1spr Citations

Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms.

Cell 72 779-90 (1993)
Cited: 327 times
EuropePMC logo PMID: 7680960

Abstract

The crystal structure of the Src SH2 domain complexed with a high affinity 11-residue phosphopeptide has been determined at 2.7 A resolution by X-ray diffraction. The peptide binds in an extended conformation and makes primary interactions with the SH2 domain at six central residues: PQ(pY)EEI. The phosphotyrosine and the isoleucine are tightly bound by two well-defined pockets on the protein surface, resulting in a complex that resembles a two-pronged plug engaging a two-holed socket. The glutamate residues are in solvent-exposed environments in the vicinity of basic side chains of the SH2 domain, and the two N-terminal residues cap the phosphotyrosine-binding site. The crystal structure of Src SH2 in the absence of peptide has been determined at 2.5 A resolution, and comparison with the structure of the high affinity complex reveals only localized and relatively small changes.

Articles - 1spr mentioned but not cited (1)

  1. Structure of the interleukin-2 tyrosine kinase Src homology 2 domain; comparison between X-ray and NMR-derived structures. Joseph RE, Ginder ND, Hoy JA, Nix JC, Fulton DB, Honzatko RB, Andreotti AH. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 145-153 (2012)


Reviews citing this publication (76)

  1. Enthalpy-entropy compensation: the role of solvation. Dragan AI, Read CM, Crane-Robinson C. Eur. Biophys. J. 46 301-308 (2017)
  2. Monobodies and other synthetic binding proteins for expanding protein science. Sha F, Salzman G, Gupta A, Koide S. Protein Sci. 26 910-924 (2017)
  3. The discovery of modular binding domains: building blocks of cell signalling. Mayer BJ. Nat. Rev. Mol. Cell Biol. 16 691-698 (2015)
  4. The Fyn-ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Gerbec ZJ, Thakar MS, Malarkannan S. Front Immunol 6 472 (2015)
  5. Modular peptide binding: from a comparison of natural binders to designed armadillo repeat proteins. Reichen C, Hansen S, Plückthun A. J. Struct. Biol. 185 147-162 (2014)
  6. Progress towards the development of SH2 domain inhibitors. Kraskouskaya D, Duodu E, Arpin CC, Gunning PT. Chem Soc Rev 42 3337-3370 (2013)
  7. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Wagner MJ, Stacey MM, Liu BA, Pawson T. Cold Spring Harb Perspect Biol 5 a008987 (2013)
  8. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Reinhardt HC, Yaffe MB. Nat. Rev. Mol. Cell Biol. 14 563-580 (2013)
  9. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. Liu BA, Engelmann BW, Nash PD. FEBS Lett. 586 2597-2605 (2012)
  10. The application of modular protein domains in proteomics. Jadwin JA, Ogiue-Ikeda M, Machida K. FEBS Lett. 586 2586-2596 (2012)
  11. Why modules matter. Nash PD. FEBS Lett. 586 2572-2574 (2012)
  12. The biology and mechanism of action of suppressor of cytokine signaling 3. Babon JJ, Nicola NA. Growth Factors 30 207-219 (2012)
  13. Physical mechanisms of signal integration by WASP family proteins. Padrick SB, Rosen MK. Annu. Rev. Biochem. 79 707-735 (2010)
  14. The regulation of class IA PI 3-kinases by inter-subunit interactions. Backer JM. Curr. Top. Microbiol. Immunol. 346 87-114 (2010)
  15. Signalling via integrins: implications for cell survival and anticancer strategies. Hehlgans S, Haase M, Cordes N. Biochim. Biophys. Acta 1775 163-180 (2007)
  16. Tonic B-cell and viral ITAM signaling: context is everything. Grande SM, Bannish G, Fuentes-Panana EM, Katz E, Monroe JG. Immunol. Rev. 218 214-234 (2007)
  17. Reading protein modifications with interaction domains. Seet BT, Dikic I, Zhou MM, Pawson T. Nat. Rev. Mol. Cell Biol. 7 473-483 (2006)
  18. Structure-based organic synthesis of drug prototypes: a personal odyssey. Hanessian S. ChemMedChem 1 1301-1330 (2006)
  19. Lessons from nature: On the molecular recognition elements of the phosphoprotein binding-domains. Roque AC, Lowe CR. Biotechnol. Bioeng. 91 546-555 (2005)
  20. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Pawson T. Cell 116 191-203 (2004)
  21. Peptides with anticancer use or potential. Janin YL. Amino Acids 25 1-40 (2003)
  22. SH2 and PTB domains in tyrosine kinase signaling. Schlessinger J, Lemmon MA. Sci. STKE 2003 RE12 (2003)
  23. Dancing with multiple partners. Woodside DG. Sci. STKE 2002 pe14 (2002)
  24. Ras-MAP kinase signaling pathways and control of cell proliferation: relevance to cancer therapy. Shapiro P. Crit Rev Clin Lab Sci 39 285-330 (2002)
  25. Interaction domains: from simple binding events to complex cellular behavior. Pawson T, Raina M, Nash P. FEBS Lett. 513 2-10 (2002)
  26. PhosphoSerine/threonine binding domains: you can't pSERious? Yaffe MB, Smerdon SJ. Structure 9 R33-8 (2001)
  27. Src inhibitors: genomics to therapeutics. Sawyer T, Boyce B, Dalgarno D, Iuliucci J. Expert Opin Investig Drugs 10 1327-1344 (2001)
  28. RTK mutations and human syndromeswhen good receptors turn bad. Robertson SC, Tynan JA, Donoghue DJ. Trends Genet. 16 265-271 (2000)
  29. The FHA domain in DNA repair and checkpoint signaling. Durocher D, Smerdon SJ, Yaffe MB, Jackson SP. Cold Spring Harb. Symp. Quant. Biol. 65 423-431 (2000)
  30. Plant GRAS and metazoan STATs: one family? Richards DE, Peng J, Harberd NP. Bioessays 22 573-577 (2000)
  31. Molecular bases for the recognition of tyrosine-based sorting signals. Bonifacino JS, Dell'Angelica EC. J. Cell Biol. 145 923-926 (1999)
  32. Recognition and regulation of primary-sequence motifs by signaling modular domains. Songyang Z. Prog. Biophys. Mol. Biol. 71 359-372 (1999)
  33. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Buday L. Biochim. Biophys. Acta 1422 187-204 (1999)
  34. SH2 domains: from structure to energetics, a dual approach to the study of structure-function relationships. Grucza RA, Bradshaw JM, Fütterer K, Waksman G. Med Res Rev 19 273-293 (1999)
  35. Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. Aghazadeh B, Rosen MK. Chem. Biol. 6 R241-6 (1999)
  36. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Hunter T. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 353 583-605 (1998)
  37. Phospholipid-binding protein domains. Bottomley MJ, Salim K, Panayotou G. Biochim. Biophys. Acta 1436 165-183 (1998)
  38. Src homology-2 domains: structure, mechanisms, and drug discovery. Sawyer TK. Biopolymers 47 243-261 (1998)
  39. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  40. SH2 and PTB domain interactions in tyrosine kinase signal transduction. Shoelson SE. Curr Opin Chem Biol 1 227-234 (1997)
  41. Cellular functions regulated by Src family kinases. Thomas SM, Brugge JS. Annu. Rev. Cell Dev. Biol. 13 513-609 (1997)
  42. The brain as a symbol-processing machine. Rocha AF. Prog. Neurobiol. 53 121-198 (1997)
  43. Regulation, substrates and functions of src. Brown MT, Cooper JA. Biochim. Biophys. Acta 1287 121-149 (1996)
  44. Structure and function of vav. Romero F, Fischer S. Cell. Signal. 8 545-553 (1996)
  45. Targeting signal transduction in the discovery of antiproliferative drugs. Saltiel AR, Sawyer TK. Chem. Biol. 3 887-893 (1996)
  46. The PI/PTB domain: a new protein interaction domain involved in growth factor receptor signaling. Margolis B. J. Lab. Clin. Med. 128 235-241 (1996)
  47. Peptide-surface association: the case of PDZ and PTB domains. Harrison SC. Cell 86 341-343 (1996)
