1spr Citations

Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms.

Cell 72 779-90 (1993)
Cited: 299 times
EuropePMC logo PMID: 7680960

Abstract

The crystal structure of the Src SH2 domain complexed with a high affinity 11-residue phosphopeptide has been determined at 2.7 A resolution by X-ray diffraction. The peptide binds in an extended conformation and makes primary interactions with the SH2 domain at six central residues: PQ(pY)EEI. The phosphotyrosine and the isoleucine are tightly bound by two well-defined pockets on the protein surface, resulting in a complex that resembles a two-pronged plug engaging a two-holed socket. The glutamate residues are in solvent-exposed environments in the vicinity of basic side chains of the SH2 domain, and the two N-terminal residues cap the phosphotyrosine-binding site. The crystal structure of Src SH2 in the absence of peptide has been determined at 2.5 A resolution, and comparison with the structure of the high affinity complex reveals only localized and relatively small changes.

Articles - 1spr mentioned but not cited (1)

  1. Structure of the interleukin-2 tyrosine kinase Src homology 2 domain; comparison between X-ray and NMR-derived structures. Joseph RE, Ginder ND, Hoy JA, Nix JC, Fulton DB, Honzatko RB, Andreotti AH. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 145-153 (2012)


Reviews citing this publication (110)

  1. Cellular functions regulated by Src family kinases. Thomas SM, Brugge JS. Annu. Rev. Cell Dev. Biol. 13 513-609 (1997)
  2. Dimerization of cell surface receptors in signal transduction. Heldin CH. Cell 80 213-223 (1995)
  3. Regulation, substrates and functions of src. Brown MT, Cooper JA. Biochim. Biophys. Acta 1287 121-149 (1996)
  4. Modular binding domains in signal transduction proteins. Cohen GB, Ren R, Baltimore D. Cell 80 237-248 (1995)
  5. Protein-protein interactions: methods for detection and analysis. Phizicky EM, Fields S. Microbiol. Rev. 59 94-123 (1995)
  6. Reading protein modifications with interaction domains. Seet BT, Dikic I, Zhou MM, Pawson T. Nat. Rev. Mol. Cell Biol. 7 473-483 (2006)
  7. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  8. Molecular bases for the recognition of tyrosine-based sorting signals. Bonifacino JS, Dell'Angelica EC. J. Cell Biol. 145 923-926 (1999)
  9. SH2/SH3 signaling proteins. Schlessinger J. Curr. Opin. Genet. Dev. 4 25-30 (1994)
  10. Recognition and specificity in protein tyrosine kinase-mediated signalling. Songyang Z, Cantley LC. Trends Biochem. Sci. 20 470-475 (1995)
  11. Signalling via integrins: implications for cell survival and anticancer strategies. Hehlgans S, Haase M, Cordes N. Biochim. Biophys. Acta 1775 163-180 (2007)
  12. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Hunter T. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 353 583-605 (1998)
  13. Structure-function relationships in Src family and related protein tyrosine kinases. Superti-Furga G, Courtneidge SA. Bioessays 17 321-330 (1995)
  14. Physical mechanisms of signal integration by WASP family proteins. Padrick SB, Rosen MK. Annu. Rev. Biochem. 79 707-735 (2010)
  15. SH2 and PTB domains in tyrosine kinase signaling. Schlessinger J, Lemmon MA. Sci. STKE 2003 RE12 (2003)
  16. Protein-peptide interactions. Stanfield RL, Wilson IA. Curr. Opin. Struct. Biol. 5 103-113 (1995)
  17. RTK mutations and human syndromeswhen good receptors turn bad. Robertson SC, Tynan JA, Donoghue DJ. Trends Genet. 16 265-271 (2000)
  18. The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides. Siligardi G, Drake AF. Biopolymers 37 281-292 (1995)
  19. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Buday L. Biochim. Biophys. Acta 1422 187-204 (1999)
  20. Structure, regulation and function of phosphoinositide 3-kinases. Fry MJ. Biochim. Biophys. Acta 1226 237-268 (1994)
  21. Bruton's tyrosine kinase is a key regulator in B-cell development. Rawlings DJ, Witte ON. Immunol. Rev. 138 105-119 (1994)
  22. Src homology-2 domains: structure, mechanisms, and drug discovery. Sawyer TK. Biopolymers 47 243-261 (1998)
  23. Oncogenic activation of tyrosine kinases. Rodrigues GA, Park M. Curr. Opin. Genet. Dev. 4 15-24 (1994)
  24. Phospholipid-binding protein domains. Bottomley MJ, Salim K, Panayotou G. Biochim. Biophys. Acta 1436 165-183 (1998)
  25. Protein tyrosine phosphatases take off. Barford D, Jia Z, Tonks NK. Nat. Struct. Biol. 2 1043-1053 (1995)
  26. SH2 and PTB domain interactions in tyrosine kinase signal transduction. Shoelson SE. Curr Opin Chem Biol 1 227-234 (1997)
  27. Proximity versus allostery: the role of regulated protein dimerization in biology. Austin DJ, Crabtree GR, Schreiber SL. Chem. Biol. 1 131-136 (1994)
  28. src-related protein tyrosine kinases and their surface receptors. Rudd CE, Janssen O, Prasad KV, Raab M, da Silva A, Telfer JC, Yamamoto M. Biochim. Biophys. Acta 1155 239-266 (1993)
  29. Plant GRAS and metazoan STATs: one family? Richards DE, Peng J, Harberd NP. Bioessays 22 573-577 (2000)
  30. Recognition and regulation of primary-sequence motifs by signaling modular domains. Songyang Z. Prog. Biophys. Mol. Biol. 71 359-372 (1999)
  31. Structure and function of vav. Romero F, Fischer S. Cell. Signal. 8 545-553 (1996)
  32. The biology and mechanism of action of suppressor of cytokine signaling 3. Babon JJ, Nicola NA. Growth Factors 30 207-219 (2012)
  33. New insights into protein-tyrosine kinase receptor signaling complexes. Fry MJ, Panayotou G, Booker GW, Waterfield MD. Protein Sci. 2 1785-1797 (1993)
  34. Signal transduction through the conserved motifs of the high affinity IgE receptor Fc epsilon RI. Jouvin MH, Numerof RP, Kinet JP. Semin. Immunol. 7 29-35 (1995)
  35. The GRB family of SH2 domain proteins. Margolis B. Prog. Biophys. Mol. Biol. 62 223-244 (1994)
  36. SH2 domain structure and function. Schaffhausen B. Biochim. Biophys. Acta 1242 61-75 (1995)
  37. Peptides with anticancer use or potential. Janin YL. Amino Acids 25 1-40 (2003)
  38. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Reinhardt HC, Yaffe MB. Nat. Rev. Mol. Cell Biol. 14 563-580 (2013)
  39. The FHA domain in DNA repair and checkpoint signaling. Durocher D, Smerdon SJ, Yaffe MB, Jackson SP. Cold Spring Harb. Symp. Quant. Biol. 65 423-431 (2000)
  40. Tyrosine kinases: modular signaling enzymes with tunable specificities. Shokat KM. Chem. Biol. 2 509-514 (1995)
