1shd Citations

Peptide inhibitors of src SH3-SH2-phosphoprotein interactions.

J Biol Chem 269 31711-9 (1994)
Cited: 80 times
EuropePMC logo PMID: 7527393

Abstract

Activated pp60c-src has been implicated in a number of human malignancies including colon carcinoma and breast adenocarcinoma. Association of the src SH2 domain with tyrosine-phosphorylated proteins plays a role in src-mediated signal transduction. Inhibitors of src SH2 domain-phosphoprotein interactions are, thus, of great interest in defining the role(s) of src in signal transduction pathways. To facilitate such studies, an enzyme-linked immunosorbent assay (ELISA) was developed to detect inhibitors of src SH2-phosphoprotein interactions. This assay measures inhibition of binding of a fusion construct (glutathione S-transferase src SH3-SH2) with autophosphorylated epidermal growth factor receptor tyrosine kinase domain. Activities of phosphopeptide segments derived from potential src SH2 cognate phosphoprotein partners were determined, with the focal adhesion kinase-derived segment VSETDDY*AEIIDE yielding the highest inhibitory activity. Structure activity studies starting from acetyl (Ac)-Y*EEIE have identified Ac-Y*Y*Y*IE as the most active compound screened in the ELISA. This compound is at least 20-fold more active than the parent peptide Ac-Y*EEIE. A high resolution (2 A) crystal structure of human src SH2 complexed with Ac-Y*EEIE was obtained and provided a useful framework for understanding the structure-activity relationships. Additionally, Ac-Y*EEIE was able to block interactions between src and its cellular phosphoprotein partners in vanadate-treated cell lysates from MDA-MB-468 breast carcinoma cells. However, it is unable to abrogate proliferation of MDA-MB-468 cells in culture, presumably because of poor cell penetration and/or lability of the phosphate group on tyrosine.

Reviews - 1shd mentioned but not cited (2)

Articles - 1shd mentioned but not cited (4)



Reviews citing this publication (13)

  1. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  2. Src homology-2 domains: structure, mechanisms, and drug discovery. Sawyer TK. Biopolymers 47 243-261 (1998)
  3. Phosphoryltyrosyl mimetics in the design of peptide-based signal transduction inhibitors. Burke TR, Yao ZJ, Liu DG, Voigt J, Gao Y. Biopolymers 60 32-44 (2001)
  4. Peptides with anticancer use or potential. Janin YL. Amino Acids 25 1-40 (2003)
  5. Src tyrosine kinase as a chemotherapeutic target: is there a clinical case? Chen T, George JA, Taylor CC. Anticancer Drugs 17 123-131 (2006)
  6. SH2 domains: from structure to energetics, a dual approach to the study of structure-function relationships. Grucza RA, Bradshaw JM, Fütterer K, Waksman G. Med Res Rev 19 273-293 (1999)
  7. Grb2 SH2 domain-binding peptide analogs as potential anticancer agents. Lung FD, Tsai JY. Biopolymers 71 132-140 (2003)
  8. Targeting signal transduction in the discovery of antiproliferative drugs. Saltiel AR, Sawyer TK. Chem. Biol. 3 887-893 (1996)
  9. Role of tyrosine kinases in lymphocyte activation: targets for drug intervention. Hanke JH, Pollok BA, Changelian PS. Inflamm. Res. 44 357-371 (1995)
  10. SH2 domain protein interaction and possibilities for pharmacological intervention. Beattie J. Cell. Signal. 8 75-86 (1996)
  11. Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. Aghazadeh B, Rosen MK. Chem. Biol. 6 R241-6 (1999)
  12. Targeting Kinase Interaction Networks: A New Paradigm in PPI Based Design of Kinase Inhibitors. Jenardhanan P, Panneerselvam M, Mathur PP. Curr Top Med Chem 19 467-485 (2019)
  13. Implications for Src kinases in hematopoiesis: signal transduction therapeutics. Sinha S, Corey SJ. J. Hematother. Stem Cell Res. 8 465-480 (1999)