  48. SH2 domain protein interaction and possibilities for pharmacological intervention. Beattie J. Cell. Signal. 8 75-86 (1996)
  49. Intracellular signaling by growth factors. Seedorf K. Metab. Clin. Exp. 44 24-32 (1995)
  50. Tyrosine kinases: modular signaling enzymes with tunable specificities. Shokat KM. Chem. Biol. 2 509-514 (1995)
  51. Protein tyrosine phosphatases take off. Barford D, Jia Z, Tonks NK. Nat. Struct. Biol. 2 1043-1053 (1995)
  52. Why two heads are better. Mayer BJ. Structure 3 977-980 (1995)
  53. Recognition and specificity in protein tyrosine kinase-mediated signalling. Songyang Z, Cantley LC. Trends Biochem. Sci. 20 470-475 (1995)
  54. Modular binding domains in signal transduction proteins. Cohen GB, Ren R, Baltimore D. Cell 80 237-248 (1995)
  55. Dimerization of cell surface receptors in signal transduction. Heldin CH. Cell 80 213-223 (1995)
  56. Protein-peptide interactions. Stanfield RL, Wilson IA. Curr. Opin. Struct. Biol. 5 103-113 (1995)
  57. Protein-protein interactions: methods for detection and analysis. Phizicky EM, Fields S. Microbiol. Rev. 59 94-123 (1995)
  58. Structure-function relationships in Src family and related protein tyrosine kinases. Superti-Furga G, Courtneidge SA. Bioessays 17 321-330 (1995)
  59. The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides. Siligardi G, Drake AF. Biopolymers 37 281-292 (1995)
  60. SH2 domain structure and function. Schaffhausen B. Biochim. Biophys. Acta 1242 61-75 (1995)
  61. Nonreceptor protein tyrosine kinase involvement in signal transduction and immunodeficiency disease. Saouaf SJ, Burkhardt AL, Bolen JB. Clin. Immunol. Immunopathol. 76 S151-7 (1995)
  62. BTKbase: a database of XLA-causing mutations. International Study Group. Vihinen M, Cooper MD, de Saint Basile G, Fischer A, Good RA, Hendriks RW, Kinnon C, Kwan SP, Litman GW, Notarangelo LD. Immunol. Today 16 460-465 (1995)
  63. Signal transduction through the conserved motifs of the high affinity IgE receptor Fc epsilon RI. Jouvin MH, Numerof RP, Kinet JP. Semin. Immunol. 7 29-35 (1995)
  64. Regulation of the Src protein tyrosine kinase. Superti-Furga G. FEBS Lett. 369 62-66 (1995)
  65. Identification of functional domains in the hepatocyte growth factor and its receptor by molecular engineering. Bardelli A, Ponzetto C, Comoglio PM. J. Biotechnol. 37 109-122 (1994)
  66. Proximity versus allostery: the role of regulated protein dimerization in biology. Austin DJ, Crabtree GR, Schreiber SL. Chem. Biol. 1 131-136 (1994)
  67. SH2/SH3 signaling proteins. Schlessinger J. Curr. Opin. Genet. Dev. 4 25-30 (1994)
  68. Oncogenic activation of tyrosine kinases. Rodrigues GA, Park M. Curr. Opin. Genet. Dev. 4 15-24 (1994)
  69. Bruton's tyrosine kinase is a key regulator in B-cell development. Rawlings DJ, Witte ON. Immunol. Rev. 138 105-119 (1994)
  70. Structure, regulation and function of phosphoinositide 3-kinases. Fry MJ. Biochim. Biophys. Acta 1226 237-268 (1994)
  71. The GRB family of SH2 domain proteins. Margolis B. Prog. Biophys. Mol. Biol. 62 223-244 (1994)
  72. The Src family of tyrosine protein kinases in hemopoietic signal transduction. Tsygankov A, Bolen J. Stem Cells 11 371-380 (1993)
  73. Peptide-protein interactions: an overview. Zvelebil MJ, Thornton JM. Q. Rev. Biophys. 26 333-363 (1993)
  74. New insights into protein-tyrosine kinase receptor signaling complexes. Fry MJ, Panayotou G, Booker GW, Waterfield MD. Protein Sci. 2 1785-1797 (1993)
  75. Signal transduction pathways: new targets in oncology. Sweeb RK, Beijnen JH. Pharm World Sci 15 233-242 (1993)
  76. src-related protein tyrosine kinases and their surface receptors. Rudd CE, Janssen O, Prasad KV, Raab M, da Silva A, Telfer JC, Yamamoto M. Biochim. Biophys. Acta 1155 239-266 (1993)

Articles citing this publication (250)

  1. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Mol. Cell. Biol. 14 1680-1688 (1994)
  2. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T. Mol. Cell. Biol. 14 2777-2785 (1994)
  3. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, Graziani A, Panayotou G, Comoglio PM. Cell 77 261-271 (1994)
  4. SH2 and SH3 domains. Pawson T, Schlessingert J. Curr. Biol. 3 434-442 (1993)
  5. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. Wakao H, Gouilleux F, Groner B. EMBO J. 13 2182-2191 (1994)
  6. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Hara T, Miyajima A. EMBO J. 14 2816-2826 (1995)
  7. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. Armon A, Graur D, Ben-Tal N. J. Mol. Biol. 307 447-463 (2001)
  8. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA. EMBO J. 19 6141-6149 (2000)
  9. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Shah K, Liu Y, Deirmengian C, Shokat KM. Proc. Natl. Acad. Sci. U.S.A. 94 3565-3570 (1997)
  10. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Batzer AG, Rotin D, Ureña JM, Skolnik EY, Schlessinger J. Mol. Cell. Biol. 14 5192-5201 (1994)
  11. Calculation of absolute protein-ligand binding free energy from computer simulations. Woo HJ, Roux B. Proc. Natl. Acad. Sci. U.S.A. 102 6825-6830 (2005)
  12. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T. EMBO J. 13 764-773 (1994)
  13. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Sun XJ, Crimmins DL, Myers MG, Miralpeix M, White MF. Mol. Cell. Biol. 13 7418-7428 (1993)
  14. Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Zhong Z, Wen Z, Darnell JE. Proc. Natl. Acad. Sci. U.S.A. 91 4806-4810 (1994)
  15. Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Fu XY, Zhang JJ. Cell 74 1135-1145 (1993)
  16. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Yi T, Mui AL, Krystal G, Ihle JN. Mol. Cell. Biol. 13 7577-7586 (1993)
  17. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S, Yamamoto T. Proc. Natl. Acad. Sci. U.S.A. 93 4181-4186 (1996)
  18. The C2 domain of PKCdelta is a phosphotyrosine binding domain. Benes CH, Wu N, Elia AE, Dharia T, Cantley LC, Soltoff SP. Cell 121 271-280 (2005)
  19. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Garrity PA, Rao Y, Salecker I, McGlade J, Pawson T, Zipursky SL. Cell 85 639-650 (1996)
  20. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. Mol. Cell 22 851-868 (2006)
  21. Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Eck MJ, Dhe-Paganon S, Trüb T, Nolte RT, Shoelson SE. Cell 85 695-705 (1996)
  22. Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal. Ladbury JE, Lemmon MA, Zhou M, Green J, Botfield MC, Schlessinger J. Proc. Natl. Acad. Sci. U.S.A. 92 3199-3203 (1995)
  23. Signal transduction by immunoglobulin is mediated through Ig alpha and Ig beta. Sanchez M, Misulovin Z, Burkhardt AL, Mahajan S, Costa T, Franke R, Bolen JB, Nussenzweig M. J. Exp. Med. 178 1049-1055 (1993)
  24. Crystal structure of the SH3 domain in human Fyn; comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. Noble ME, Musacchio A, Saraste M, Courtneidge SA, Wierenga RK. EMBO J. 12 2617-2624 (1993)
  25. Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. Gerhartz C, Heesel B, Sasse J, Hemmann U, Landgraf C, Schneider-Mergener J, Horn F, Heinrich PC, Graeve L. J. Biol. Chem. 271 12991-12998 (1996)
  26. Syntrophin binds to an alternatively spliced exon of dystrophin. Ahn AH, Kunkel LM. J. Cell Biol. 128 363-371 (1995)
  27. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, Skorski T. EMBO J. 21 5766-5774 (2002)