  41. The regulation of class IA PI 3-kinases by inter-subunit interactions. Backer JM. Curr. Top. Microbiol. Immunol. 346 87-114 (2010)
  42. SH2 domains: from structure to energetics, a dual approach to the study of structure-function relationships. Grucza RA, Bradshaw JM, Fütterer K, Waksman G. Med Res Rev 19 273-293 (1999)
  43. The Src family of tyrosine protein kinases in hemopoietic signal transduction. Tsygankov A, Bolen J. Stem Cells 11 371-380 (1993)
  44. Tonic B-cell and viral ITAM signaling: context is everything. Grande SM, Bannish G, Fuentes-Panana EM, Katz E, Monroe JG. Immunol. Rev. 218 214-234 (2007)
  45. Lessons from nature: On the molecular recognition elements of the phosphoprotein binding-domains. Roque AC, Lowe CR. Biotechnol. Bioeng. 91 546-555 (2005)
  46. Progress towards the development of SH2 domain inhibitors. Kraskouskaya D, Duodu E, Arpin CC, Gunning PT. Chem Soc Rev 42 3337-3370 (2013)
  47. SH2 domain protein interaction and possibilities for pharmacological intervention. Beattie J. Cell. Signal. 8 75-86 (1996)
  48. Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. Aghazadeh B, Rosen MK. Chem. Biol. 6 R241-6 (1999)
  49. Peptide-protein interactions: an overview. Zvelebil MJ, Thornton JM. Q. Rev. Biophys. 26 333-363 (1993)
  50. The application of modular protein domains in proteomics. Jadwin JA, Ogiue-Ikeda M, Machida K. FEBS Lett. 586 2586-2596 (2012)
  51. Dancing with multiple partners. Woodside DG. Sci. STKE 2002 pe14 (2002)
  52. The brain as a symbol-processing machine. Rocha AF. Prog. Neurobiol. 53 121-198 (1997)
  53. Why two heads are better. Mayer BJ. Structure 3 977-980 (1995)
  54. Modular peptide binding: from a comparison of natural binders to designed armadillo repeat proteins. Reichen C, Hansen S, Plückthun A. J. Struct. Biol. 185 147-162 (2014)
  55. Signal transduction pathways: new targets in oncology. Sweeb RK, Beijnen JH. Pharm World Sci 15 233-242 (1993)
  56. Modular peptide binding: from a comparison of natural binders to designed armadillo repeat proteins. Reichen C, Hansen S, Plückthun A. J. Struct. Biol. 185 147-162 (2014)
  57. Progress towards the development of SH2 domain inhibitors. Kraskouskaya D, Duodu E, Arpin CC, Gunning PT. Chem Soc Rev 42 3337-3370 (2013)
  58. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Reinhardt HC, Yaffe MB. Nat. Rev. Mol. Cell Biol. 14 563-580 (2013)
  59. The biology and mechanism of action of suppressor of cytokine signaling 3. Babon JJ, Nicola NA. Growth Factors 30 207-219 (2012)
  60. The application of modular protein domains in proteomics. Jadwin JA, Ogiue-Ikeda M, Machida K. FEBS Lett. 586 2586-2596 (2012)
  61. Physical mechanisms of signal integration by WASP family proteins. Padrick SB, Rosen MK. Annu. Rev. Biochem. 79 707-735 (2010)
  62. The regulation of class IA PI 3-kinases by inter-subunit interactions. Backer JM. Curr. Top. Microbiol. Immunol. 346 87-114 (2010)
  63. Signalling via integrins: implications for cell survival and anticancer strategies. Hehlgans S, Haase M, Cordes N. Biochim. Biophys. Acta 1775 163-180 (2007)
  64. Tonic B-cell and viral ITAM signaling: context is everything. Grande SM, Bannish G, Fuentes-Panana EM, Katz E, Monroe JG. Immunol. Rev. 218 214-234 (2007)
  65. Reading protein modifications with interaction domains. Seet BT, Dikic I, Zhou MM, Pawson T. Nat. Rev. Mol. Cell Biol. 7 473-483 (2006)
  66. Lessons from nature: On the molecular recognition elements of the phosphoprotein binding-domains. Roque AC, Lowe CR. Biotechnol. Bioeng. 91 546-555 (2005)
  67. Peptides with anticancer use or potential. Janin YL. Amino Acids 25 1-40 (2003)
  68. SH2 and PTB domains in tyrosine kinase signaling. Schlessinger J, Lemmon MA. Sci. STKE 2003 RE12 (2003)
  69. Dancing with multiple partners. Woodside DG. Sci. STKE 2002 pe14 (2002)
  70. RTK mutations and human syndromeswhen good receptors turn bad. Robertson SC, Tynan JA, Donoghue DJ. Trends Genet. 16 265-271 (2000)
  71. The FHA domain in DNA repair and checkpoint signaling. Durocher D, Smerdon SJ, Yaffe MB, Jackson SP. Cold Spring Harb. Symp. Quant. Biol. 65 423-431 (2000)
  72. Plant GRAS and metazoan STATs: one family? Richards DE, Peng J, Harberd NP. Bioessays 22 573-577 (2000)
  73. Molecular bases for the recognition of tyrosine-based sorting signals. Bonifacino JS, Dell'Angelica EC. J. Cell Biol. 145 923-926 (1999)
  74. Recognition and regulation of primary-sequence motifs by signaling modular domains. Songyang Z. Prog. Biophys. Mol. Biol. 71 359-372 (1999)
  75. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Buday L. Biochim. Biophys. Acta 1422 187-204 (1999)
  76. SH2 domains: from structure to energetics, a dual approach to the study of structure-function relationships. Grucza RA, Bradshaw JM, Fütterer K, Waksman G. Med Res Rev 19 273-293 (1999)
  77. Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. Aghazadeh B, Rosen MK. Chem. Biol. 6 R241-6 (1999)
  78. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Hunter T. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 353 583-605 (1998)
  79. Phospholipid-binding protein domains. Bottomley MJ, Salim K, Panayotou G. Biochim. Biophys. Acta 1436 165-183 (1998)
  80. Src homology-2 domains: structure, mechanisms, and drug discovery. Sawyer TK. Biopolymers 47 243-261 (1998)
  81. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  82. SH2 and PTB domain interactions in tyrosine kinase signal transduction. Shoelson SE. Curr Opin Chem Biol 1 227-234 (1997)
  83. Cellular functions regulated by Src family kinases. Thomas SM, Brugge JS. Annu. Rev. Cell Dev. Biol. 13 513-609 (1997)
  84. The brain as a symbol-processing machine. Rocha AF. Prog. Neurobiol. 53 121-198 (1997)
  85. Regulation, substrates and functions of src. Brown MT, Cooper JA. Biochim. Biophys. Acta 1287 121-149 (1996)
  86. Structure and function of vav. Romero F, Fischer S. Cell. Signal. 8 545-553 (1996)
  87. SH2 domain protein interaction and possibilities for pharmacological intervention. Beattie J. Cell. Signal. 8 75-86 (1996)
  88. Structure-function relationships in Src family and related protein tyrosine kinases. Superti-Furga G, Courtneidge SA. Bioessays 17 321-330 (1995)
  89. Tyrosine kinases: modular signaling enzymes with tunable specificities. Shokat KM. Chem. Biol. 2 509-514 (1995)
  90. Protein tyrosine phosphatases take off. Barford D, Jia Z, Tonks NK. Nat. Struct. Biol. 2 1043-1053 (1995)
  91. Why two heads are better. Mayer BJ. Structure 3 977-980 (1995)