Articles citing this publication (61)

  1. Letter Structural basis for specificity of Grb2-SH2 revealed by a novel ligand binding mode. Rahuel J, Gay B, Erdmann D, Strauss A, Garcia-Echeverría C, Furet P, Caravatti G, Fretz H, Schoepfer J, Grütter MG. Nat. Struct. Biol. 3 586-589 (1996)
  2. Structural requirements for cellular uptake of alpha-helical amphipathic peptides. Scheller A, Oehlke J, Wiesner B, Dathe M, Krause E, Beyermann M, Melzig M, Bienert M. J. Pept. Sci. 5 185-194 (1999)
  3. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. Bradshaw JM, Mitaxov V, Waksman G. J. Mol. Biol. 293 971-985 (1999)
  4. Nonphosphorylated peptide ligands for the Grb2 Src homology 2 domain. Oligino L, Lung FD, Sastry L, Bigelow J, Cao T, Curran M, Burke TR, Wang S, Krag D, Roller PP, King CR. J. Biol. Chem. 272 29046-29052 (1997)
  5. A fluorescence polarization based Src-SH2 binding assay. Lynch BA, Loiacono KA, Tiong CL, Adams SE, MacNeil IA. Anal. Biochem. 247 77-82 (1997)
  6. Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. Pero SC, Oligino L, Daly RJ, Soden AL, Liu C, Roller PP, Li P, Krag DN. J. Biol. Chem. 277 11918-11926 (2002)
  7. A new high affinity binding site for suppressor of cytokine signaling-3 on the erythropoietin receptor. Hörtner M, Nielsch U, Mayr LM, Heinrich PC, Haan S. Eur. J. Biochem. 269 2516-2526 (2002)
  8. A high-throughput STAT binding assay using fluorescence polarization. Wu P, Brasseur M, Schindler U. Anal. Biochem. 249 29-36 (1997)
  9. Two mechanisms activate PTPalpha during mitosis. Zheng XM, Shalloway D. EMBO J. 20 6037-6049 (2001)
  10. Mitotic activation of protein-tyrosine phosphatase alpha and regulation of its Src-mediated transforming activity by its sites of protein kinase C phosphorylation. Zheng XM, Resnick RJ, Shalloway D. J. Biol. Chem. 277 21922-21929 (2002)
  11. PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. Kalia LV, Pitcher GM, Pelkey KA, Salter MW. EMBO J. 25 4971-4982 (2006)
  12. Mass spectrometric and thermodynamic studies reveal the role of water molecules in complexes formed between SH2 domains and tyrosyl phosphopeptides. Chung E, Henriques D, Renzoni D, Zvelebil M, Bradshaw JM, Waksman G, Robinson CV, Ladbury JE. Structure 6 1141-1151 (1998)
  13. Measurement of dissociation constants of inhibitors binding to Src SH2 domain protein by non-covalent electrospray ionization mass spectrometry. Bligh SW, Haley T, Lowe PN. J. Mol. Recognit. 16 139-148 (2003)
  14. How and why phosphotyrosine-containing peptides bind to the SH2 and PTB domains. Zhou Y, Abagyan R. Fold Des 3 513-522 (1998)
  15. Formation of a stable src-AFAP-110 complex through either an amino-terminal or a carboxy-terminal SH2-binding motif. Guappone AC, Weimer T, Flynn DC. Mol. Carcinog. 22 110-119 (1998)
  16. Structural basis for specificity switching of the Src SH2 domain. Kimber MS, Nachman J, Cunningham AM, Gish GD, Pawson T, Pai EF. Mol. Cell 5 1043-1049 (2000)
  17. Mutational investigation of the specificity determining region of the Src SH2 domain. Bradshaw JM, Mitaxov V, Waksman G. J. Mol. Biol. 299 521-535 (2000)