  28. Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Yamamoto K, Quelle FW, Thierfelder WE, Kreider BL, Gilbert DJ, Jenkins NA, Copeland NG, Silvennoinen O, Ihle JN. Mol. Cell. Biol. 14 4342-4349 (1994)
  29. Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mikita T, Campbell D, Wu P, Williamson K, Schindler U. Mol. Cell. Biol. 16 5811-5820 (1996)
  30. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Narazaki M, Fujimoto M, Matsumoto T, Morita Y, Saito H, Kajita T, Yoshizaki K, Naka T, Kishimoto T. Proc. Natl. Acad. Sci. U.S.A. 95 13130-13134 (1998)
  31. Sequence requirements for binding of Src family tyrosine kinases to activated growth factor receptors. Alonso G, Koegl M, Mazurenko N, Courtneidge SA. J. Biol. Chem. 270 9840-9848 (1995)
  32. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Poy F, Yaffe MB, Sayos J, Saxena K, Morra M, Sumegi J, Cantley LC, Terhorst C, Eck MJ. Mol. Cell 4 555-561 (1999)
  33. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Perego M. Proc. Natl. Acad. Sci. U.S.A. 94 8612-8617 (1997)
  34. Crystal structures of peptide complexes of the amino-terminal SH2 domain of the Syp tyrosine phosphatase. Lee CH, Kominos D, Jacques S, Margolis B, Schlessinger J, Shoelson SE, Kuriyan J. Structure 2 423-438 (1994)
  35. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor. Nishimura R, Li W, Kashishian A, Mondino A, Zhou M, Cooper J, Schlessinger J. Mol. Cell. Biol. 13 6889-6896 (1993)
  36. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP. Torres E, Rosen MK. Mol. Cell 11 1215-1227 (2003)
  37. Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide. Fütterer K, Wong J, Grucza RA, Chan AC, Waksman G. J. Mol. Biol. 281 523-537 (1998)
  38. Engineering Src family protein kinases with unnatural nucleotide specificity. Liu Y, Shah K, Yang F, Witucki L, Shokat KM. Chem. Biol. 5 91-101 (1998)
  39. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA. Mol. Cell. Biol. 18 2089-2099 (1998)
  40. Nck associates with the SH2 domain-docking protein IRS-1 in insulin-stimulated cells. Lee CH, Li W, Nishimura R, Zhou M, Batzer AG, Myers MG, White MF, Schlessinger J, Skolnik EY. Proc. Natl. Acad. Sci. U.S.A. 90 11713-11717 (1993)
  41. Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. Yan H, Krishnan K, Greenlund AC, Gupta S, Lim JT, Schreiber RD, Schindler CW, Krolewski JJ. EMBO J. 15 1064-1074 (1996)
  42. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Dowler S, Currie RA, Downes CP, Alessi DR. Biochem. J. 342 ( Pt 1) 7-12 (1999)
  43. Sequence-specific recognition of the internalization motif of the Alzheimer's amyloid precursor protein by the X11 PTB domain. Zhang Z, Lee CH, Mandiyan V, Borg JP, Margolis B, Schlessinger J, Kuriyan J. EMBO J. 16 6141-6150 (1997)
  44. Role of IRS-1-GRB-2 complexes in insulin signaling. Myers MG, Wang LM, Sun XJ, Zhang Y, Yenush L, Schlessinger J, Pierce JH, White MF. Mol. Cell. Biol. 14 3577-3587 (1994)
  45. Mapping of sites on the Src family protein tyrosine kinases p55blk, p59fyn, and p56lyn which interact with the effector molecules phospholipase C-gamma 2, microtubule-associated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase. Pleiman CM, Clark MR, Gauen LK, Winitz S, Coggeshall KM, Johnson GL, Shaw AS, Cambier JC. Mol. Cell. Biol. 13 5877-5887 (1993)
  46. Transcription factor ISGF-3 formation requires phosphorylated Stat91 protein, but Stat113 protein is phosphorylated independently of Stat91 protein. Improta T, Schindler C, Horvath CM, Kerr IM, Stark GR, Darnell JE. Proc. Natl. Acad. Sci. U.S.A. 91 4776-4780 (1994)
  47. Vav family proteins couple to diverse cell surface receptors. Moores SL, Selfors LM, Fredericks J, Breit T, Fujikawa K, Alt FW, Brugge JS, Swat W. Mol. Cell. Biol. 20 6364-6373 (2000)
  48. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21ras. Pronk GJ, de Vries-Smits AM, Buday L, Downward J, Maassen JA, Medema RH, Bos JL. Mol. Cell. Biol. 14 1575-1581 (1994)
  49. SRC catalytic but not scaffolding function is needed for integrin-regulated tyrosine phosphorylation, cell migration, and cell spreading. Cary LA, Klinghoffer RA, Sachsenmaier C, Cooper JA. Mol. Cell. Biol. 22 2427-2440 (2002)
  50. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Bae JH, Lew ED, Yuzawa S, Tomé F, Lax I, Schlessinger J. Cell 138 514-524 (2009)
  51. Interaction of p72syk with the gamma and beta subunits of the high-affinity receptor for immunoglobulin E, Fc epsilon RI. Shiue L, Green J, Green OM, Karas JL, Morgenstern JP, Ram MK, Taylor MK, Zoller MJ, Zydowsky LD, Bolen JB. Mol. Cell. Biol. 15 272-281 (1995)
  52. Letter Structural basis for specificity of Grb2-SH2 revealed by a novel ligand binding mode. Rahuel J, Gay B, Erdmann D, Strauss A, Garcia-Echeverría C, Furet P, Caravatti G, Fretz H, Schoepfer J, Grütter MG. Nat. Struct. Biol. 3 586-589 (1996)
  53. Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Shakespeare W, Yang M, Bohacek R, Cerasoli F, Stebbins K, Sundaramoorthi R, Azimioara M, Vu C, Pradeepan S, Metcalf C, Haraldson C, Merry T, Dalgarno D, Narula S, Hatada M, Lu X, van Schravendijk MR, Adams S, Violette S, Smith J, Guan W, Bartlett C, Herson J, Iuliucci J, Weigele M, Sawyer T. Proc. Natl. Acad. Sci. U.S.A. 97 9373-9378 (2000)
  54. Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor. Hu J, Liu J, Ghirlando R, Saltiel AR, Hubbard SR. Mol. Cell 12 1379-1389 (2003)
  55. Distinct p53/56lyn and p59fyn domains associate with nonphosphorylated and phosphorylated Ig-alpha. Pleiman CM, Abrams C, Gauen LT, Bedzyk W, Jongstra J, Shaw AS, Cambier JC. Proc. Natl. Acad. Sci. U.S.A. 91 4268-4272 (1994)
  56. Focal adhesion kinase promotes phospholipase C-gamma1 activity. Zhang X, Chattopadhyay A, Ji QS, Owen JD, Ruest PJ, Carpenter G, Hanks SK. Proc. Natl. Acad. Sci. U.S.A. 96 9021-9026 (1999)
  57. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Wojcik J, Hantschel O, Grebien F, Kaupe I, Bennett KL, Barkinge J, Jones RB, Koide A, Superti-Furga G, Koide S. Nat. Struct. Mol. Biol. 17 519-527 (2010)
  58. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. Bradshaw JM, Mitaxov V, Waksman G. J. Mol. Biol. 293 971-985 (1999)
  59. Differential functions of the two Src homology 2 domains in protein tyrosine phosphatase SH-PTP1. Pei D, Wang J, Walsh CT. Proc. Natl. Acad. Sci. U.S.A. 93 1141-1145 (1996)
  60. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development. Covassin LD, Siekmann AF, Kacergis MC, Laver E, Moore JC, Villefranc JA, Weinstein BM, Lawson ND. Dev. Biol. 329 212-226 (2009)
  61. Binding of the Src SH2 domain to phosphopeptides is determined by residues in both the SH2 domain and the phosphopeptides. Bibbins KB, Boeuf H, Varmus HE. Mol. Cell. Biol. 13 7278-7287 (1993)
  62. Novel mode of ligand binding by the SH2 domain of the human XLP disease gene product SAP/SH2D1A. Li SC, Gish G, Yang D, Coffey AJ, Forman-Kay JD, Ernberg I, Kay LE, Pawson T. Curr. Biol. 9 1355-1362 (1999)
  63. Correlation between binding and dynamics at SH2 domain interfaces. Kay LE, Muhandiram DR, Wolf G, Shoelson SE, Forman-Kay JD. Nat. Struct. Biol. 5 156-163 (1998)
  64. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, Gullo C, Howie D, Rietdijk S, Thompson A, Coyle AJ, Denny C, Yaffe MB, Engel P, Eck MJ, Terhorst C. EMBO J. 20 5840-5852 (2001)
  65. The Grb2 adaptor. Chardin P, Cussac D, Maignan S, Ducruix A. FEBS Lett. 369 47-51 (1995)