  92. Recognition and specificity in protein tyrosine kinase-mediated signalling. Songyang Z, Cantley LC. Trends Biochem. Sci. 20 470-475 (1995)
  93. Modular binding domains in signal transduction proteins. Cohen GB, Ren R, Baltimore D. Cell 80 237-248 (1995)
  94. Dimerization of cell surface receptors in signal transduction. Heldin CH. Cell 80 213-223 (1995)
  95. Protein-peptide interactions. Stanfield RL, Wilson IA. Curr. Opin. Struct. Biol. 5 103-113 (1995)
  96. Protein-protein interactions: methods for detection and analysis. Phizicky EM, Fields S. Microbiol. Rev. 59 94-123 (1995)
  97. The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides. Siligardi G, Drake AF. Biopolymers 37 281-292 (1995)
  98. SH2 domain structure and function. Schaffhausen B. Biochim. Biophys. Acta 1242 61-75 (1995)
  99. Signal transduction through the conserved motifs of the high affinity IgE receptor Fc epsilon RI. Jouvin MH, Numerof RP, Kinet JP. Semin. Immunol. 7 29-35 (1995)
  100. The GRB family of SH2 domain proteins. Margolis B. Prog. Biophys. Mol. Biol. 62 223-244 (1994)
  101. Proximity versus allostery: the role of regulated protein dimerization in biology. Austin DJ, Crabtree GR, Schreiber SL. Chem. Biol. 1 131-136 (1994)
  102. SH2/SH3 signaling proteins. Schlessinger J. Curr. Opin. Genet. Dev. 4 25-30 (1994)
  103. Oncogenic activation of tyrosine kinases. Rodrigues GA, Park M. Curr. Opin. Genet. Dev. 4 15-24 (1994)
  104. Bruton's tyrosine kinase is a key regulator in B-cell development. Rawlings DJ, Witte ON. Immunol. Rev. 138 105-119 (1994)
  105. Structure, regulation and function of phosphoinositide 3-kinases. Fry MJ. Biochim. Biophys. Acta 1226 237-268 (1994)
  106. The Src family of tyrosine protein kinases in hemopoietic signal transduction. Tsygankov A, Bolen J. Stem Cells 11 371-380 (1993)
  107. Peptide-protein interactions: an overview. Zvelebil MJ, Thornton JM. Q. Rev. Biophys. 26 333-363 (1993)
  108. New insights into protein-tyrosine kinase receptor signaling complexes. Fry MJ, Panayotou G, Booker GW, Waterfield MD. Protein Sci. 2 1785-1797 (1993)
  109. Signal transduction pathways: new targets in oncology. Sweeb RK, Beijnen JH. Pharm World Sci 15 233-242 (1993)
  110. src-related protein tyrosine kinases and their surface receptors. Rudd CE, Janssen O, Prasad KV, Raab M, da Silva A, Telfer JC, Yamamoto M. Biochim. Biophys. Acta 1155 239-266 (1993)

Articles citing this publication (188)

  1. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Mol. Cell. Biol. 14 1680-1688 (1994)
  2. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T. Mol. Cell. Biol. 14 2777-2785 (1994)
  3. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, Graziani A, Panayotou G, Comoglio PM. Cell 77 261-271 (1994)
  4. SH2 and SH3 domains. Pawson T, Schlessingert J. Curr. Biol. 3 434-442 (1993)
  5. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. Wakao H, Gouilleux F, Groner B. EMBO J. 13 2182-2191 (1994)
  6. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Hara T, Miyajima A. EMBO J. 14 2816-2826 (1995)
  7. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA. EMBO J. 19 6141-6149 (2000)
  8. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Batzer AG, Rotin D, Ureña JM, Skolnik EY, Schlessinger J. Mol. Cell. Biol. 14 5192-5201 (1994)
  9. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Shah K, Liu Y, Deirmengian C, Shokat KM. Proc. Natl. Acad. Sci. U.S.A. 94 3565-3570 (1997)
  10. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T. EMBO J. 13 764-773 (1994)
  11. Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Zhong Z, Wen Z, Darnell JE Jr. Proc. Natl. Acad. Sci. U.S.A. 91 4806-4810 (1994)
  12. Calculation of absolute protein-ligand binding free energy from computer simulations. Woo HJ, Roux B. Proc. Natl. Acad. Sci. U.S.A. 102 6825-6830 (2005)
  13. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Sun XJ, Crimmins DL, Myers MG Jr, Miralpeix M, White MF. Mol. Cell. Biol. 13 7418-7428 (1993)
  14. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Garrity PA, Rao Y, Salecker I, McGlade J, Pawson T, Zipursky SL. Cell 85 639-650 (1996)
  15. Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Fu XY, Zhang JJ. Cell 74 1135-1145 (1993)
  16. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S, Yamamoto T. Proc. Natl. Acad. Sci. U.S.A. 93 4181-4186 (1996)
  17. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Yi T, Mui AL, Krystal G, Ihle JN. Mol. Cell. Biol. 13 7577-7586 (1993)
  18. The C2 domain of PKCdelta is a phosphotyrosine binding domain. Benes CH, Wu N, Elia AE, Dharia T, Cantley LC, Soltoff SP. Cell 121 271-280 (2005)
  19. Crystal structure of the SH3 domain in human Fyn; comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. Noble ME, Musacchio A, Saraste M, Courtneidge SA, Wierenga RK. EMBO J. 12 2617-2624 (1993)
  20. Signal transduction by immunoglobulin is mediated through Ig alpha and Ig beta. Sanchez M, Misulovin Z, Burkhardt AL, Mahajan S, Costa T, Franke R, Bolen JB, Nussenzweig M. J. Exp. Med. 178 1049-1055 (1993)
  21. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. Mol. Cell 22 851-868 (2006)
  22. Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal. Ladbury JE, Lemmon MA, Zhou M, Green J, Botfield MC, Schlessinger J. Proc. Natl. Acad. Sci. U.S.A. 92 3199-3203 (1995)
  23. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, Skorski T. EMBO J. 21 5766-5774 (2002)
  24. Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Yamamoto K, Quelle FW, Thierfelder WE, Kreider BL, Gilbert DJ, Jenkins NA, Copeland NG, Silvennoinen O, Ihle JN. Mol. Cell. Biol. 14 4342-4349 (1994)
  25. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Poy F, Yaffe MB, Sayos J, Saxena K, Morra M, Sumegi J, Cantley LC, Terhorst C, Eck MJ. Mol. Cell 4 555-561 (1999)
  26. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Perego M. Proc. Natl. Acad. Sci. U.S.A. 94 8612-8617 (1997)
  27. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Narazaki M, Fujimoto M, Matsumoto T, Morita Y, Saito H, Kajita T, Yoshizaki K, Naka T, Kishimoto T. Proc. Natl. Acad. Sci. U.S.A. 95 13130-13134 (1998)
  28. Syntrophin binds to an alternatively spliced exon of dystrophin. Ahn AH, Kunkel LM. J. Cell Biol. 128 363-371 (1995)
  29. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP. Torres E, Rosen MK. Mol. Cell 11 1215-1227 (2003)
  30. Crystal structures of peptide complexes of the amino-terminal SH2 domain of the Syp tyrosine phosphatase. Lee CH, Kominos D, Jacques S, Margolis B, Schlessinger J, Shoelson SE, Kuriyan J. Structure 2 423-438 (1994)