  18. [Difluro(phosphono)methyl]phenylalanine-containing peptide inhibitors of protein tyrosine phosphatases. Desmarais S, Friesen RW, Zamboni R, Ramachandran C. Biochem. J. 337 ( Pt 2) 219-223 (1999)
  19. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization. Henriques DA, Ladbury JE, Jackson RM. Protein Sci. 9 1975-1985 (2000)
  20. Adducin- and ouabain-related gene variants predict the antihypertensive activity of rostafuroxin, part 1: experimental studies. Ferrandi M, Molinari I, Torielli L, Padoani G, Salardi S, Rastaldi MP, Ferrari P, Bianchi G. Sci Transl Med 2 59ra86 (2010)
  21. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. Sheinerman FB, Al-Lazikani B, Honig B. J. Mol. Biol. 334 823-841 (2003)
  22. Inhibition of protein tyrosine phosphatases PTP1B and CD45 by sulfotyrosyl peptides. Desmarais S, Jia Z, Ramachandran C. Arch. Biochem. Biophys. 354 225-231 (1998)
  23. Potent inhibition of protein-tyrosine phosphatase by phosphotyrosine-mimic containing cyclic peptides. Akamatsu M, Roller PP, Chen L, Zhang ZY, Ye B, Burke TR. Bioorg. Med. Chem. 5 157-163 (1997)
  24. Monocarboxylic-based phosphotyrosyl mimetics in the design of GRB2 SH2 domain inhibitors. Burke TR, Luo J, Yao ZJ, Gao Y, Zhao H, Milne GW, Guo R, Voigt JH, King CR, Yang D. Bioorg. Med. Chem. Lett. 9 347-352 (1999)
  25. pH titration studies of an SH2 domain-phosphopeptide complex: unusual histidine and phosphate pKa values. Singer AU, Forman-Kay JD. Protein Sci. 6 1910-1919 (1997)
  26. Inhibitors to the Src SH2 domain: a lesson in structure--thermodynamic correlation in drug design. Henriques DA, Ladbury JE. Arch. Biochem. Biophys. 390 158-168 (2001)
  27. Structure-activity relationships of a novel class of Src SH2 inhibitors. Buchanan JL, Vu CB, Merry TJ, Corpuz EG, Pradeepan SG, Mani UN, Yang M, Plake HR, Varkhedkar VM, Lynch BA, MacNeil IA, Loiacono KA, Tiong CL, Holt DA. Bioorg. Med. Chem. Lett. 9 2359-2364 (1999)
  28. Structure-based design and synthesis of a novel class of Src SH2 inhibitors. Buchanan JL, Bohacek RS, Luke GP, Hatada M, Lu X, Dalgarno DC, Narula SS, Yuan R, Holt DA. Bioorg. Med. Chem. Lett. 9 2353-2358 (1999)
  29. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity. Jin LL, Wybenga-Groot LE, Tong J, Taylor P, Minden MD, Trudel S, McGlade CJ, Moran MF. Mol. Cell Proteomics 14 695-706 (2015)
  30. DNA and RNA-controlled switching of protein kinase activity. Röglin L, Altenbrunn F, Seitz O. Chembiochem 10 758-765 (2009)
  31. DNA-controlled reversible switching of peptide conformation and bioactivity. Röglin L, Ahmadian MR, Seitz O. Angew. Chem. Int. Ed. Engl. 46 2704-2707 (2007)
  32. N-terminal carboxyl and tetrazole-containing amides as adjuvants to Grb2 SH2 domain ligand binding. Burke TR, Yao ZJ, Gao Y, Wu JX, Zhu X, Luo JH, Guo R, Yang D. Bioorg. Med. Chem. 9 1439-1445 (2001)
  33. Nonpeptidic SH2 inhibitors of the tyrosine kinase ZAP-70. Vu CB, Corpuz EG, Pradeepan SG, Violette S, Bartlett C, Sawyer TK. Bioorg. Med. Chem. Lett. 9 3009-3014 (1999)
  34. Rate enhancement of an interfacial biochemical reaction through localization of substrate and enzyme by an adaptor domain. Li J, Nayak S, Mrksich M. J Phys Chem B 114 15113-15118 (2010)
