. Serpins in thrombosis, hemostasis and fibrinolysis. Rau JC, Beaulieu LM, Huntington JA, Church FC. J Thromb Haemost 5 Suppl 1 102-115 (2007)
  4. Glycoconjugate glycans as viral receptors. Olofsson S, Bergström T. Ann Med 37 154-172 (2005)
  5. Structural view of glycosaminoglycan-protein interactions. Imberty A, Lortat-Jacob H, Pérez S. Carbohydr Res 342 430-439 (2007)
  6. Shape-shifting serpins--advantages of a mobile mechanism. Huntington JA. Trends Biochem Sci 31 427-435 (2006)
  7. Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans. Pike RN, Buckle AM, le Bonniec BF, Church FC. FEBS J 272 4842-4851 (2005)
  8. Chemical approaches to define the structure-activity relationship of heparin-like glycosaminoglycans. Noti C, Seeberger PH. Chem Biol 12 731-756 (2005)
  9. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Goettig P, Magdolen V, Brandstetter H. Biochimie 92 1546-1567 (2010)
  10. Serpins in plants and green algae. Roberts TH, Hejgaard J. Funct Integr Genomics 8 1-27 (2008)
  11. Thrombin-cofactor interactions: structural insights into regulatory mechanisms. Adams TE, Huntington JA. Arterioscler Thromb Vasc Biol 26 1738-1745 (2006)
  12. Structure and interaction modes of thrombin. Bode W. Blood Cells Mol Dis 36 122-130 (2006)
  13. Exosite determinants of serpin specificity. Gettins PG, Olson ST. J Biol Chem 284 20441-20445 (2009)
  14. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Gettins PG, Olson ST. Biochem J 473 2273-2293 (2016)
  15. Thrombin inhibition by the serpins. Huntington JA. J Thromb Haemost 11 Suppl 1 254-264 (2013)
  16. Synthetic heparin derivatives as new anticoagulant drugs. de Kort M, Buijsman RC, van Boeckel CA. Drug Discov Today 10 769-779 (2005)
  17. Thrombin allostery. Di Cera E, Page MJ, Bah A, Bush-Pelc LA, Garvey LC. Phys Chem Chem Phys 9 1291-1306 (2007)
  18. The initiating proteases of the complement system: controlling the cleavage. Duncan RC, Wijeyewickrema LC, Pike RN. Biochimie 90 387-395 (2008)
  19. Serpins in T cell immunity. Bots M, Medema JP. J Leukoc Biol 84 1238-1247 (2008)
  20. Antithrombin deficiency and its laboratory diagnosis. Muszbek L, Bereczky Z, Kovács B, Komáromi I. Clin Chem Lab Med 48 Suppl 1 S67-78 (2010)
  21. A Systems View of the Heparan Sulfate Interactome. Gómez Toledo A, Sorrentino JT, Sandoval DR, Malmström J, Lewis NE, Esko JD. J Histochem Cytochem 69 105-119 (2021)
  22. The structure of thrombin, a chameleon-like proteinase. Bode W. J Thromb Haemost 3 2379-2388 (2005)
  23. Placental regulation of peptide hormone and growth factor activity by proMBP. Weyer K, Glerup S. Biol Reprod 84 1077-1086 (2011)

Articles citing this publication (51)

  1. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Lu G, DeGuzman FR, Hollenbach SJ, Karbarz MJ, Abe K, Lee G, Luan P, Hutchaleelaha A, Inagaki M, Conley PB, Phillips DR, Sinha U. Nat Med 19 446-451 (2013)
  2. Identification of proteoglycans as the APRIL-specific binding partners. Ingold K, Zumsteg A, Tardivel A, Huard B, Steiner QG, Cachero TG, Qiang F, Gorelik L, Kalled SL, Acha-Orbea H, Rennert PD, Tschopp J, Schneider P. J Exp Med 201 1375-1383 (2005)
  3. Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Li W, Johnson DJ, Esmon CT, Huntington JA. Nat Struct Mol Biol 11 857-862 (2004)