  31. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor. Nishimura R, Li W, Kashishian A, Mondino A, Zhou M, Cooper J, Schlessinger J. Mol. Cell. Biol. 13 6889-6896 (1993)
  32. Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mikita T, Campbell D, Wu P, Williamson K, Schindler U. Mol. Cell. Biol. 16 5811-5820 (1996)
  33. Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. Yan H, Krishnan K, Greenlund AC, Gupta S, Lim JT, Schreiber RD, Schindler CW, Krolewski JJ. EMBO J. 15 1064-1074 (1996)
  34. Transcription factor ISGF-3 formation requires phosphorylated Stat91 protein, but Stat113 protein is phosphorylated independently of Stat91 protein. Improta T, Schindler C, Horvath CM, Kerr IM, Stark GR, Darnell JE Jr. Proc. Natl. Acad. Sci. U.S.A. 91 4776-4780 (1994)
  35. Mapping of sites on the Src family protein tyrosine kinases p55blk, p59fyn, and p56lyn which interact with the effector molecules phospholipase C-gamma 2, microtubule-associated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase. Pleiman CM, Clark MR, Gauen LK, Winitz S, Coggeshall KM, Johnson GL, Shaw AS, Cambier JC. Mol. Cell. Biol. 13 5877-5887 (1993)
  36. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA. Mol. Cell. Biol. 18 2089-2099 (1998)
  37. Sequence-specific recognition of the internalization motif of the Alzheimer's amyloid precursor protein by the X11 PTB domain. Zhang Z, Lee CH, Mandiyan V, Borg JP, Margolis B, Schlessinger J, Kuriyan J. EMBO J. 16 6141-6150 (1997)
  38. Distinct p53/56lyn and p59fyn domains associate with nonphosphorylated and phosphorylated Ig-alpha. Pleiman CM, Abrams C, Gauen LT, Bedzyk W, Jongstra J, Shaw AS, Cambier JC. Proc. Natl. Acad. Sci. U.S.A. 91 4268-4272 (1994)
  39. Vav family proteins couple to diverse cell surface receptors. Moores SL, Selfors LM, Fredericks J, Breit T, Fujikawa K, Alt FW, Brugge JS, Swat W. Mol. Cell. Biol. 20 6364-6373 (2000)
  40. Letter Structural basis for specificity of Grb2-SH2 revealed by a novel ligand binding mode. Rahuel J, Gay B, Erdmann D, Strauss A, Garcia-Echeverría C, Furet P, Caravatti G, Fretz H, Schoepfer J, Grütter MG. Nat. Struct. Biol. 3 586-589 (1996)
  41. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21ras. Pronk GJ, de Vries-Smits AM, Buday L, Downward J, Maassen JA, Medema RH, Bos JL. Mol. Cell. Biol. 14 1575-1581 (1994)
  42. SRC catalytic but not scaffolding function is needed for integrin-regulated tyrosine phosphorylation, cell migration, and cell spreading. Cary LA, Klinghoffer RA, Sachsenmaier C, Cooper JA. Mol. Cell. Biol. 22 2427-2440 (2002)
  43. Nck associates with the SH2 domain-docking protein IRS-1 in insulin-stimulated cells. Lee CH, Li W, Nishimura R, Zhou M, Batzer AG, Myers MG Jr, White MF, Schlessinger J, Skolnik EY. Proc. Natl. Acad. Sci. U.S.A. 90 11713-11717 (1993)
  44. Focal adhesion kinase promotes phospholipase C-gamma1 activity. Zhang X, Chattopadhyay A, Ji QS, Owen JD, Ruest PJ, Carpenter G, Hanks SK. Proc. Natl. Acad. Sci. U.S.A. 96 9021-9026 (1999)
  45. Role of IRS-1-GRB-2 complexes in insulin signaling. Myers MG Jr, Wang LM, Sun XJ, Zhang Y, Yenush L, Schlessinger J, Pierce JH, White MF. Mol. Cell. Biol. 14 3577-3587 (1994)
  46. Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells. Abtahian F, Bezman N, Clemens R, Sebzda E, Cheng L, Shattil SJ, Kahn ML, Koretzky GA. Mol. Cell. Biol. 26 6936-6949 (2006)
  47. Interaction of p72syk with the gamma and beta subunits of the high-affinity receptor for immunoglobulin E, Fc epsilon RI. Shiue L, Green J, Green OM, Karas JL, Morgenstern JP, Ram MK, Taylor MK, Zoller MJ, Zydowsky LD, Bolen JB. Mol. Cell. Biol. 15 272-281 (1995)
  48. Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor. Hu J, Liu J, Ghirlando R, Saltiel AR, Hubbard SR. Mol. Cell 12 1379-1389 (2003)
  49. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, Gullo C, Howie D, Rietdijk S, Thompson A, Coyle AJ, Denny C, Yaffe MB, Engel P, Eck MJ, Terhorst C. EMBO J. 20 5840-5852 (2001)
  50. Differential functions of the two Src homology 2 domains in protein tyrosine phosphatase SH-PTP1. Pei D, Wang J, Walsh CT. Proc. Natl. Acad. Sci. U.S.A. 93 1141-1145 (1996)
  51. Novel mode of ligand binding by the SH2 domain of the human XLP disease gene product SAP/SH2D1A. Li SC, Gish G, Yang D, Coffey AJ, Forman-Kay JD, Ernberg I, Kay LE, Pawson T. Curr. Biol. 9 1355-1362 (1999)
  52. Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB. J. Virol. 74 10417-10429 (2000)
  53. Binding of the Src SH2 domain to phosphopeptides is determined by residues in both the SH2 domain and the phosphopeptides. Bibbins KB, Boeuf H, Varmus HE. Mol. Cell. Biol. 13 7278-7287 (1993)
  54. Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Shakespeare W, Yang M, Bohacek R, Cerasoli F, Stebbins K, Sundaramoorthi R, Azimioara M, Vu C, Pradeepan S, Metcalf C 3rd, Haraldson C, Merry T, Dalgarno D, Narula S, Hatada M, Lu X, van Schravendijk MR, Adams S, Violette S, Smith J, Guan W, Bartlett C, Herson J, Iuliucci J, Weigele M, Sawyer T. Proc. Natl. Acad. Sci. U.S.A. 97 9373-9378 (2000)
  55. Brief report: a point mutation in the SH2 domain of Bruton's tyrosine kinase in atypical X-linked agammaglobulinemia. Saffran DC, Parolini O, Fitch-Hilgenberg ME, Rawlings DJ, Afar DE, Witte ON, Conley ME. N. Engl. J. Med. 330 1488-1491 (1994)
  56. Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes. Nolte RT, Eck MJ, Schlessinger J, Shoelson SE, Harrison SC. Nat. Struct. Biol. 3 364-374 (1996)
  57. A mammalian adaptor protein with conserved Src homology 2 and phosphotyrosine-binding domains is related to Shc and is specifically expressed in the brain. O'Bryan JP, Songyang Z, Cantley L, Der CJ, Pawson T. Proc. Natl. Acad. Sci. U.S.A. 93 2729-2734 (1996)
  58. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Bae JH, Lew ED, Yuzawa S, Tomé F, Lax I, Schlessinger J. Cell 138 514-524 (2009)
  59. The LDL receptor clustering motif interacts with the clathrin terminal domain in a reverse turn conformation. Kibbey RG, Rizo J, Gierasch LM, Anderson RG. J. Cell Biol. 142 59-67 (1998)
  60. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Wojcik J, Hantschel O, Grebien F, Kaupe I, Bennett KL, Barkinge J, Jones RB, Koide A, Superti-Furga G, Koide S. Nat. Struct. Mol. Biol. 17 519-527 (2010)