  35. Roles of tyrosine kinase-, 1-phosphatidylinositol 3-kinase-, and mitogen-activated protein kinase-signaling pathways in ethanol-induced contractions of rat aortic smooth muscle: possible relation to alcohol-induced hypertension. Yang ZW, Wang J, Zheng T, Altura BT, Altura BM. Alcohol 28 17-28 (2002)
  36. Structural and thermodynamic basis for the interaction of the Src SH2 domain with the activated form of the PDGF beta-receptor. Lubman OY, Waksman G. J. Mol. Biol. 328 655-668 (2003)
  37. The role of phosphorylated residues in peptide-peptide noncovalent complexes formation. Jackson SN, Moyer SC, Woods AS. J. Am. Soc. Mass Spectrom. 19 1535-1541 (2008)
  38. Design of peptidomimetic ligands for the pp60src SH2 domain. Plummer MS, Lunney EA, Para KS, Shahripour A, Stankovic CJ, Humblet C, Fergus JH, Marks JS, Herrera R, Hubbell S, Saltiel A, Sawyer TK. Bioorg. Med. Chem. 5 41-47 (1997)
  39. Low [Mg(2+)](o) induces contraction of cerebral arteries: roles of tyrosine and mitogen-activated protein kinases. Yang ZW, Wang J, Zheng T, Altura BT, Altura BM. Am. J. Physiol. Heart Circ. Physiol. 279 H185-94 (2000)
  40. The energetics of phosphate binding to a protein complex. Edgcomb SP, Baker BM, Murphy KP. Protein Sci. 9 927-933 (2000)
  41. The formation of a covalent complex between a dipeptide ligand and the src SH2 domain. Alligood KJ, Charifson PS, Crosby R, Consler TG, Feldman PL, Gampe RT, Gilmer TM, Jordan SR, Milstead MW, Mohr C, Peel MR, Rocque W, Rodriguez M, Rusnak DW, Shewchuk LM, Sternbach DD. Bioorg. Med. Chem. Lett. 8 1189-1194 (1998)
  42. Computational binding studies of human pp60c-src SH2 domain with a series of nonpeptide, phosphophenyl-containing ligands. Price DJ, Jorgensen WL. Bioorg. Med. Chem. Lett. 10 2067-2070 (2000)
  43. Role of solution conformation and flexibility of short peptide ligands that bind to the p56(lck) SH2 domain. Dekker FJ, de Mol NJ, Bultinck P, Kemmink J, Hilbers HW, Liskamp RM. Bioorg. Med. Chem. 11 941-949 (2003)
  44. A novel phosphotyrosine mimetic 4'-carboxymethyloxy-3'-phosphonophenylalanine (Cpp): exploitation in the design of nonpeptide inhibitors of pp60(Src) SH2 domain. Kawahata N, Yang MG, Luke GP, Shakespeare WC, Sundaramoorthi R, Wang Y, Johnson D, Merry T, Violette S, Guan W, Bartlett C, Smith J, Hatada M, Lu X, Dalgarno DC, Eyermann CJ, Bohacek RS, Sawyer TK. Bioorg. Med. Chem. Lett. 11 2319-2323 (2001)
  45. Cellular signalling as a target in cancer chemotherapy. Phospholipid analogues as inhibitors of mitogenic signal transduction. Grunicke HH, Maly K, Uberall F, Schubert C, Kindler E, Stekar J, Brachwitz H. Adv. Enzyme Regul. 36 385-407 (1996)
  46. Design and synthesis of small chemical inhibitors containing different scaffolds for lck SH2 domain. Park SH, Kang SH, Lim SH, Oh HS, Lee KH. Bioorg. Med. Chem. Lett. 13 3455-3459 (2003)
  47. Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes: structural analysis of the peptide complexes with SH2 domains. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Schaffer L, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. Proteins 45 456-470 (2001)
