1seb Citations

Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen.

Abstract

The structure of a bacterial superantigen, Staphylococcus aureus enterotoxin B, bound to a human class II histocompatibility complex molecule (HLA-DR1) has been determined by X-ray crystallography. The superantigen binds as an intact protein outside the conventional peptide antigen-binding site of the class II major histocompatibility complex (MHC) molecule. No large conformational changes occur upon complex formation in either the DR1 or the enterotoxin B molecules. The structure of the complex helps explain how different class II molecules and superantigens associate and suggests a model for ternary complex formation with the T-cell antigen receptor (TCR), in which unconventional TCR-MHC contacts are possible.

Articles - 1seb mentioned but not cited (2)

  1. The Presence, Persistence and Functional Properties of Plasmodium vivax Duffy Binding Protein II Antibodies Are Influenced by HLA Class II Allelic Variants. Kano FS, Souza-Silva FA, Torres LM, Lima BA, Sousa TN, Alves JR, Rocha RS, Fontes CJ, Sanchez BA, Adams JH, Brito CF, Pires DE, Ascher DB, Sell AM, Carvalho LH. PLoS Negl Trop Dis 10 e0005177 (2016)
  2. An automated framework for understanding structural variations in the binding grooves of MHC class II molecules. Yeturu K, Utriainen T, Kemp GJ, Chandra N. BMC Bioinformatics 11 Suppl 1 S55 (2010)


Reviews citing this publication (86)