  61. Identification of residues that control specific binding of the Shc phosphotyrosine-binding domain to phosphotyrosine sites. van der Geer P, Wiley S, Gish GD, Lai VK, Stephens R, White MF, Kaplan D, Pawson T. Proc. Natl. Acad. Sci. U.S.A. 93 963-968 (1996)
  62. In vitro characterization of major ligands for Src homology 2 domains derived from protein tyrosine kinases, from the adaptor protein SHC and from GTPase-activating protein in Ramos B cells. Baumann G, Maier D, Freuler F, Tschopp C, Baudisch K, Wienands J. Eur. J. Immunol. 24 1799-1807 (1994)
  63. Kinetics of p56lck and p60src Src homology 2 domain binding to tyrosine-phosphorylated peptides determined by a competition assay or surface plasmon resonance. Payne G, Shoelson SE, Gish GD, Pawson T, Walsh CT. Proc. Natl. Acad. Sci. U.S.A. 90 4902-4906 (1993)
  64. Correlation between binding and dynamics at SH2 domain interfaces. Kay LE, Muhandiram DR, Wolf G, Shoelson SE, Forman-Kay JD. Nat. Struct. Biol. 5 156-163 (1998)
  65. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline-rich motifs. Cussac D, Frech M, Chardin P. EMBO J. 13 4011-4021 (1994)
  66. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. Hekerman P, Zeidler J, Bamberg-Lemper S, Knobelspies H, Lavens D, Tavernier J, Joost HG, Becker W. FEBS J. 272 109-119 (2005)
  67. Delineation of a T-cell activation motif required for binding of protein tyrosine kinases containing tandem SH2 domains. Koyasu S, Tse AG, Moingeon P, Hussey RE, Mildonian A, Hannisian J, Clayton LK, Reinherz EL. Proc. Natl. Acad. Sci. U.S.A. 91 6693-6697 (1994)
  68. Kinase activation through dimerization by human SH2-B. Nishi M, Werner ED, Oh BC, Frantz JD, Dhe-Paganon S, Hansen L, Lee J, Shoelson SE. Mol. Cell. Biol. 25 2607-2621 (2005)
  69. Distinct recruitment and function of Gab1 and Gab2 in Met receptor-mediated epithelial morphogenesis. Lock LS, Maroun CR, Naujokas MA, Park M. Mol. Biol. Cell 13 2132-2146 (2002)
  70. The human GRB2 and Drosophila Drk genes can functionally replace the Caenorhabditis elegans cell signaling gene sem-5. Stern MJ, Marengere LE, Daly RJ, Lowenstein EJ, Kokel M, Batzer A, Olivier P, Pawson T, Schlessinger J. Mol. Biol. Cell 4 1175-1188 (1993)
  71. A tyrosine-containing motif mediates ER retention of CD3-epsilon and adopts a helix-turn structure. Mallabiabarrena A, Jiménez MA, Rico M, Alarcón B. EMBO J. 14 2257-2268 (1995)
  72. The T-cell antigen CD5 acts as a receptor and substrate for the protein-tyrosine kinase p56lck. Raab M, Yamamoto M, Rudd CE. Mol. Cell. Biol. 14 2862-2870 (1994)
  73. Structure and in vivo requirement of the yeast Spt6 SH2 domain. Dengl S, Mayer A, Sun M, Cramer P. J. Mol. Biol. 389 211-225 (2009)
  74. Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck. Banavali NK, Roux B. Proteins 67 1096-1112 (2007)
  75. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development. Covassin LD, Siekmann AF, Kacergis MC, Laver E, Moore JC, Villefranc JA, Weinstein BM, Lawson ND. Dev. Biol. 329 212-226 (2009)
  76. PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. Kalia LV, Pitcher GM, Pelkey KA, Salter MW. EMBO J. 25 4971-4982 (2006)
  77. Nonsense mutations in the C-terminal SH2 region of the GTPase activating protein (GAP) gene in human tumours. Friedman E, Gejman PV, Martin GA, McCormick F. Nat. Genet. 5 242-247 (1993)
  78. Secondary structure assignment of mouse SOCS3 by NMR defines the domain boundaries and identifies an unstructured insertion in the SH2 domain. Babon JJ, Yao S, DeSouza DP, Harrison CF, Fabri LJ, Liepinsh E, Scrofani SD, Baca M, Norton RS. FEBS J. 272 6120-6130 (2005)
  79. Physical and functional interactions between SH2 and SH3 domains of the Src family protein tyrosine kinase p59fyn. Panchamoorthy G, Fukazawa T, Stolz L, Payne G, Reedquist K, Shoelson S, Songyang Z, Cantley L, Walsh C, Band H. Mol. Cell. Biol. 14 6372-6385 (1994)
  80. Solution structure of the C-terminal SH2 domain of the human tyrosine kinase Syk complexed with a phosphotyrosine pentapeptide. Narula SS, Yuan RW, Adams SE, Green OM, Green J, Philips TB, Zydowsky LD, Botfield MC, Hatada M, Laird ER. Structure 3 1061-1073 (1995)
  81. Solution structure of the Shc SH2 domain complexed with a tyrosine-phosphorylated peptide from the T-cell receptor. Zhou MM, Meadows RP, Logan TM, Yoon HS, Wade WS, Ravichandran KS, Burakoff SJ, Fesik SW. Proc. Natl. Acad. Sci. U.S.A. 92 7784-7788 (1995)
  82. Structural basis for phosphotyrosine recognition by suppressor of cytokine signaling-3. Bergamin E, Wu J, Hubbard SR. Structure 14 1285-1292 (2006)
  83. Conformationally constrained peptidomimetic inhibitors of signal transducer and activator of transcription. 3: Evaluation and molecular modeling. Mandal PK, Limbrick D, Coleman DR, Dyer GA, Ren Z, Birtwistle JS, Xiong C, Chen X, Briggs JM, McMurray JS. J. Med. Chem. 52 2429-2442 (2009)
  84. Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets. Shvartsman DE, Donaldson JC, Diaz B, Gutman O, Martin GS, Henis YI. J. Cell Biol. 178 675-686 (2007)
  85. Corneal cell survival in adenovirus type 19 infection requires phosphoinositide 3-kinase/Akt activation. Rajala MS, Rajala RV, Astley RA, Butt AL, Chodosh J. J. Virol. 79 12332-12341 (2005)
  86. A computational method for the analysis and prediction of protein:phosphopeptide-binding sites. Joughin BA, Tidor B, Yaffe MB. Protein Sci. 14 131-139 (2005)
  87. Mass spectrometric and thermodynamic studies reveal the role of water molecules in complexes formed between SH2 domains and tyrosyl phosphopeptides. Chung E, Henriques D, Renzoni D, Zvelebil M, Bradshaw JM, Waksman G, Robinson CV, Ladbury JE. Structure 6 1141-1151 (1998)
  88. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. Porter CJ, Matthews JM, Mackay JP, Pursglove SE, Schmidberger JW, Leedman PJ, Pero SC, Krag DN, Wilce MC, Wilce JA. BMC Struct. Biol. 7 58 (2007)
  89. Structural basis for specificity switching of the Src SH2 domain. Kimber MS, Nachman J, Cunningham AM, Gish GD, Pawson T, Pai EF. Mol. Cell 5 1043-1049 (2000)
  90. Regulation of interleukin 4-mediated signaling by naturally occurring dominant negative and attenuated forms of human Stat6. Patel BK, Pierce JH, LaRochelle WJ. Proc. Natl. Acad. Sci. U.S.A. 95 172-177 (1998)
  91. Intramolecular interactions of the regulatory domains of the Bcr-Abl kinase reveal a novel control mechanism. Nam HJ, Haser WG, Roberts TM, Frederick CA. Structure 4 1105-1114 (1996)
  92. Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II. Diebold ML, Loeliger E, Koch M, Winston F, Cavarelli J, Romier C. J. Biol. Chem. 285 38389-38398 (2010)