  4. Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. Johnson DJ, Li W, Adams TE, Huntington JA. EMBO J 25 2029-2037 (2006)
  5. Crystal structure of thrombin bound to heparin. Carter WJ, Cama E, Huntington JA. J Biol Chem 280 2745-2749 (2005)
  6. Adeno-associated virus-2 and its primary cellular receptor--Cryo-EM structure of a heparin complex. O'Donnell J, Taylor KA, Chapman MS. Virology 385 434-443 (2009)
  7. Crystal structure of an RNA aptamer bound to thrombin. Long SB, Long MB, White RR, Sullenger BA. RNA 14 2504-2512 (2008)
  8. MASP-1, a promiscuous complement protease: structure of its catalytic region reveals the basis of its broad specificity. Dobó J, Harmat V, Beinrohr L, Sebestyén E, Závodszky P, Gál P. J Immunol 183 1207-1214 (2009)
  9. Enzymatic redesigning of biologically active heparan sulfate. Chen J, Avci FY, Muñoz EM, McDowell LM, Chen M, Pedersen LC, Zhang L, Linhardt RJ, Liu J. J Biol Chem 280 42817-42825 (2005)
  10. Structural characterization of human heparanase reveals insights into substrate recognition. Wu L, Viola CM, Brzozowski AM, Davies GJ. Nat Struct Mol Biol 22 1016-1022 (2015)
  11. Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability. Xu D, Fuster MM, Lawrence R, Esko JD. J Biol Chem 286 737-745 (2011)
  12. Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s). Raghuraman A, Mosier PD, Desai UR. J Med Chem 49 3553-3562 (2006)
  13. Crystal structure of monomeric native antithrombin reveals a novel reactive center loop conformation. Johnson DJ, Langdown J, Li W, Luis SA, Baglin TP, Huntington JA. J Biol Chem 281 35478-35486 (2006)
  14. Docking glycosaminoglycans to proteins: analysis of solvent inclusion. Samsonov SA, Teyra J, Pisabarro MT. J Comput Aided Mol Des 25 477-489 (2011)
  15. Residues Tyr253 and Glu255 in strand 3 of beta-sheet C of antithrombin are key determinants of an exosite made accessible by heparin activation to promote rapid inhibition of factors Xa and IXa. Izaguirre G, Olson ST. J Biol Chem 281 13424-13432 (2006)
  16. Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities. Xu Y, Pempe EH, Liu J. J Biol Chem 287 29054-29061 (2012)
  17. On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different. Mosier PD, Krishnasamy C, Kellogg GE, Desai UR. PLoS One 7 e48632 (2012)
  18. Role of the netrin-like domain of procollagen C-proteinase enhancer-1 in the control of metalloproteinase activity. Bekhouche M, Kronenberg D, Vadon-Le Goff S, Bijakowski C, Lim NH, Font B, Kessler E, Colige A, Nagase H, Murphy G, Hulmes DJ, Moali C. J Biol Chem 285 15950-15959 (2010)
  19. Characterization of a heparin-binding site on the catalytic domain of factor XIa: mechanism of heparin acceleration of factor XIa inhibition by the serpins antithrombin and C1-inhibitor. Yang L, Sun MF, Gailani D, Rezaie AR. Biochemistry 48 1517-1524 (2009)
  20. Conformation of sulfated galactan and sulfated fucan in aqueous solutions: implications to their anticoagulant activities. Becker CF, Guimarães JA, Mourão PA, Verli H. J Mol Graph Model 26 391-399 (2007)
  21. Heparin-induced cis- and trans-dimerization modes of the thrombospondin-1 N-terminal domain. Tan K, Duquette M, Liu JH, Shanmugasundaram K, Joachimiak A, Gallagher JT, Rigby AC, Wang JH, Lawler J. J Biol Chem 283 3932-3941 (2008)