  1. The role of common protective alleles HLA-DRB1*13 among systemic autoimmune diseases. Furukawa H, Oka S, Tsuchiya N, Shimada K, Hashimoto A, Tohma S, Kawasaki A. Genes Immun. 18 1-7 (2017)
  2. Far East Scarlet-Like Fever: A Review of the Epidemiology, Symptomatology, and Role of Superantigenic Toxin: Yersinia pseudotuberculosis-Derived Mitogen A. Amphlett A. Open Forum Infect Dis 3 ofv202 (2016)
  3. Staphylococcal Superantigens Spark Host-Mediated Danger Signals. Krakauer T, Pradhan K, Stiles BG. Front Immunol 7 23 (2016)
  4. Staphylococcal manipulation of host immune responses. Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Nat. Rev. Microbiol. 13 529-543 (2015)
  5. The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Reglinski M, Sriskandan S. Virulence 5 127-136 (2014)
  6. Staphylococcal enterotoxins in the etiopathogenesis of mucosal autoimmunity within the gastrointestinal tract. Principato M, Qian BF. Toxins (Basel) 6 1471-1489 (2014)
  7. Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens. Sharma P, Wang N, Kranz DM. Toxins (Basel) 6 556-574 (2014)
  8. Mechanisms of staphylococcal enterotoxin-induced emesis. Hu DL, Nakane A. Eur. J. Pharmacol. 722 95-107 (2014)
  9. Staphylococcal and streptococcal superantigen exotoxins. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Clin. Microbiol. Rev. 26 422-447 (2013)
  10. CD28: direct and critical receptor for superantigen toxins. Kaempfer R, Arad G, Levy R, Hillman D, Nasie I, Rotfogel Z. Toxins (Basel) 5 1531-1542 (2013)
  11. The staphylococcal enterotoxin (SE) family: SEB and siblings. Krakauer T, Stiles BG. Virulence 4 759-773 (2013)
  12. Antigen-specific blocking of CD4-specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Manikwar P, Kiptoo P, Badawi AH, Büyüktimkin B, Siahaan TJ. Med Res Rev 32 727-764 (2012)
  13. Gram-positive bacterial superantigen outside-in signaling causes toxic shock syndrome. Brosnahan AJ, Schlievert PM. FEBS J. 278 4649-4667 (2011)
  14. Secreted virulence factor comparison between methicillin-resistant and methicillin-sensitive Staphylococcus aureus, and its relevance to atopic dermatitis. Schlievert PM, Strandberg KL, Lin YC, Peterson ML, Leung DY. J. Allergy Clin. Immunol. 125 39-49 (2010)
  15. Staphylococcal enterotoxins. Pinchuk IV, Beswick EJ, Reyes VE. Toxins (Basel) 2 2177-2197 (2010)
  16. Multiple roles of Staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Ortega E, Abriouel H, Lucas R, Gálvez A. Toxins (Basel) 2 2117-2131 (2010)
  17. The systemic and pulmonary immune response to staphylococcal enterotoxins. Kumar S, Ménoret A, Ngoi SM, Vella AT. Toxins (Basel) 2 1898-1912 (2010)
  18. Immunology and genetics of type 1 diabetes. Morran MP, Omenn GS, Pietropaolo M. Mt. Sinai J. Med. 75 314-327 (2008)
  19. TCR recognition of peptide/MHC class II complexes and superantigens. Sundberg EJ, Deng L, Mariuzza RA. Semin. Immunol. 19 262-271 (2007)
  20. Review article: Inflammatory bowel disease and genetics. Weersma RK, van Dullemen HM, van der Steege G, Nolte IM, Kleibeuker JH, Dijkstra G. Aliment. Pharmacol. Ther. 26 Suppl 2 57-65 (2007)
  21. Vaccines against the category B toxins: Staphylococcal enterotoxin B, epsilon toxin and ricin. Mantis NJ. Adv. Drug Deliv. Rev. 57 1424-1439 (2005)
  22. Human leukocyte antigen class II haplotypes that protect against or predispose to streptococcal toxic shock. Llewelyn M. Clin. Infect. Dis. 41 Suppl 7 S445-8 (2005)
  23. Interplay between superantigens and immunoreceptors. Petersson K, Forsberg G, Walse B. Scand. J. Immunol. 59 345-355 (2004)
  24. Superantigens: structure-function relationships. Baker MD, Acharya KR. Int. J. Med. Microbiol. 293 529-537 (2004)
  25. Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects. Alouf JE, Müller-Alouf H. Int. J. Med. Microbiol. 292 429-440 (2003)
  26. Bacterial superantigens. Proft T, Fraser JD. Clin. Exp. Immunol. 133 299-306 (2003)
  27. Therapeutic approaches to superantigen-based diseases: a review. Hong-Geller E, Gupta G. J. Mol. Recognit. 16 91-101 (2003)
  28. So many ways of getting in the way: diversity in the molecular architecture of superantigen-dependent T-cell signaling complexes. Sundberg EJ, Li Y, Mariuzza RA. Curr. Opin. Immunol. 14 36-44 (2002)
  29. Perspective on antigen processing and presentation. Unanue ER. Immunol. Rev. 185 86-102 (2002)