  66. Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells. Abtahian F, Bezman N, Clemens R, Sebzda E, Cheng L, Shattil SJ, Kahn ML, Koretzky GA. Mol. Cell. Biol. 26 6936-6949 (2006)
  67. Low-affinity binding determined by titration calorimetry using a high-affinity coupling ligand: a thermodynamic study of ligand binding to protein tyrosine phosphatase 1B. Zhang YL, Zhang ZY. Anal. Biochem. 261 139-148 (1998)
  68. Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes. Nolte RT, Eck MJ, Schlessinger J, Shoelson SE, Harrison SC. Nat. Struct. Biol. 3 364-374 (1996)
  69. Brief report: a point mutation in the SH2 domain of Bruton's tyrosine kinase in atypical X-linked agammaglobulinemia. Saffran DC, Parolini O, Fitch-Hilgenberg ME, Rawlings DJ, Afar DE, Witte ON, Conley ME. N. Engl. J. Med. 330 1488-1491 (1994)
  70. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline-rich motifs. Cussac D, Frech M, Chardin P. EMBO J. 13 4011-4021 (1994)
  71. A mammalian adaptor protein with conserved Src homology 2 and phosphotyrosine-binding domains is related to Shc and is specifically expressed in the brain. O'Bryan JP, Songyang Z, Cantley L, Der CJ, Pawson T. Proc. Natl. Acad. Sci. U.S.A. 93 2729-2734 (1996)
  72. Kinetics of p56lck and p60src Src homology 2 domain binding to tyrosine-phosphorylated peptides determined by a competition assay or surface plasmon resonance. Payne G, Shoelson SE, Gish GD, Pawson T, Walsh CT. Proc. Natl. Acad. Sci. U.S.A. 90 4902-4906 (1993)
  73. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. Hekerman P, Zeidler J, Bamberg-Lemper S, Knobelspies H, Lavens D, Tavernier J, Joost HG, Becker W. FEBS J. 272 109-119 (2005)
  74. Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB. J. Virol. 74 10417-10429 (2000)
  75. The LDL receptor clustering motif interacts with the clathrin terminal domain in a reverse turn conformation. Kibbey RG, Rizo J, Gierasch LM, Anderson RG. J. Cell Biol. 142 59-67 (1998)
  76. In vitro characterization of major ligands for Src homology 2 domains derived from protein tyrosine kinases, from the adaptor protein SHC and from GTPase-activating protein in Ramos B cells. Baumann G, Maier D, Freuler F, Tschopp C, Baudisch K, Wienands J. Eur. J. Immunol. 24 1799-1807 (1994)
  77. Kinase activation through dimerization by human SH2-B. Nishi M, Werner ED, Oh BC, Frantz JD, Dhe-Paganon S, Hansen L, Lee J, Shoelson SE. Mol. Cell. Biol. 25 2607-2621 (2005)
  78. Identification of residues that control specific binding of the Shc phosphotyrosine-binding domain to phosphotyrosine sites. van der Geer P, Wiley S, Gish GD, Lai VK, Stephens R, White MF, Kaplan D, Pawson T. Proc. Natl. Acad. Sci. U.S.A. 93 963-968 (1996)
  79. Delineation of a T-cell activation motif required for binding of protein tyrosine kinases containing tandem SH2 domains. Koyasu S, Tse AG, Moingeon P, Hussey RE, Mildonian A, Hannisian J, Clayton LK, Reinherz EL. Proc. Natl. Acad. Sci. U.S.A. 91 6693-6697 (1994)
  80. The T-cell antigen CD5 acts as a receptor and substrate for the protein-tyrosine kinase p56lck. Raab M, Yamamoto M, Rudd CE. Mol. Cell. Biol. 14 2862-2870 (1994)
  81. CH/pi interactions as demonstrated in the crystal structure of guanine-nucleotide binding proteins, Src homology-2 domains and human growth hormone in complex with their specific ligands. Umezawa Y, Nishio M. Bioorg. Med. Chem. 6 493-504 (1998)
  82. Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts. Wittekind M, Mapelli C, Lee V, Goldfarb V, Friedrichs MS, Meyers CA, Mueller L. J. Mol. Biol. 267 933-952 (1997)
  83. A tyrosine-containing motif mediates ER retention of CD3-epsilon and adopts a helix-turn structure. Mallabiabarrena A, Jiménez MA, Rico M, Alarcón B. EMBO J. 14 2257-2268 (1995)
  84. Epidermal growth factor receptor is essential for Toll-like receptor 3 signaling. Yamashita M, Chattopadhyay S, Fensterl V, Saikia P, Wetzel JL, Sen GC. Sci Signal 5 ra50 (2012)
  85. Heparin binding to platelet factor-4. An NMR and site-directed mutagenesis study: arginine residues are crucial for binding. Mayo KH, Ilyina E, Roongta V, Dundas M, Joseph J, Lai CK, Maione T, Daly TJ. Biochem. J. 312 ( Pt 2) 357-365 (1995)
  86. Physical and functional interactions between SH2 and SH3 domains of the Src family protein tyrosine kinase p59fyn. Panchamoorthy G, Fukazawa T, Stolz L, Payne G, Reedquist K, Shoelson S, Songyang Z, Cantley L, Walsh C, Band H. Mol. Cell. Biol. 14 6372-6385 (1994)
  87. Distinct recruitment and function of Gab1 and Gab2 in Met receptor-mediated epithelial morphogenesis. Lock LS, Maroun CR, Naujokas MA, Park M. Mol. Biol. Cell 13 2132-2146 (2002)
  88. The human GRB2 and Drosophila Drk genes can functionally replace the Caenorhabditis elegans cell signaling gene sem-5. Stern MJ, Marengere LE, Daly RJ, Lowenstein EJ, Kokel M, Batzer A, Olivier P, Pawson T, Schlessinger J. Mol. Biol. Cell 4 1175-1188 (1993)
  89. Secondary structure assignment of mouse SOCS3 by NMR defines the domain boundaries and identifies an unstructured insertion in the SH2 domain. Babon JJ, Yao S, DeSouza DP, Harrison CF, Fabri LJ, Liepinsh E, Scrofani SD, Baca M, Norton RS. FEBS J. 272 6120-6130 (2005)
  90. PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. Kalia LV, Pitcher GM, Pelkey KA, Salter MW. EMBO J. 25 4971-4982 (2006)
  91. Nonsense mutations in the C-terminal SH2 region of the GTPase activating protein (GAP) gene in human tumours. Friedman E, Gejman PV, Martin GA, McCormick F. Nat. Genet. 5 242-247 (1993)
  92. Structural basis for phosphotyrosine recognition by suppressor of cytokine signaling-3. Bergamin E, Wu J, Hubbard SR. Structure 14 1285-1292 (2006)
  93. Solution structure of the Shc SH2 domain complexed with a tyrosine-phosphorylated peptide from the T-cell receptor. Zhou MM, Meadows RP, Logan TM, Yoon HS, Wade WS, Ravichandran KS, Burakoff SJ, Fesik SW. Proc. Natl. Acad. Sci. U.S.A. 92 7784-7788 (1995)
  94. Structure and in vivo requirement of the yeast Spt6 SH2 domain. Dengl S, Mayer A, Sun M, Cramer P. J. Mol. Biol. 389 211-225 (2009)
  95. Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets. Shvartsman DE, Donaldson JC, Diaz B, Gutman O, Martin GS, Henis YI. J. Cell Biol. 178 675-686 (2007)
  96. Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck. Banavali NK, Roux B. Proteins 67 1096-1112 (2007)
  97. Structure of a specific peptide complex of the carboxy-terminal SH2 domain from the p85 alpha subunit of phosphatidylinositol 3-kinase. Breeze AL, Kara BV, Barratt DG, Anderson M, Smith JC, Luke RW, Best JR, Cartlidge SA. EMBO J. 15 3579-3589 (1996)
  98. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. Porter CJ, Matthews JM, Mackay JP, Pursglove SE, Schmidberger JW, Leedman PJ, Pero SC, Krag DN, Wilce MC, Wilce JA. BMC Struct. Biol. 7 58 (2007)
  99. Mass spectrometric and thermodynamic studies reveal the role of water molecules in complexes formed between SH2 domains and tyrosyl phosphopeptides. Chung E, Henriques D, Renzoni D, Zvelebil M, Bradshaw JM, Waksman G, Robinson CV, Ladbury JE. Structure 6 1141-1151 (1998)
  100. Solution structure of the C-terminal SH2 domain of the human tyrosine kinase Syk complexed with a phosphotyrosine pentapeptide. Narula SS, Yuan RW, Adams SE, Green OM, Green J, Philips TB, Zydowsky LD, Botfield MC, Hatada M, Laird ER. Structure 3 1061-1073 (1995)