  93. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization. Henriques DA, Ladbury JE, Jackson RM. Protein Sci. 9 1975-1985 (2000)
  94. The SH2 domain from the tyrosine kinase Fyn in complex with a phosphotyrosyl peptide reveals insights into domain stability and binding specificity. Mulhern TD, Shaw GL, Morton CJ, Day AJ, Campbell ID. Structure 5 1313-1323 (1997)
  95. Structure of a specific peptide complex of the carboxy-terminal SH2 domain from the p85 alpha subunit of phosphatidylinositol 3-kinase. Breeze AL, Kara BV, Barratt DG, Anderson M, Smith JC, Luke RW, Best JR, Cartlidge SA. EMBO J. 15 3579-3589 (1996)
  96. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. Pang YP, Kozikowski AP. J. Comput. Aided Mol. Des. 8 669-681 (1994)
  97. Epidermal growth factor receptor is essential for Toll-like receptor 3 signaling. Yamashita M, Chattopadhyay S, Fensterl V, Saikia P, Wetzel JL, Sen GC. Sci Signal 5 ra50 (2012)
  98. Evolving specificity from variability for protein interaction domains. Kaneko T, Sidhu SS, Li SS. Trends Biochem. Sci. 36 183-190 (2011)
  99. Peptoid - peptide hybrids that bind Syk SH2 domains involved in signal transduction. Ruijtenbeek R, Kruijtzer JA, van de Wiel W, Fischer MJ, Flück M, Redegeld FA, Liskamp RM, Nijkamp FP. Chembiochem 2 171-179 (2001)
  100. Molecular cloning of a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase. Ohya K, Kajigaya S, Kitanaka A, Yoshida K, Miyazato A, Yamashita Y, Yamanaka T, Ikeda U, Shimada K, Ozawa K, Mano H. Proc. Natl. Acad. Sci. U.S.A. 96 11976-11981 (1999)
  101. The solution structure of Abl SH3, and its relationship to SH2 in the SH(32) construct. Gosser YQ, Zheng J, Overduin M, Mayer BJ, Cowburn D. Structure 3 1075-1086 (1995)
  102. Constraining binding hot spots: NMR and molecular dynamics simulations provide a structural explanation for enthalpy-entropy compensation in SH2-ligand binding. Ward JM, Gorenstein NM, Tian J, Martin SF, Post CB. J. Am. Chem. Soc. 132 11058-11070 (2010)
  103. Temperature-sensitive transformation by an Abelson virus mutant encoding an altered SH2 domain. Mainville CA, Parmar K, Unnikrishnan I, Gong L, Raffel GD, Rosenberg N. J. Virol. 75 1816-1823 (2001)
  104. Analysis of lipopolysaccharide-response genes in B-lineage cells demonstrates that they can have differentiation stage-restricted expression and contain SH2 domains. Kerr WG, Heller M, Herzenberg LA. Proc. Natl. Acad. Sci. U.S.A. 93 3947-3952 (1996)
  105. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain. Close D, Johnson SJ, Sdano MA, McDonald SM, Robinson H, Formosa T, Hill CP. J. Mol. Biol. 408 697-713 (2011)
  106. Binding specificity of SH2 domains: insight from free energy simulations. Gan W, Roux B. Proteins 74 996-1007 (2009)
  107. A statistical score for assessing the quality of multiple sequence alignments. Ahola V, Aittokallio T, Vihinen M, Uusipaikka E. BMC Bioinformatics 7 484 (2006)
  108. Native state energetics of the Src SH2 domain: evidence for a partially structured state in the denatured ensemble. Wildes D, Anderson LM, Sabogal A, Marqusee S. Protein Sci. 15 1769-1779 (2006)
  109. Grb7-SH2 domain dimerisation is affected by a single point mutation. Porter CJ, Wilce MC, Mackay JP, Leedman P, Wilce JA. Eur. Biophys. J. 34 454-460 (2005)
  110. Alternative modes of binding of proteins with tandem SH2 domains. O'Brien R, Rugman P, Renzoni D, Layton M, Handa R, Hilyard K, Waterfield MD, Driscoll PC, Ladbury JE. Protein Sci. 9 570-579 (2000)
  111. Deletion and mutational analyses of bluetongue virus NS2 protein indicate that the amino but not the carboxy terminus of the protein is critical for RNA-protein interactions. Zhao Y, Thomas C, Bremer C, Roy P. J. Virol. 68 2179-2185 (1994)
  112. Identification of novel fragment compounds targeted against the pY pocket of v-Src SH2 by computational and NMR screening and thermodynamic evaluation. Taylor JD, Gilbert PJ, Williams MA, Pitt WR, Ladbury JE. Proteins 67 981-990 (2007)
  113. SH3-SH2 domain orientation in Src kinases: NMR studies of Fyn. Ulmer TS, Werner JM, Campbell ID. Structure 10 901-911 (2002)
  114. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain. Liu J, Zhang J, Gong Q, Xiong P, Huang H, Wu B, Lu G, Wu J, Shi Y. J. Biol. Chem. 286 29218-29226 (2011)
  115. Phosphatidylinositol 3-kinase p85{alpha} subunit-dependent interaction with BCR/ABL-related fusion tyrosine kinases: molecular mechanisms and biological consequences. Ren SY, Bolton E, Mohi MG, Morrione A, Neel BG, Skorski T. Mol. Cell. Biol. 25 8001-8008 (2005)
  116. Stability and peptide binding specificity of Btk SH2 domain: molecular basis for X-linked agammaglobulinemia. Tzeng SR, Pai MT, Lung FD, Wu CW, Roller PP, Lei B, Wei CJ, Tu SC, Chen SH, Soong WJ, Cheng JW. Protein Sci. 9 2377-2385 (2000)
  117. Probing the nature of interactions in SH2 binding interfaces--evidence from electrospray ionization mass spectrometry. Chung EW, Henriques DA, Renzoni D, Morton CJ, Mulhern TD, Pitkeathly MC, Ladbury JE, Robinson CV. Protein Sci. 8 1962-1970 (1999)
  118. Monocarboxylic-based phosphotyrosyl mimetics in the design of GRB2 SH2 domain inhibitors. Burke TR Jr, Luo J, Yao ZJ, Gao Y, Zhao H, Milne GW, Guo R, Voigt JH, King CR, Yang D. Bioorg. Med. Chem. Lett. 9 347-352 (1999)
  119. The roles of autophosphorylation and phosphorylation in the life of osteopontin. Saavedra RA. Bioessays 16 913-918 (1994)
  120. Phosphopeptide binding to the N-terminal SH2 domain of the p85 alpha subunit of PI 3'-kinase: a heteronuclear NMR study. Hensmann M, Booker GW, Panayotou G, Boyd J, Linacre J, Waterfield M, Campbell ID. Protein Sci. 3 1020-1030 (1994)
  121. Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Findlay GM, Smith MJ, Lanner F, Hsiung MS, Gish GD, Petsalaki E, Cockburn K, Kaneko T, Huang H, Bagshaw RD, Ketela T, Tucholska M, Taylor L, Bowtell DD, Moffat J, Ikura M, Li SS, Sidhu SS, Rossant J, Pawson T. Cell 152 1008-1020 (2013)
  122. Backbone nuclear relaxation characteristics and calorimetric investigation of the human Grb7-SH2/erbB2 peptide complex. Ivancic M, Spuches AM, Guth EC, Daugherty MA, Wilcox DE, Lyons BA. Protein Sci. 14 1556-1569 (2005)
  123. Structural basis for SH2D1A mutations in X-linked lymphoproliferative disease. Lappalainen I, Giliani S, Franceschini R, Bonnefoy JY, Duckett C, Notarangelo LD, Vihinen M. Biochem. Biophys. Res. Commun. 269 124-130 (2000)