  30. Structural and thermodynamic correlates of T cell signaling. Rudolph MG, Luz JG, Wilson IA. Annu Rev Biophys Biomol Struct 31 121-149 (2002)
  31. Superantigens: microbial agents that corrupt immunity. Llewelyn M, Cohen J. Lancet Infect Dis 2 156-162 (2002)
  32. Interactions between MHC molecules and co-receptors of the TCR. König R. Curr. Opin. Immunol. 14 75-83 (2002)
  33. Toxic shock syndrome and bacterial superantigens: an update. McCormick JK, Yarwood JM, Schlievert PM. Annu. Rev. Microbiol. 55 77-104 (2001)
  34. Modulation of CD4 T cell function by soluble MHC II-peptide chimeras. Casares S, Bona CA, Brumeanu TD. Int. Rev. Immunol. 20 547-573 (2001)
  35. Superantigen bacterial toxins: state of the art. Müller-Alouf H, Carnoy C, Simonet M, Alouf JE. Toxicon 39 1691-1701 (2001)
  36. Exotoxins of Staphylococcus aureus. Dinges MM, Orwin PM, Schlievert PM. Clin. Microbiol. Rev. 13 16-34 (2000)
  37. Staphylococcal enterotoxins. Balaban N, Rasooly A. Int. J. Food Microbiol. 61 1-10 (2000)
  38. Microbial superantigens: from structure to function. Papageorgiou AC, Acharya KR. Trends Microbiol. 8 369-375 (2000)
  39. Superantigens - powerful modifiers of the immune system. Fraser J, Arcus V, Kong P, Baker E, Proft T. Mol Med Today 6 125-132 (2000)
  40. Structural basis of T cell recognition. Garcia KC, Teyton L, Wilson IA. Annu. Rev. Immunol. 17 369-397 (1999)
  41. Superantigens: mechanisms by which they may induce, exacerbate and control autoimmune diseases. Macphail S. Int. Rev. Immunol. 18 141-180 (1999)
  42. MHC superfamily structure and the immune system. Maenaka K, Jones EY. Curr. Opin. Struct. Biol. 9 745-753 (1999)
  43. Immune response to staphylococcal superantigens. Krakauer T. Immunol. Res. 20 163-173 (1999)
  44. Understanding the mechanism of action of bacterial superantigens from a decade of research. Lavoie PM, Thibodeau J, Erard F, Sékaly RP. Immunol. Rev. 168 257-269 (1999)
  45. The structural basis of T cell activation by superantigens. Li H, Llera A, Malchiodi EL, Mariuzza RA. Annu. Rev. Immunol. 17 435-466 (1999)
  46. Superantigens of gram-positive bacteria: structure-function analyses and their implications for biological activity. Kotb M. Curr. Opin. Microbiol. 1 56-65 (1998)
  47. An accessory peptide binding site with allosteric effect on the formation of peptide-MHC-II complexes? Gerlier D, Trescol-Biémont MC, Ettouati L, Paris J, Rabourdin-Combe C. C. R. Acad. Sci. III, Sci. Vie 321 19-24 (1998)
  48. Structure-function studies of T-cell receptor-superantigen interactions. Li H, Llera A, Mariuzza RA. Immunol. Rev. 163 177-186 (1998)
  49. Ligand recognition by alpha beta T cell receptors. Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J, Arden B, Chien Y. Annu. Rev. Immunol. 16 523-544 (1998)
  50. Unusual MHC-like molecules: CD1, Fc receptor, the hemochromatosis gene product, and viral homologs. Wilson IA, Bjorkman PJ. Curr. Opin. Immunol. 10 67-73 (1998)
  51. Why do superantigens care about peptides? Woodland DL, Wen R, Blackman MA. Immunol. Today 18 18-22 (1997)
  52. T-cell receptor structure and TCR complexes. Wilson IA, Garcia KC. Curr. Opin. Struct. Biol. 7 839-848 (1997)
  53. The tetramer model: a new view of class II MHC molecules in antigenic presentation to T cells. Pareja E, Tobes R, Martín J, Nieto A. Tissue Antigens 50 421-428 (1997)
  54. Peptide binding and antigen presentation by class II histocompatibility glycoproteins. Jensen PE. Biopolymers 43 303-322 (1997)
  55. Peptide binding by class I and class II MHC molecules. Batalia MA, Collins EJ. Biopolymers 43 281-302 (1997)
  56. Superantigens as immunomodulators: recent structural insights. Papageorgiou AC, Acharya KR. Structure 5 991-996 (1997)
  57. MHC class II-dependent peptide antigen versus superantigen presentation to T cells. Shoukry NH, Lavoie PM, Thibodeau J, D'Souza S, Sekaly RP. Hum. Immunol. 54 194-201 (1997)
  58. Staphylococcal enterotoxins A, D, and E. Structure and function, including mechanism of T-cell superantigenicity. Svensson LA, Schad EM, Sundström M, Antonsson P, Kalland T, Dohlsten M. Prep. Biochem. Biotechnol. 27 111-141 (1997)
  59. Staphylococcal enterotoxins B and C. Structural requirements for superantigenic and entertoxigenic activities. Bohach GA. Prep. Biochem. Biotechnol. 27 79-110 (1997)