  101. Conformationally constrained peptidomimetic inhibitors of signal transducer and activator of transcription. 3: Evaluation and molecular modeling. Mandal PK, Limbrick D, Coleman DR, Dyer GA, Ren Z, Birtwistle JS, Xiong C, Chen X, Briggs JM, McMurray JS. J. Med. Chem. 52 2429-2442 (2009)
  102. Corneal cell survival in adenovirus type 19 infection requires phosphoinositide 3-kinase/Akt activation. Rajala MS, Rajala RV, Astley RA, Butt AL, Chodosh J. J. Virol. 79 12332-12341 (2005)
  103. How and why phosphotyrosine-containing peptides bind to the SH2 and PTB domains. Zhou Y, Abagyan R. Fold Des 3 513-522 (1998)
  104. Solution structure of the C-terminal SH2 domain of the p85 alpha regulatory subunit of phosphoinositide 3-kinase. Siegal G, Davis B, Kristensen SM, Sankar A, Linacre J, Stein RC, Panayotou G, Waterfield MD, Driscoll PC. J. Mol. Biol. 276 461-478 (1998)
  105. Regulation of interleukin 4-mediated signaling by naturally occurring dominant negative and attenuated forms of human Stat6. Patel BK, Pierce JH, LaRochelle WJ. Proc. Natl. Acad. Sci. U.S.A. 95 172-177 (1998)
  106. Mutational investigation of the specificity determining region of the Src SH2 domain. Bradshaw JM, Mitaxov V, Waksman G. J. Mol. Biol. 299 521-535 (2000)
  107. Structural basis for the high affinity of amino-aromatic SH2 phosphopeptide ligands. Rahuel J, García-Echeverría C, Furet P, Strauss A, Caravatti G, Fretz H, Schoepfer J, Gay B. J. Mol. Biol. 279 1013-1022 (1998)
  108. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Chudasama KK, Winnay J, Johansson S, Claudi T, König R, Haldorsen I, Johansson B, Woo JR, Aarskog D, Sagen JV, Kahn CR, Molven A, Njølstad PR. Am. J. Hum. Genet. 93 150-157 (2013)
  109. Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II. Diebold ML, Loeliger E, Koch M, Winston F, Cavarelli J, Romier C. J. Biol. Chem. 285 38389-38398 (2010)
  110. Structural basis for specificity switching of the Src SH2 domain. Kimber MS, Nachman J, Cunningham AM, Gish GD, Pawson T, Pai EF. Mol. Cell 5 1043-1049 (2000)
  111. Intramolecular interactions of the regulatory domains of the Bcr-Abl kinase reveal a novel control mechanism. Nam HJ, Haser WG, Roberts TM, Frederick CA. Structure 4 1105-1114 (1996)
  112. A statistical score for assessing the quality of multiple sequence alignments. Ahola V, Aittokallio T, Vihinen M, Uusipaikka E. BMC Bioinformatics 7 484 (2006)
  113. A computational method for the analysis and prediction of protein:phosphopeptide-binding sites. Joughin BA, Tidor B, Yaffe MB. Protein Sci. 14 131-139 (2005)
  114. Determination of the rotational diffusion tensor of macromolecules in solution from nmr relaxation data with a combination of exact and approximate methods--application to the determination of interdomain orientation in multidomain proteins. Ghose R, Fushman D, Cowburn D. J. Magn. Reson. 149 204-217 (2001)
  115. Peptoid - peptide hybrids that bind Syk SH2 domains involved in signal transduction. Ruijtenbeek R, Kruijtzer JA, van de Wiel W, Fischer MJ, Flück M, Redegeld FA, Liskamp RM, Nijkamp FP. Chembiochem 2 171-179 (2001)
  116. Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Findlay GM, Smith MJ, Lanner F, Hsiung MS, Gish GD, Petsalaki E, Cockburn K, Kaneko T, Huang H, Bagshaw RD, Ketela T, Tucholska M, Taylor L, Bowtell DD, Moffat J, Ikura M, Li SS, Sidhu SS, Rossant J, Pawson T. Cell 152 1008-1020 (2013)
  117. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53. Yuan C, Yongkiettrakul S, Byeon IJ, Zhou S, Tsai MD. J. Mol. Biol. 314 563-575 (2001)
  118. The solution structure of Abl SH3, and its relationship to SH2 in the SH(32) construct. Gosser YQ, Zheng J, Overduin M, Mayer BJ, Cowburn D. Structure 3 1075-1086 (1995)
  119. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization. Henriques DA, Ladbury JE, Jackson RM. Protein Sci. 9 1975-1985 (2000)
  120. The SH2 domain from the tyrosine kinase Fyn in complex with a phosphotyrosyl peptide reveals insights into domain stability and binding specificity. Mulhern TD, Shaw GL, Morton CJ, Day AJ, Campbell ID. Structure 5 1313-1323 (1997)
  121. Evolving specificity from variability for protein interaction domains. Kaneko T, Sidhu SS, Li SS. Trends Biochem. Sci. 36 183-190 (2011)
  122. Grb7-SH2 domain dimerisation is affected by a single point mutation. Porter CJ, Wilce MC, Mackay JP, Leedman P, Wilce JA. Eur. Biophys. J. 34 454-460 (2005)
  123. Structural basis for phosphotyrosine recognition by the Src homology-2 domains of the adapter proteins SH2-B and APS. Hu J, Hubbard SR. J. Mol. Biol. 361 69-79 (2006)
  124. Molecular cloning of a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase. Ohya K, Kajigaya S, Kitanaka A, Yoshida K, Miyazato A, Yamashita Y, Yamanaka T, Ikeda U, Shimada K, Ozawa K, Mano H. Proc. Natl. Acad. Sci. U.S.A. 96 11976-11981 (1999)
  125. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain. Close D, Johnson SJ, Sdano MA, McDonald SM, Robinson H, Formosa T, Hill CP. J. Mol. Biol. 408 697-713 (2011)
  126. Constraining binding hot spots: NMR and molecular dynamics simulations provide a structural explanation for enthalpy-entropy compensation in SH2-ligand binding. Ward JM, Gorenstein NM, Tian J, Martin SF, Post CB. J. Am. Chem. Soc. 132 11058-11070 (2010)
  127. Identification of novel fragment compounds targeted against the pY pocket of v-Src SH2 by computational and NMR screening and thermodynamic evaluation. Taylor JD, Gilbert PJ, Williams MA, Pitt WR, Ladbury JE. Proteins 67 981-990 (2007)
  128. The hidden thermodynamics of a zinc finger. Lachenmann MJ, Ladbury JE, Phillips NB, Narayana N, Qian X, Weiss MA. J. Mol. Biol. 316 969-989 (2002)
  129. Crystal structure of the C-terminal SH2 domain of the p85alpha regulatory subunit of phosphoinositide 3-kinase: an SH2 domain mimicking its own substrate. Hoedemaeker FJ, Siegal G, Roe SM, Driscoll PC, Abrahams JP. J. Mol. Biol. 292 763-770 (1999)
  130. Monocarboxylic-based phosphotyrosyl mimetics in the design of GRB2 SH2 domain inhibitors. Burke TR, Luo J, Yao ZJ, Gao Y, Zhao H, Milne GW, Guo R, Voigt JH, King CR, Yang D. Bioorg. Med. Chem. Lett. 9 347-352 (1999)
  131. Deletion and mutational analyses of bluetongue virus NS2 protein indicate that the amino but not the carboxy terminus of the protein is critical for RNA-protein interactions. Zhao Y, Thomas C, Bremer C, Roy P. J. Virol. 68 2179-2185 (1994)
  132. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. Sheinerman FB, Al-Lazikani B, Honig B. J. Mol. Biol. 334 823-841 (2003)
  133. Phosphopeptide binding to the N-terminal SH2 domain of the p85 alpha subunit of PI 3'-kinase: a heteronuclear NMR study. Hensmann M, Booker GW, Panayotou G, Boyd J, Linacre J, Waterfield M, Campbell ID. Protein Sci. 3 1020-1030 (1994)
  134. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. Pang YP, Kozikowski AP. J. Comput. Aided Mol. Des. 8 669-681 (1994)
  135. Phosphatidylinositol 3-kinase p85{alpha} subunit-dependent interaction with BCR/ABL-related fusion tyrosine kinases: molecular mechanisms and biological consequences. Ren SY, Bolton E, Mohi MG, Morrione A, Neel BG, Skorski T. Mol. Cell. Biol. 25 8001-8008 (2005)
  136. Analysis of lipopolysaccharide-response genes in B-lineage cells demonstrates that they can have differentiation stage-restricted expression and contain SH2 domains. Kerr WG, Heller M, Herzenberg LA. Proc. Natl. Acad. Sci. U.S.A. 93 3947-3952 (1996)