  22. Crystal structures of protease nexin-1 in complex with heparin and thrombin suggest a 2-step recognition mechanism. Li W, Huntington JA. Blood 120 459-467 (2012)
  23. Binding areas of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex for endocytosis receptors of the low-density lipoprotein receptor family, determined by site-directed mutagenesis. Skeldal S, Larsen JV, Pedersen KE, Petersen HH, Egelund R, Christensen A, Jensen JK, Gliemann J, Andreasen PA. FEBS J 273 5143-5159 (2006)
  24. Conformational activation of antithrombin by heparin involves an altered exosite interaction with protease. Izaguirre G, Aguila S, Qi L, Swanson R, Roth R, Rezaie AR, Gettins PG, Olson ST. J Biol Chem 289 34049-34064 (2014)
  25. Effect of the substituents of the neighboring ring in the conformational equilibrium of iduronate in heparin-like trisaccharides. Muñoz-García JC, López-Prados J, Angulo J, Díaz-Contreras I, Reichardt N, de Paz JL, Martín-Lomas M, Nieto PM. Chemistry 18 16319-16331 (2012)
  26. Implication of the human Binder of SPerm Homolog 1 (BSPH1) protein in capacitation. Plante G, Thérien I, Lachance C, Leclerc P, Fan J, Manjunath P. Mol Hum Reprod 20 409-421 (2014)
  27. Efficient Construction of Atomic-Resolution Models of Non-Sulfated Chondroitin Glycosaminoglycan Using Molecular Dynamics Data. Whitmore EK, Vesenka G, Sihler H, Guvench O. Biomolecules 10 E537 (2020)
  28. Structures of human plasma β-factor XIIa cocrystallized with potent inhibitors. Dementiev A, Silva A, Yee C, Li Z, Flavin MT, Sham H, Partridge JR. Blood Adv 2 549-558 (2018)
  29. Engineering functional antithrombin exosites in alpha1-proteinase inhibitor that specifically promote the inhibition of factor Xa and factor IXa. Izaguirre G, Rezaie AR, Olson ST. J Biol Chem 284 1550-1558 (2009)
  30. Controllable production of low molecular weight heparins by combinations of heparinase I/II/III. Wu J, Zhang C, Mei X, Li Y, Xing XH. Carbohydr Polym 101 484-492 (2014)
  31. Targeting the GPIbα binding site of thrombin to simultaneously induce dual anticoagulant and antiplatelet effects. Mehta AY, Thakkar JN, Mohammed BM, Martin EJ, Brophy DF, Kishimoto T, Desai UR. J Med Chem 57 3030-3039 (2014)
  32. Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics. Whitmore EK, Martin D, Guvench O. Int J Mol Sci 21 E7699 (2020)
  33. Designing "high-affinity, high-specificity" glycosaminoglycan sequences through computerized modeling. Sankaranarayanan NV, Sarkar A, Desai UR, Mosier PD. Methods Mol Biol 1229 289-314 (2015)
  34. High-resolution probing heparan sulfate-antithrombin interaction on a single endothelial cell surface: single-molecule AFM studies. Guo C, Fan X, Qiu H, Xiao W, Wang L, Xu B. Phys Chem Chem Phys 17 13301-13306 (2015)
  35. The allosteric mechanism of activation of antithrombin as an inhibitor of factor IXa and factor Xa: heparin-independent full activation through mutations adjacent to helix D. Dementiev A, Swanson R, Roth R, Isetti G, Izaguirre G, Olson ST, Gettins PGW. J Biol Chem 288 33611-33619 (2013)
  36. Characterization of the conformational alterations, reduced anticoagulant activity, and enhanced antiangiogenic activity of prelatent antithrombin. Richard B, Swanson R, Schedin-Weiss S, Ramirez B, Izaguirre G, Gettins PG, Olson ST. J Biol Chem 283 14417-14429 (2008)