  124. Potent inhibitory ligands of the GRB2 SH2 domain from recombinant peptide libraries. Hart CP, Martin JE, Reed MA, Keval AA, Pustelnik MJ, Northrop JP, Patel DV, Grove JR. Cell. Signal. 11 453-464 (1999)
  125. Binding of a diphosphorylated-ITAM peptide to spleen tyrosine kinase (Syk) induces distal conformational changes: a hydrogen exchange mass spectrometry study. Catalina MI, Fischer MJ, Dekker FJ, Liskamp RM, Heck AJ. J. Am. Soc. Mass Spectrom. 16 1039-1051 (2005)
  126. The phosphopeptide-binding specificity of Src family SH2 domains. Payne G, Stolz LA, Pei D, Band H, Shoelson SE, Walsh CT. Chem. Biol. 1 99-105 (1994)
  127. pH titration studies of an SH2 domain-phosphopeptide complex: unusual histidine and phosphate pKa values. Singer AU, Forman-Kay JD. Protein Sci. 6 1910-1919 (1997)
  128. News How Src exercises self-restraint. Nguyen JT, Lim WA. Nat. Struct. Biol. 4 256-260 (1997)
  129. Design of peptidomimetic ligands for the pp60src SH2 domain. Plummer MS, Lunney EA, Para KS, Shahripour A, Stankovic CJ, Humblet C, Fergus JH, Marks JS, Herrera R, Hubbell S, Saltiel A, Sawyer TK. Bioorg. Med. Chem. 5 41-47 (1997)
  130. Phosphorylated T cell receptor zeta-chain and ZAP70 tandem SH2 domains form a 1:3 complex in vitro. Weissenhorn W, Eck MJ, Harrison SC, Wiley DC. Eur. J. Biochem. 238 440-445 (1996)
  131. Genetic analysis of a phosphatidylinositol 3-kinase SH2 domain reveals determinants of specificity. Yoakim M, Hou W, Songyang Z, Liu Y, Cantley L, Schaffhausen B. Mol. Cell. Biol. 14 5929-5938 (1994)
  132. Computational protein design as a tool for fold recognition. am Busch MS, Mignon D, Simonson T. Proteins 77 139-158 (2009)
  133. Structure, dynamics, and binding thermodynamics of the v-Src SH2 domain: implications for drug design. Taylor JD, Ababou A, Fawaz RR, Hobbs CJ, Williams MA, Ladbury JE. Proteins 73 929-940 (2008)
  134. CH/pi hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: an ab initio fragment molecular orbital study. Ozawa T, Okazaki K. J Comput Chem 29 2656-2666 (2008)
  135. Calorimetric investigation of phosphorylated and non-phosphorylated peptide ligand binding to the human Grb7-SH2 domain. Spuches AM, Argiros HJ, Lee KH, Haas LL, Pero SC, Krag DN, Roller PP, Wilcox DE, Lyons BA. J. Mol. Recognit. 20 245-252 (2007)
  136. Structure-based design and synthesis of a novel class of Src SH2 inhibitors. Buchanan JL, Bohacek RS, Luke GP, Hatada M, Lu X, Dalgarno DC, Narula SS, Yuan R, Holt DA. Bioorg. Med. Chem. Lett. 9 2353-2358 (1999)
  137. Using genome-wide measurements for computational prediction of SH2-peptide interactions. Wunderlich Z, Mirny LA. Nucleic Acids Res. 37 4629-4641 (2009)
  138. Molecular basis for regulation of Src by the docking protein p130Cas. Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR. J. Mol. Recognit. 19 30-38 (2006)
  139. Solution structure of the Src homology 2 domain from the human feline sarcoma oncogene Fes. Scott A, Pantoja-Uceda D, Koshiba S, Inoue M, Kigawa T, Terada T, Shirouzu M, Tanaka A, Sugano S, Yokoyama S, Güntert P. J. Biomol. NMR 31 357-361 (2005)
  140. Calculation of affinities of peptides for proteins. Donnini S, Juffer AH. J Comput Chem 25 393-411 (2004)
  141. Molecular modeling of the Jak3 kinase domains and structural basis for severe combined immunodeficiency. Vihinen M, Villa A, Mella P, Schumacher RF, Savoldi G, O'Shea JJ, Candotti F, Notarangelo LD. Clin. Immunol. 96 108-118 (2000)
  142. Study on the synthesis and characterization of peptides containing phosphorylated tyrosine. Bonewald LF, Bibbs L, Kates SA, Khatri A, McMurray JS, Medzihradszky KF, Weintraub ST. J. Pept. Res. 53 161-169 (1999)
  143. Identification of novel Bruton's tyrosine kinase mutations in 10 unrelated subjects with X linked agammaglobulinaemia. Brooimans RA, van den Berg AJ, Rijkers GT, Sanders LA, van Amstel JK, Tilanus MG, Grubben MJ, Zegers BJ. J. Med. Genet. 34 484-488 (1997)
  144. Superbinder SH2 domains act as antagonists of cell signaling. Kaneko T, Huang H, Cao X, Li X, Li C, Voss C, Sidhu SS, Li SS. Sci Signal 5 ra68 (2012)
  145. Single phosphorylation of Tyr304 in the cytoplasmic tail of ephrin B2 confers high-affinity and bifunctional binding to both the SH2 domain of Grb4 and the PDZ domain of the PDZ-RGS3 protein. Su Z, Xu P, Ni F. Eur. J. Biochem. 271 1725-1736 (2004)
  146. Inhibitors to the Src SH2 domain: a lesson in structure--thermodynamic correlation in drug design. Henriques DA, Ladbury JE. Arch. Biochem. Biophys. 390 158-168 (2001)
  147. Structure-activity relationships of a novel class of Src SH2 inhibitors. Buchanan JL, Vu CB, Merry TJ, Corpuz EG, Pradeepan SG, Mani UN, Yang M, Plake HR, Varkhedkar VM, Lynch BA, MacNeil IA, Loiacono KA, Tiong CL, Holt DA. Bioorg. Med. Chem. Lett. 9 2359-2364 (1999)
  148. The energetics of phosphate binding to a protein complex. Edgcomb SP, Baker BM, Murphy KP. Protein Sci. 9 927-933 (2000)
  149. The formation of a covalent complex between a dipeptide ligand and the src SH2 domain. Alligood KJ, Charifson PS, Crosby R, Consler TG, Feldman PL, Gampe RT Jr, Gilmer TM, Jordan SR, Milstead MW, Mohr C, Peel MR, Rocque W, Rodriguez M, Rusnak DW, Shewchuk LM, Sternbach DD. Bioorg. Med. Chem. Lett. 8 1189-1194 (1998)
  150. Autophosphorylation is required for high kinase activity and efficient transformation ability of proteins encoded by host range alleles of v-src. Woods KM, Verderame MF. J. Virol. 68 7267-7274 (1994)
  151. Characterization of germline mutations of the gene encoding Bruton's tyrosine kinase in families with X-linked agammaglobulinemia. Hagemann TL, Rosen FS, Kwan SP. Hum. Mutat. 5 296-302 (1995)
  152. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Kaneko T, Joshi R, Feller SM, Li SS. Cell Commun. Signal 10 32 (2012)
  153. Development of Grb2 SH2 Domain Signaling Antagonists: A Potential New Class of Antiproliferative Agents. Burke TR. Int J Pept Res Ther 12 33-48 (2006)
  154. DNA and RNA-controlled switching of protein kinase activity. Röglin L, Altenbrunn F, Seitz O. Chembiochem 10 758-765 (2009)
  155. The role of water in computational and experimental derivation of binding thermodynamics in SH2 domains. Geroult S, Virdee S, Waksman G. Chem Biol Drug Des 67 38-45 (2006)
  156. Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes: structural analysis of the peptide complexes with SH2 domains. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Schaffer L, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. Proteins 45 456-470 (2001)