  137. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. Sha F, Gencer EB, Georgeon S, Koide A, Yasui N, Koide S, Hantschel O. Proc. Natl. Acad. Sci. U.S.A. 110 14924-14929 (2013)
  138. Superbinder SH2 domains act as antagonists of cell signaling. Kaneko T, Huang H, Cao X, Li X, Li C, Voss C, Sidhu SS, Li SS. Sci Signal 5 ra68 (2012)
  139. Binding specificity of SH2 domains: insight from free energy simulations. Gan W, Roux B. Proteins 74 996-1007 (2009)
  140. Alternative modes of binding of proteins with tandem SH2 domains. O'Brien R, Rugman P, Renzoni D, Layton M, Handa R, Hilyard K, Waterfield MD, Driscoll PC, Ladbury JE. Protein Sci. 9 570-579 (2000)
  141. The roles of autophosphorylation and phosphorylation in the life of osteopontin. Saavedra RA. Bioessays 16 913-918 (1994)
  142. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain. Liu J, Zhang J, Gong Q, Xiong P, Huang H, Wu B, Lu G, Wu J, Shi Y. J. Biol. Chem. 286 29218-29226 (2011)
  143. Computational protein design as a tool for fold recognition. am Busch MS, Mignon D, Simonson T. Proteins 77 139-158 (2009)
  144. Native state energetics of the Src SH2 domain: evidence for a partially structured state in the denatured ensemble. Wildes D, Anderson LM, Sabogal A, Marqusee S. Protein Sci. 15 1769-1779 (2006)
  145. SH3-SH2 domain orientation in Src kinases: NMR studies of Fyn. Ulmer TS, Werner JM, Campbell ID. Structure 10 901-911 (2002)
  146. Stability and peptide binding specificity of Btk SH2 domain: molecular basis for X-linked agammaglobulinemia. Tzeng SR, Pai MT, Lung FD, Wu CW, Roller PP, Lei B, Wei CJ, Tu SC, Chen SH, Soong WJ, Cheng JW. Protein Sci. 9 2377-2385 (2000)
  147. Temperature-sensitive transformation by an Abelson virus mutant encoding an altered SH2 domain. Mainville CA, Parmar K, Unnikrishnan I, Gong L, Raffel GD, Rosenberg N. J. Virol. 75 1816-1823 (2001)
  148. The phosphopeptide-binding specificity of Src family SH2 domains. Payne G, Stolz LA, Pei D, Band H, Shoelson SE, Walsh CT. Chem. Biol. 1 99-105 (1994)
  149. Structure-activity relationships of a novel class of Src SH2 inhibitors. Buchanan JL, Vu CB, Merry TJ, Corpuz EG, Pradeepan SG, Mani UN, Yang M, Plake HR, Varkhedkar VM, Lynch BA, MacNeil IA, Loiacono KA, Tiong CL, Holt DA. Bioorg. Med. Chem. Lett. 9 2359-2364 (1999)
  150. pH titration studies of an SH2 domain-phosphopeptide complex: unusual histidine and phosphate pKa values. Singer AU, Forman-Kay JD. Protein Sci. 6 1910-1919 (1997)
  151. Genetic analysis of a phosphatidylinositol 3-kinase SH2 domain reveals determinants of specificity. Yoakim M, Hou W, Songyang Z, Liu Y, Cantley L, Schaffhausen B. Mol. Cell. Biol. 14 5929-5938 (1994)
  152. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Kaneko T, Joshi R, Feller SM, Li SS. Cell Commun. Signal 10 32 (2012)
  153. Structure, dynamics, and binding thermodynamics of the v-Src SH2 domain: implications for drug design. Taylor JD, Ababou A, Fawaz RR, Hobbs CJ, Williams MA, Ladbury JE. Proteins 73 929-940 (2008)
  154. CH/pi hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: an ab initio fragment molecular orbital study. Ozawa T, Okazaki K. J Comput Chem 29 2656-2666 (2008)
  155. Insulin signal transduction pathways. Quon MJ, Butte AJ, Taylor SI. Trends Endocrinol. Metab. 5 369-376 (1994)
  156. Calorimetric investigation of phosphorylated and non-phosphorylated peptide ligand binding to the human Grb7-SH2 domain. Spuches AM, Argiros HJ, Lee KH, Haas LL, Pero SC, Krag DN, Roller PP, Wilcox DE, Lyons BA. J. Mol. Recognit. 20 245-252 (2007)
  157. Backbone nuclear relaxation characteristics and calorimetric investigation of the human Grb7-SH2/erbB2 peptide complex. Ivancic M, Spuches AM, Guth EC, Daugherty MA, Wilcox DE, Lyons BA. Protein Sci. 14 1556-1569 (2005)
  158. ZIP codes for delivering SH2 domains. Songyang Z, Cantley LC. Cell 116 S41-3 (2004)
  159. Structural basis for SH2D1A mutations in X-linked lymphoproliferative disease. Lappalainen I, Giliani S, Franceschini R, Bonnefoy JY, Duckett C, Notarangelo LD, Vihinen M. Biochem. Biophys. Res. Commun. 269 124-130 (2000)
  160. Potent inhibitory ligands of the GRB2 SH2 domain from recombinant peptide libraries. Hart CP, Martin JE, Reed MA, Keval AA, Pustelnik MJ, Northrop JP, Patel DV, Grove JR. Cell. Signal. 11 453-464 (1999)
  161. News How Src exercises self-restraint. Nguyen JT, Lim WA. Nat. Struct. Biol. 4 256-260 (1997)
  162. Phosphorylated T cell receptor zeta-chain and ZAP70 tandem SH2 domains form a 1:3 complex in vitro. Weissenhorn W, Eck MJ, Harrison SC, Wiley DC. Eur. J. Biochem. 238 440-445 (1996)
  163. Using genome-wide measurements for computational prediction of SH2-peptide interactions. Wunderlich Z, Mirny LA. Nucleic Acids Res. 37 4629-4641 (2009)
  164. Development of Grb2 SH2 Domain Signaling Antagonists: A Potential New Class of Antiproliferative Agents. Burke TR. Int J Pept Res Ther 12 33-48 (2006)
  165. DNA and RNA-controlled switching of protein kinase activity. Röglin L, Altenbrunn F, Seitz O. Chembiochem 10 758-765 (2009)
  166. Single phosphorylation of Tyr304 in the cytoplasmic tail of ephrin B2 confers high-affinity and bifunctional binding to both the SH2 domain of Grb4 and the PDZ domain of the PDZ-RGS3 protein. Su Z, Xu P, Ni F. Eur. J. Biochem. 271 1725-1736 (2004)
  167. Structure and specificity of the SH2 domain. Waksman G, Kuriyan J. Cell 116 S45-8 (2004)
  168. Inhibitors to the Src SH2 domain: a lesson in structure--thermodynamic correlation in drug design. Henriques DA, Ladbury JE. Arch. Biochem. Biophys. 390 158-168 (2001)
  169. Molecular modeling of the Jak3 kinase domains and structural basis for severe combined immunodeficiency. Vihinen M, Villa A, Mella P, Schumacher RF, Savoldi G, O'Shea JJ, Candotti F, Notarangelo LD. Clin. Immunol. 96 108-118 (2000)
  170. Probing the nature of interactions in SH2 binding interfaces--evidence from electrospray ionization mass spectrometry. Chung EW, Henriques DA, Renzoni D, Morton CJ, Mulhern TD, Pitkeathly MC, Ladbury JE, Robinson CV. Protein Sci. 8 1962-1970 (1999)
  171. Structural and thermodynamic basis for the interaction of the Src SH2 domain with the activated form of the PDGF beta-receptor. Lubman OY, Waksman G. J. Mol. Biol. 328 655-668 (2003)
  172. Evolution of the src-related protein tyrosine kinases. Hughes AL. J. Mol. Evol. 42 247-256 (1996)
  173. Solution studies of the SH2 domain from the fyn tyrosine kinase: secondary structure, backbone dynamics and protein association. Pintar A, Hensmann M, Jumel K, Pitkeathly M, Harding SE, Campbell ID. Eur. Biophys. J. 24 371-380 (1996)
  174. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins. Park MJ, Sheng R, Silkov A, Jung DJ, Wang ZG, Xin Y, Kim H, Thiagarajan-Rosenkranz P, Song S, Yoon Y, Nam W, Kim I, Kim E, Lee DG, Chen Y, Singaram I, Wang L, Jang MH, Hwang CS, Honig B, Ryu S, Lorieau J, Kim YM, Cho W. Mol. Cell 62 7-20 (2016)
  175. Crystal structures of a high-affinity macrocyclic peptide mimetic in complex with the Grb2 SH2 domain. Phan J, Shi ZD, Burke TR, Waugh DS. J. Mol. Biol. 353 104-115 (2005)
  176. Solution structure of the Src homology 2 domain from the human feline sarcoma oncogene Fes. Scott A, Pantoja-Uceda D, Koshiba S, Inoue M, Kigawa T, Terada T, Shirouzu M, Tanaka A, Sugano S, Yokoyama S, Güntert P. J. Biomol. NMR 31 357-361 (2005)