  37. Disease-causing mutations in the serpin antithrombin reveal a key domain critical for inhibiting protease activities. Águila S, Izaguirre G, Martínez-Martínez I, Vicente V, Olson ST, Corral J. J Biol Chem 292 16513-16520 (2017)
  38. Capillary electrophoretic study of small, highly sulfated, non-sugar molecules interacting with antithrombin. Liang A, Raghuraman A, Desai UR. Electrophoresis 30 1544-1551 (2009)
  39. Heparin Binds Lamprey Angiotensinogen and Promotes Thrombin Inhibition through a Template Mechanism. Wei H, Cai H, Wu J, Wei Z, Zhang F, Huang X, Ma L, Feng L, Zhang R, Wang Y, Ragg H, Zheng Y, Zhou A. J Biol Chem 291 24900-24911 (2016)
  40. Heparin alters viral serpin, serp-1, anti-thrombolytic activity to anti-thrombotic activity. Li X, Schneider H, Peters A, Macaulay C, King E, Sun Y, Liu L, Dai E, Davids JA, McFadden G, Lucas A. Open Biochem J 2 6-15 (2008)
  41. Investigating serpin-enzyme complex formation and stability via single and multiple residue reactive centre loop substitutions in heparin cofactor II. Sutherland JS, Bhakta V, Sheffield WP. Thromb Res 117 447-461 (2006)
  42. The hyperglycemic byproduct methylglyoxal impairs anticoagulant activity through covalent adduction of antithrombin III. Jacobson R, Mignemi N, Rose K, O'Rear L, Sarilla S, Hamm HE, Barnett JV, Verhamme IM, Schoenecker J. Thromb Res 134 1350-1357 (2014)
  43. Zymogen activation of neurotrypsin and neurotrypsin-dependent agrin cleavage on the cell surface are enhanced by glycosaminoglycans. Gisler C, Lüscher D, Schätzle P, Dürr S, Baici A, Galliciotti G, Reif R, Bolliger MF, Kunz B, Sonderegger P. Biochem J 453 83-100 (2013)
  44. The superiority of anti-FXa assay over anti-FIIa assay in detecting heparin-binding site antithrombin deficiency. Kovács B, Bereczky Z, Oláh Z, Gindele R, Kerényi A, Selmeczi A, Boda Z, Muszbek L. Am J Clin Pathol 140 675-679 (2013)
  45. ANISERP: a new serpin from the parasite Anisakis simplex. Valdivieso E, Perteguer MJ, Hurtado C, Campioli P, Rodríguez E, Saborido A, Martínez-Sernández V, Gómez-Puertas P, Ubeira FM, Gárate T. Parasit Vectors 8 399 (2015)
  46. Dynamic properties of the native free antithrombin from molecular dynamics simulations: computational evidence for solvent- exposed Arg393 side chain. Tóth L, Fekete A, Balogh G, Bereczky Z, Komáromi I. J Biomol Struct Dyn 33 2023-2036 (2015)
  47. Crystallization and crystallographic studies of kallistatin. Lin F, Zhou A, Wei Z. Acta Crystallogr F Struct Biol Commun 71 1135-1138 (2015)
  48. Computerized Molecular Modeling for Discovering Promising Glycosaminoglycan Oligosaccharides that Modulate Protein Function. Sankaranarayanan NV, Desai U. Methods Mol Biol 2303 513-537 (2022)
  49. Hedgehogs like it sweet, too. Beenken A, Mohammadi M. Proc Natl Acad Sci U S A 103 17069-17070 (2006)
  50. Mutation of the H-helix in antithrombin decreases heparin stimulation of protease inhibition. Gonzales PR, Walston TD, Camacho LO, Kielar DM, Church FC, Rezaie AR, Cooper ST. Biochim Biophys Acta 1774 1431-1437 (2007)
  51. SEMA4D/VEGF surface enhances endothelialization by diminished-glycolysis-mediated M2-like macrophage polarization. Cui Y, Jiang X, Yang M, Yuan Y, Zhou Z, Gao X, Jia G, Cao L, Li D, Zhao Y, Zhang X, Zhao G. Mater Today Bio 23 100832 (2023)