  48. Structure-based design of novel nonpeptide inhibitors of the Src SH2 domain:phosphotyrosine mimetics exploiting multifunctional group replacement chemistry. Sundaramoorthi R, Kawahata N, Yang MG, Shakespeare WC, Metcalf CA, Wang Y, Merry T, Eyermann CJ, Bohacek RS, Narula S, Dalgarno DC, Sawyer TK. Biopolymers 71 717-729 (2003)
  49. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin. Gifford SM, Liu W, Mader CC, Halo TL, Machida K, Boggon TJ, Koleske AJ. J. Biol. Chem. 289 19704-19713 (2014)
  50. Conformational determinants of phosphotyrosine peptides complexed with the Src SH2 domain. Nachman J, Gish G, Virag C, Pawson T, Pomès R, Pai E. PLoS ONE 5 e11215 (2010)
  51. Design and characterization of non-phosphopeptide inhibitors for Src family SH2 domains. Park SH, Won J, Lee KH. Bioorg. Med. Chem. Lett. 12 2711-2714 (2002)
  52. A phosphoarginine containing peptide as an artificial SH2 ligand. Hofmann FT, Lindemann C, Salia H, Adamitzki P, Karanicolas J, Seebeck FP. Chem. Commun. (Camb.) 47 10335-10337 (2011)
  53. Spectroscopic characterization of the SH2- and active site-directed peptide sequences of a bivalent Src kinase inhibitor. Desamero RZ, Kang J, Dol C, Chinwong J, Walters K, Sivarajah T, Profit AA. Appl Spectrosc 63 767-774 (2009)
  54. Structure-activity studies of phosphorylated peptide inhibitors of the association of phosphatidylinositol 3-kinase with PDGF-beta receptor. Ramalingam K, Eaton SR, Cody WL, Lu GH, Panek RL, Waite LA, Decker SJ, Keiser JA, Doherty AM. Bioorg. Med. Chem. 3 1263-1272 (1995)
  55. Development of a solid-phase binding assay and identification of nonpeptide ligands for the FynB Src homology 2 domain. Kim HJ, Lee HH, Yoo HD, Hwa Lee J, Hong ST. J Pharm Biomed Anal 27 51-56 (2002)
  56. A quantitative proteomics-based competition binding assay to characterize pITAM-protein interactions. Hu L, Yang L, Lipchik AM, Geahlen RL, Parker LL, Tao WA. Anal. Chem. 85 5071-5077 (2013)
  57. Discovery of thioazepinone ligands for Src SH2: from non-specific to specific binding. Lesuisse D, Deprez P, Albert E, Duc TT, Sortais B, Gofflo D, Jean-Baptiste V, Marquette J, Schoot B, Sarubbi E, Lange G, Broto P, Mandine E. Bioorg. Med. Chem. Lett. 11 2127-2131 (2001)
  58. Comprehensive binary interaction mapping of τ phosphotyrosine sites with SH2 domains in the human genome: Implications for the rational design of self-inhibitory phosphopeptides to target τ hyperphosphorylation signaling in Alzheimer's Disease. Bao Z, Liu J, Fu J. Amino Acids 54 859-875 (2022)
  59. Intermolecular relaxation has little effect on intra-peptide exchange-transferred NOE intensities. Zabell AP, Post CB. J. Biomol. NMR 22 303-315 (2002)
  60. Interplay between c-Src and the APC/C co-activator Cdh1 regulates mammary tumorigenesis. Han T, Jiang S, Zheng H, Yin Q, Xie M, Little MR, Yin X, Chen M, Song SJ, Beg AA, Pandolfi PP, Wan L. Nat Commun 10 3716 (2019)
  61. Thermodynamics of phosphotyrosine peptide-peptoid hybrids binding to the p56lck SH2 domain. Dekker FJ, Mol NJ, Liskamp RM. J. Pept. Sci. 16 322-328 (2010)