  177. Binding of a diphosphorylated-ITAM peptide to spleen tyrosine kinase (Syk) induces distal conformational changes: a hydrogen exchange mass spectrometry study. Catalina MI, Fischer MJ, Dekker FJ, Liskamp RM, Heck AJ. J. Am. Soc. Mass Spectrom. 16 1039-1051 (2005)
  178. The energetics of phosphate binding to a protein complex. Edgcomb SP, Baker BM, Murphy KP. Protein Sci. 9 927-933 (2000)
  179. The formation of a covalent complex between a dipeptide ligand and the src SH2 domain. Alligood KJ, Charifson PS, Crosby R, Consler TG, Feldman PL, Gampe RT, Gilmer TM, Jordan SR, Milstead MW, Mohr C, Peel MR, Rocque W, Rodriguez M, Rusnak DW, Shewchuk LM, Sternbach DD. Bioorg. Med. Chem. Lett. 8 1189-1194 (1998)
  180. Design of peptidomimetic ligands for the pp60src SH2 domain. Plummer MS, Lunney EA, Para KS, Shahripour A, Stankovic CJ, Humblet C, Fergus JH, Marks JS, Herrera R, Hubbell S, Saltiel A, Sawyer TK. Bioorg. Med. Chem. 5 41-47 (1997)
  181. Molecular basis for regulation of Src by the docking protein p130Cas. Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR. J. Mol. Recognit. 19 30-38 (2006)
  182. Structure-based design and synthesis of a novel class of Src SH2 inhibitors. Buchanan JL, Bohacek RS, Luke GP, Hatada M, Lu X, Dalgarno DC, Narula SS, Yuan R, Holt DA. Bioorg. Med. Chem. Lett. 9 2353-2358 (1999)
  183. Identification of novel Bruton's tyrosine kinase mutations in 10 unrelated subjects with X linked agammaglobulinaemia. Brooimans RA, van den Berg AJ, Rijkers GT, Sanders LA, van Amstel JK, Tilanus MG, Grubben MJ, Zegers BJ. J. Med. Genet. 34 484-488 (1997)
  184. Ion pair formation of phosphorylated amino acids and lysine and arginine side chains: a theoretical study. Mavri J, Vogel HJ. Proteins 24 495-501 (1996)
  185. Fyn-induced phosphorylation of beta-adducin at tyrosine 489 and its role in their subcellular localization. Gotoh H, Okumura N, Yagi T, Okumura A, Shima T, Nagai K. Biochem. Biophys. Res. Commun. 346 600-605 (2006)
  186. Dissection of the energetic coupling across the Src SH2 domain-tyrosyl phosphopeptide interface. Lubman OY, Waksman G. J. Mol. Biol. 316 291-304 (2002)
  187. A free terminal carboxylate group is required for PhrA pentapeptide inhibition of RapA phosphatase. Core LJ, Ishikawa S, Perego M. Peptides 22 1549-1553 (2001)
  188. Study on the synthesis and characterization of peptides containing phosphorylated tyrosine. Bonewald LF, Bibbs L, Kates SA, Khatri A, McMurray JS, Medzihradszky KF, Weintraub ST. J. Pept. Res. 53 161-169 (1999)
  189. Selection of phage displayed peptides from a random 10-mer library recognising a peptide target. Bremnes T, Lauvrak V, Lindqvist B, Bakke O. Immunotechnology 4 21-28 (1998)
  190. 13C-NMR relation study of heparin-disaccharide interactions with tripeptides GRG and GKG. Mikhailov D, Mayo KH, Pervin A, Linhardt RJ. Biochem. J. 315 ( Pt 2) 447-454 (1996)
  191. Identification of alternative splicing form of Stat2. Sugiyama T, Nishio Y, Kishimoto T, Akira S. FEBS Lett. 381 191-194 (1996)
  192. Autophosphorylation is required for high kinase activity and efficient transformation ability of proteins encoded by host range alleles of v-src. Woods KM, Verderame MF. J. Virol. 68 7267-7274 (1994)
  193. Characterization of germline mutations of the gene encoding Bruton's tyrosine kinase in families with X-linked agammaglobulinemia. Hagemann TL, Rosen FS, Kwan SP. Hum. Mutat. 5 296-302 (1995)
  194. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity. Jin LL, Wybenga-Groot LE, Tong J, Taylor P, Minden MD, Trudel S, McGlade CJ, Moran MF. Mol. Cell Proteomics 14 695-706 (2015)
  195. Distinct functional domains of the Abelson tyrosine kinase control axon guidance responses to Netrin and Slit to regulate the assembly of neural circuits. O'Donnell MP, Bashaw GJ. Development 140 2724-2733 (2013)
  196. Simultaneous binding of two peptidyl ligands by a SRC homology 2 domain. Zhang Y, Zhang J, Yuan C, Hard RL, Park IH, Li C, Bell C, Pei D. Biochemistry 50 7637-7646 (2011)
  197. DNA-controlled reversible switching of peptide conformation and bioactivity. Röglin L, Ahmadian MR, Seitz O. Angew. Chem. Int. Ed. Engl. 46 2704-2707 (2007)
  198. Calculation of affinities of peptides for proteins. Donnini S, Juffer AH. J Comput Chem 25 393-411 (2004)
  199. Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes: structural analysis of the peptide complexes with SH2 domains. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Schaffer L, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. Proteins 45 456-470 (2001)
  200. Computational binding studies of human pp60c-src SH2 domain with a series of nonpeptide, phosphophenyl-containing ligands. Price DJ, Jorgensen WL. Bioorg. Med. Chem. Lett. 10 2067-2070 (2000)
  201. Interaction between the SH2 domains of ZAP-70 and the tyrosine-based activation motif 1 sequence of the zeta subunit of the T-cell receptor. Labadia ME, Jakes S, Grygon CA, Greenwood DJ, Schembri-King J, Lukas SM, Warren TC, Ingraham RH. Arch. Biochem. Biophys. 342 117-125 (1997)
  202. pH-Dependent self-association of the Src homology 2 (SH2) domain of the Src homologous and collagen-like (SHC) protein. Réty S, Fütterer K, Grucza RA, Munoz CM, Frazier WA, Waksman G. Protein Sci. 5 405-413 (1996)
  203. SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on Src Kinase. Banerjee M, Duan Q, Xie Z. PLoS ONE 10 e0142119 (2015)
  204. Relative Binding Enthalpies from Molecular Dynamics Simulations Using a Direct Method. Roy A, Hua DP, Ward JM, Post CB. J Chem Theory Comput 10 2759-2768 (2014)
  205. Identification of a new interaction mode between the Src homology 2 domain of C-terminal Src kinase (Csk) and Csk-binding protein/phosphoprotein associated with glycosphingolipid microdomains. Tanaka H, Akagi K, Oneyama C, Tanaka M, Sasaki Y, Kanou T, Lee YH, Yokogawa D, Dobenecker MW, Nakagawa A, Okada M, Ikegami T. J. Biol. Chem. 288 15240-15254 (2013)
  206. Interaction of the non-phosphorylated peptide G7-18NATE with Grb7-SH2 domain requires phosphate for enhanced affinity and specificity. Gunzburg MJ, Ambaye ND, Del Borgo MP, Pero SC, Krag DN, Wilce MC, Wilce JA. J. Mol. Recognit. 25 57-67 (2012)
  207. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis. Hammond S, Wagenknecht-Wiesner A, Veatch SL, Holowka D, Baird B. J. Struct. Biol. 168 161-167 (2009)
  208. The role of water in computational and experimental derivation of binding thermodynamics in SH2 domains. Geroult S, Virdee S, Waksman G. Chem Biol Drug Des 67 38-45 (2006)
  209. A quantum mechanical study on phosphotyrosyl peptide binding to the SH2 domain of p56lck tyrosine kinase with insights into the biochemistry of intracellular signal transduction events. Pichierri F. Biophys. Chem. 109 295-304 (2004)
  210. Structure-based design of novel nonpeptide inhibitors of the Src SH2 domain:phosphotyrosine mimetics exploiting multifunctional group replacement chemistry. Sundaramoorthi R, Kawahata N, Yang MG, Shakespeare WC, Metcalf CA, Wang Y, Merry T, Eyermann CJ, Bohacek RS, Narula S, Dalgarno DC, Sawyer TK. Biopolymers 71 717-729 (2003)
  211. Small ligands interacting with the phosphotyrosine binding pocket of the Src SH2 protein. Deprez P, Mandine E, Gofflo D, Meunier S, Lesuisse D. Bioorg. Med. Chem. Lett. 12 1295-1298 (2002)
  212. Design and synthesis of a pyridone-based phosphotyrosine mimetic. Fu JM, Castelhano AL. Bioorg. Med. Chem. Lett. 8 2813-2816 (1998)