  157. Evolution of the src-related protein tyrosine kinases. Hughes AL. J. Mol. Evol. 42 247-256 (1996)
  158. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Chudasama KK, Winnay J, Johansson S, Claudi T, König R, Haldorsen I, Johansson B, Woo JR, Aarskog D, Sagen JV, Kahn CR, Molven A, Njølstad PR. Am. J. Hum. Genet. 93 150-157 (2013)
  159. Simultaneous binding of two peptidyl ligands by a SRC homology 2 domain. Zhang Y, Zhang J, Yuan C, Hard RL, Park IH, Li C, Bell C, Pei D. Biochemistry 50 7637-7646 (2011)
  160. Structure, modelling, and molecular dynamics studies of the inhibition of protein tyrosine phosphatase 1B by sulfotyrosine peptides. Glover NR, Tracey AS. Biochem. Cell Biol. 77 469-486 (1999)
  161. Design and synthesis of a pyridone-based phosphotyrosine mimetic. Fu JM, Castelhano AL. Bioorg. Med. Chem. Lett. 8 2813-2816 (1998)
  162. pp60v-src transformation of rat cells but not chicken cells strongly correlates with low-affinity phosphopeptide binding by the SH2 domain. Verderame MF. Mol. Biol. Cell 8 843-854 (1997)
  163. Tyrosine- versus serine-phosphorylation leads to conformational changes in a synthetic tau peptide. Fabian H, Otvos L Jr, Szendrei GI, Lang E, Mantsch HH. J. Biomol. Struct. Dyn. 12 573-579 (1994)
  164. Interaction of the non-phosphorylated peptide G7-18NATE with Grb7-SH2 domain requires phosphate for enhanced affinity and specificity. Gunzburg MJ, Ambaye ND, Del Borgo MP, Pero SC, Krag DN, Wilce MC, Wilce JA. J. Mol. Recognit. 25 57-67 (2012)
  165. Semisynthetic Src SH2 domains demonstrate altered phosphopeptide specificity induced by incorporation of unnatural lysine derivatives. Virdee S, Macmillan D, Waksman G. Chem. Biol. 17 274-284 (2010)
  166. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis. Hammond S, Wagenknecht-Wiesner A, Veatch SL, Holowka D, Baird B. J. Struct. Biol. 168 161-167 (2009)
  167. Reconstitution of a native-like SH2 domain from disordered peptide fragments examined by multidimensional heteronuclear NMR. Ojennus DD, Fleissner MR, Wuttke DS. Protein Sci. 10 2162-2175 (2001)
  168. Structure-based design of novel nonpeptide inhibitors of the Src SH2 domain:phosphotyrosine mimetics exploiting multifunctional group replacement chemistry. Sundaramoorthi R, Kawahata N, Yang MG, Shakespeare WC, Metcalf CA 3rd, Wang Y, Merry T, Eyermann CJ, Bohacek RS, Narula S, Dalgarno DC, Sawyer TK. Biopolymers 71 717-729 (2003)
  169. pH-Dependent self-association of the Src homology 2 (SH2) domain of the Src homologous and collagen-like (SHC) protein. Réty S, Fütterer K, Grucza RA, Munoz CM, Frazier WA, Waksman G. Protein Sci. 5 405-413 (1996)
  170. Common and distinct elements in insulin and PDGF signaling. Myers MG Jr, Cheatham B, Fisher TL, Jachna BR, Kahn CR, Backer JM, White MF. Ann. N. Y. Acad. Sci. 766 369-387 (1995)
  171. Identification of a new interaction mode between the Src homology 2 domain of C-terminal Src kinase (Csk) and Csk-binding protein/phosphoprotein associated with glycosphingolipid microdomains. Tanaka H, Akagi K, Oneyama C, Tanaka M, Sasaki Y, Kanou T, Lee YH, Yokogawa D, Dobenecker MW, Nakagawa A, Okada M, Ikegami T. J. Biol. Chem. 288 15240-15254 (2013)
  172. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy. Lindfors HE, Drijfhout JW, Ubbink M. IUBMB Life 64 538-544 (2012)
  173. Conformational determinants of phosphotyrosine peptides complexed with the Src SH2 domain. Nachman J, Gish G, Virag C, Pawson T, Pomès R, Pai E. PLoS ONE 5 e11215 (2010)
  174. The structural insights of stem cell factor receptor (c-Kit) interaction with tyrosine phosphatase-2 (Shp-2): an in silico analysis. Pati S, Gurudutta GU, Kalra OP, Mukhopadhyay A. BMC Res Notes 3 14 (2010)
  175. Prediction of solvation sites at the interface of Src SH2 domain complexes using molecular dynamics simulations. Geroult S, Hooda M, Virdee S, Waksman G. Chem Biol Drug Des 70 87-99 (2007)
  176. Electrostatic interactions in the reconstitution of an SH2 domain from constituent peptide fragments. Ojennus DD, Lehto SE, Wuttke DS. Protein Sci. 12 44-55 (2003)
  177. Conformational analysis of cyclic hexapeptides designed as constrained ligands for the SH2 domain of the p85 subunit of phosphatidylinositol-3-OH kinase. Barchi JJ Jr, Nomizu M, Otaka A, Roller PP, Burke TR Jr. Biopolymers 38 191-208 (1996)
  178. News Signalling an interest. Yu H, Schreiber SL. Nat. Struct. Biol. 1 417-420 (1994)
  179. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. Sha F, Gencer EB, Georgeon S, Koide A, Yasui N, Koide S, Hantschel O. Proc. Natl. Acad. Sci. U.S.A. 110 14924-14929 (2013)
  180. Distinct functional domains of the Abelson tyrosine kinase control axon guidance responses to Netrin and Slit to regulate the assembly of neural circuits. O'Donnell MP, Bashaw GJ. Development 140 2724-2733 (2013)
  181. Molecular recognition of sulfotyrosine and phosphotyrosine by the Src homology 2 domain. Ju T, Niu W, Cerny R, Bollman J, Roy A, Guo J. Mol Biosyst 9 1829-1832 (2013)
  182. Solution structure of the human Grb14-SH2 domain and comparison with the structures of the human Grb7-SH2/erbB2 peptide complex and human Grb10-SH2 domain. Scharf PJ, Witney J, Daly R, Lyons BA. Protein Sci. 13 2541-2546 (2004)
  183. Crystallization and preliminary X-ray diffraction studies of the WW4 domain of the Nedd4-2 ubiquitin-protein ligase. Umadevi N, Kumar S, Narayana N. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 1084-1086 (2005)
  184. Editorial Do low-affinity ErbB receptor protein interactions represent the base of a cell signaling iceberg? Jones RB. Expert Rev Proteomics 10 115-118 (2013)
  185. Probing SH2-domains using Inhibitor Affinity Purification (IAP). Höfener M, Heinzlmeir S, Kuster B, Sewald N. Proteome Sci 12 41 (2014)
  186. Differentiation of peptide molecular recognition by phospholipase C gamma-1 Src homology-2 domain and a mutant Tyr phosphatase PTP1bC215S. MacLean D, Sefler AM, Zhu G, Decker SJ, Saltiel AR, Singh J, McNamara D, Dobrusin EM, Sawyer TK. Protein Sci. 4 13-20 (1995)
  187. Naturally occurring anti-idiotypic antibodies to anti-phosphotyrosine in systemic lupus erythematosus interact with SRC-homology 2 domains. Stefanescu M, Onu A, Matache C, Ramos-Morales F, Fischer S, Szegli G. Autoimmunity 22 81-86 (1995)
  188. NMR studies of the RRsrc peptide, a tyrosine kinase substrate. Brockbank RL, Vogel HJ. Biochem. Cell Biol. 75 163-169 (1997)