  213. Interactions between SH2 and SH3 domains. Vihinen M, Smith CI. Biochem. Biophys. Res. Commun. 242 351-356 (1998)
  214. Tyrosine- versus serine-phosphorylation leads to conformational changes in a synthetic tau peptide. Fabian H, Otvos L, Szendrei GI, Lang E, Mantsch HH. J. Biomol. Struct. Dyn. 12 573-579 (1994)
  215. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy. Lindfors HE, Drijfhout JW, Ubbink M. IUBMB Life 64 538-544 (2012)
  216. Conformational determinants of phosphotyrosine peptides complexed with the Src SH2 domain. Nachman J, Gish G, Virag C, Pawson T, Pomès R, Pai E. PLoS ONE 5 e11215 (2010)
  217. An investigation of phosphopeptide binding to SH2 domain. Lee JK, Moon T, Chi MW, Song JS, Choi YS, Yoon CN. Biochem. Biophys. Res. Commun. 306 225-230 (2003)
  218. Reconstitution of a native-like SH2 domain from disordered peptide fragments examined by multidimensional heteronuclear NMR. Ojennus DD, Fleissner MR, Wuttke DS. Protein Sci. 10 2162-2175 (2001)
  219. pp60v-src transformation of rat cells but not chicken cells strongly correlates with low-affinity phosphopeptide binding by the SH2 domain. Verderame MF. Mol. Biol. Cell 8 843-854 (1997)
  220. News Signalling an interest. Yu H, Schreiber SL. Nat. Struct. Biol. 1 417-420 (1994)
  221. Completion of proteomic data sets by Kd measurement using cell-free synthesis of site-specifically labeled proteins. Majkut P, Claußnitzer I, Merk H, Freund C, Hackenberger CP, Gerrits M. PLoS ONE 8 e82352 (2013)
  222. Molecular recognition of sulfotyrosine and phosphotyrosine by the Src homology 2 domain. Ju T, Niu W, Cerny R, Bollman J, Roy A, Guo J. Mol Biosyst 9 1829-1832 (2013)
  223. Semisynthetic Src SH2 domains demonstrate altered phosphopeptide specificity induced by incorporation of unnatural lysine derivatives. Virdee S, Macmillan D, Waksman G. Chem. Biol. 17 274-284 (2010)
  224. Prediction of solvation sites at the interface of Src SH2 domain complexes using molecular dynamics simulations. Geroult S, Hooda M, Virdee S, Waksman G. Chem Biol Drug Des 70 87-99 (2007)
  225. Crystallization and preliminary X-ray diffraction studies of the WW4 domain of the Nedd4-2 ubiquitin-protein ligase. Umadevi N, Kumar S, Narayana N. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 1084-1086 (2005)
  226. The Csk homologous kinase, Chk, binds tyrosine phosphorylated paxillin in human blastic T cells. Grgurevich S, Mikhael A, McVicar DW. Biochem. Biophys. Res. Commun. 256 668-675 (1999)
  227. Conformational analysis of cyclic hexapeptides designed as constrained ligands for the SH2 domain of the p85 subunit of phosphatidylinositol-3-OH kinase. Barchi JJ, Nomizu M, Otaka A, Roller PP, Burke TR. Biopolymers 38 191-208 (1996)
  228. Common and distinct elements in insulin and PDGF signaling. Myers MG, Cheatham B, Fisher TL, Jachna BR, Kahn CR, Backer JM, White MF. Ann. N. Y. Acad. Sci. 766 369-387 (1995)
  229. Lipids Regulate Lck Protein Activity through Their Interactions with the Lck Src Homology 2 Domain. Sheng R, Jung DJ, Silkov A, Kim H, Singaram I, Wang ZG, Xin Y, Kim E, Park MJ, Thiagarajan-Rosenkranz P, Smrt S, Honig B, Baek K, Ryu S, Lorieau J, Kim YM, Cho W. J. Biol. Chem. 291 17639-17650 (2016)
  230. Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity. Lorenz S, Deng P, Hantschel O, Superti-Furga G, Kuriyan J. Biochem. J. 468 283-291 (2015)
  231. Probing SH2-domains using Inhibitor Affinity Purification (IAP). Höfener M, Heinzlmeir S, Kuster B, Sewald N. Proteome Sci 12 41 (2014)
  232. The SH2 domain is crucial for function of Fyn in neuronal migration and cortical lamination. Lu X, Hu X, Song L, An L, Duan M, Chen S, Zhao S. BMB Rep 48 97-102 (2015)
  233. Editorial Do low-affinity ErbB receptor protein interactions represent the base of a cell signaling iceberg? Jones RB. Expert Rev Proteomics 10 115-118 (2013)
  234. Solution structure of the human Grb14-SH2 domain and comparison with the structures of the human Grb7-SH2/erbB2 peptide complex and human Grb10-SH2 domain. Scharf PJ, Witney J, Daly R, Lyons BA. Protein Sci. 13 2541-2546 (2004)
  235. Structure, modelling, and molecular dynamics studies of the inhibition of protein tyrosine phosphatase 1B by sulfotyrosine peptides. Glover NR, Tracey AS. Biochem. Cell Biol. 77 469-486 (1999)
  236. Discovery of thioazepinone ligands for Src SH2: from non-specific to specific binding. Lesuisse D, Deprez P, Albert E, Duc TT, Sortais B, Gofflo D, Jean-Baptiste V, Marquette J, Schoot B, Sarubbi E, Lange G, Broto P, Mandine E. Bioorg. Med. Chem. Lett. 11 2127-2131 (2001)
  237. Structural basis for a novel interaction between TXNIP and Vav2. Liu S, Wu X, Zong M, Tempel W, Loppnau P, Liu Y. FEBS Lett. 590 857-865 (2016)
  238. Structural and biophysical investigation of the interaction of a mutant Grb2 SH2 domain (W121G) with its cognate phosphopeptide. Papaioannou D, Geibel S, Kunze MB, Kay CW, Waksman G. Protein Sci. 25 627-637 (2016)
  239. Structural insights into the intertwined dimer of fyn SH2. Huculeci R, Garcia-Pino A, Buts L, Lenaerts T, van Nuland N. Protein Sci. 24 1964-1978 (2015)
  240. Evaluating the dynamics and electrostatic interactions of folded proteins in implicit solvents. Hua DP, Huang H, Roy A, Post CB. Protein Sci. 25 204-218 (2016)
  241. The structural insights of stem cell factor receptor (c-Kit) interaction with tyrosine phosphatase-2 (Shp-2): an in silico analysis. Pati S, Gurudutta GU, Kalra OP, Mukhopadhyay A. BMC Res Notes 3 14 (2010)
  242. Discovery of highly potent Src SH2 binders: structure-activity studies and X-ray structures. Deprez P, Baholet I, Burlet S, Lange G, Amengual R, Schoot B, Vermond A, Mandine E, Lesuisse D. Bioorg. Med. Chem. Lett. 12 1291-1294 (2002)
  243. Efficient chemoenzymatic synthesis of (S)- and (R)-5-(1-aminoethyl)-2-(cyclohexylmethoxy)benzamide: key intermediate for Src-SH2 inhibitor. Kamal A, Sandbhor M. Bioorg. Med. Chem. Lett. 12 1735-1738 (2002)
  244. Electrostatic interactions in the reconstitution of an SH2 domain from constituent peptide fragments. Ojennus DD, Lehto SE, Wuttke DS. Protein Sci. 12 44-55 (2003)
  245. Human Lp(a): regions in sequences of apoproteins similar to domains in signal transduction proteins. Guevara J, Valentinova NV, Davison D, Morrisett JD, Sparrow JT. Endocr Pract 1 440-448 (1995)
  246. Expression and purification of 15N-labeled 2-SH2 protein domain of SHP-2 from Homo sapiens in Escherichia coli for NMR studies and applications. Wu Y, Guo JF. Int. J. Biol. Macromol. 45 1-7 (2009)
  247. Thermodynamics of phosphotyrosine peptide-peptoid hybrids binding to the p56lck SH2 domain. Dekker FJ, Mol NJ, Liskamp RM. J. Pept. Sci. 16 322-328 (2010)
  248. Differentiation of peptide molecular recognition by phospholipase C gamma-1 Src homology-2 domain and a mutant Tyr phosphatase PTP1bC215S. MacLean D, Sefler AM, Zhu G, Decker SJ, Saltiel AR, Singh J, McNamara D, Dobrusin EM, Sawyer TK. Protein Sci. 4 13-20 (1995)
  249. Naturally occurring anti-idiotypic antibodies to anti-phosphotyrosine in systemic lupus erythematosus interact with SRC-homology 2 domains. Stefanescu M, Onu A, Matache C, Ramos-Morales F, Fischer S, Szegli G. Autoimmunity 22 81-86 (1995)
  250. NMR studies of the RRsrc peptide, a tyrosine kinase substrate. Brockbank RL, Vogel HJ. Biochem. Cell Biol. 75 163-169 (1997)