  60. B cell superantigens: potential modifiers of the normal human B cell repertoire. Domiati-Saad R, Lipsky PE. Int. Rev. Immunol. 14 309-324 (1997)
  61. Antigen presentation by MHC class II molecules. Weenink SM, Gautam AM. Immunol. Cell Biol. 75 69-81 (1997)
  62. Biophysical and structural studies of TCRs and ligands: implications for T cell signaling. Ward ES, Qadri A. Curr. Opin. Immunol. 9 97-106 (1997)
  63. MHC class I and class II structures. Jones EY. Curr. Opin. Immunol. 9 75-79 (1997)
  64. The structure of the T cell antigen receptor. Bentley GA, Mariuzza RA. Annu. Rev. Immunol. 14 563-590 (1996)
  65. Antibody-targeted superantigens in cancer immunotherapy. Søgaard M, Hansson J, Litton MJ, Ohlsson L, Rosendahl A, Lando PA, Antonsson P, Kalland T, Dohlsten M. Immunotechnology 2 151-162 (1996)
  66. Superantigens in demyelinating disease. Brocke S, Piercy C, Steinman L. Springer Semin. Immunopathol. 18 51-56 (1996)
  67. Genetically engineered superantigens in experimental tumor therapy. Antonsson P, Hansson J, Kalland T, Lando PA, Ohlsson L, Schad E, Svensson A, Dohlsten M. Springer Semin. Immunopathol. 17 397-410 (1996)
  68. Evidence for a superantigen in the pathogenesis of tuberculosis. Ohmen JD, Modlin RL. Springer Semin. Immunopathol. 17 375-384 (1996)
  69. Kawasaki disease: update on diagnosis, treatment, and a still controversial etiology. Fischer P, Uttenreuther-Fischer MM, Naoe S, Gaedicke G. Pediatr Hematol Oncol 13 487-501 (1996)
  70. Virus-encoded superantigens. Huber BT, Hsu PN, Sutkowski N. Microbiol. Rev. 60 473-482 (1996)
  71. Role of the T cell receptor alpha-chain in superantigen recognition. Blackman MA, Woodland DL. Immunol. Res. 15 98-113 (1996)
  72. Do superantigens play a role in lymphoproliferation? Amariglio N, Rechavi G. Leuk. Lymphoma 22 237-243 (1996)
  73. Structure and function of the T-cell receptor: insights from X-ray crystallography. Fields BA, Mariuzza RA. Immunol. Today 17 330-336 (1996)
  74. Biophysical studies of T-cell receptors and their ligands. Fremont DH, Rees WA, Kozono H. Curr. Opin. Immunol. 8 93-100 (1996)
  75. In vivo effects of superantigens. Blackman MA, Woodland DL. Life Sci. 57 1717-1735 (1995)
  76. Bacterial superantigens in human disease: structure, function and diversity. Ulrich RG, Bavari S, Olson MA. Trends Microbiol. 3 463-468 (1995)
  77. Superantigen engineering. Abrahmsén L. Curr. Opin. Struct. Biol. 5 464-470 (1995)
  78. Superantigens. Gazing into the crystal ball. Hsu PN, Huber BT. Curr. Biol. 5 235-237 (1995)
  79. Novel molecules related to MHC antigens. Stroynowski I, Forman J. Curr. Opin. Immunol. 7 97-102 (1995)
  80. The potential role of superantigens in inflammatory bowel disease. Kay RA. Clin. Exp. Immunol. 100 4-6 (1995)
  81. Superantigenic characteristics of mouse mammary tumor viruses play a critical role in susceptibility to infection in mice. Pucillo CE, Palmer LD, Hodes RJ. Immunol. Res. 14 58-68 (1995)
  82. Bacterial pyrogenic exotoxins as superantigens. Kotb M. Clin. Microbiol. Rev. 8 411-426 (1995)
  83. The enigma of the natural killer cell. Gumperz JE, Parham P. Nature 378 245-248 (1995)
  84. MHC class II signaling in B-cell activation. Scholl PR, Geha RS. Immunol. Today 15 418-422 (1994)
  85. Structures of two classes of MHC molecules elucidated: crucial differences and similarities. Bjorkman PJ, Burmeister WP. Curr. Opin. Struct. Biol. 4 852-856 (1994)
  86. T-cell activation by superantigens. Webb SR, Gascoigne NR. Curr. Opin. Immunol. 6 467-475 (1994)

Articles citing this publication (212)

  1. The atomic structure of protein-protein recognition sites. Lo Conte L, Chothia C, Janin J. J. Mol. Biol. 285 2177-2198 (1999)
  2. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Ghosh P, Amaya M, Mellins E, Wiley DC. Nature 378 457-462 (1995)
  3. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Bycroft M, Hubbard TJ, Proctor M, Freund SM, Murzin AG. Cell 88 235-242 (1997)
  4. X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II. Dessen A, Lawrence CM, Cupo S, Zaller DM, Wiley DC. Immunity 7 473-481 (1997)
  5. Crystal structure of the superantigen staphylococcal enterotoxin type A. Schad EM, Zaitseva I, Zaitsev VN, Dohlsten M, Kalland T, Schlievert PM, Ohlendorf DH, Svensson LA. EMBO J. 14 3292-3301 (1995)
  6. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. Proc. Natl. Acad. Sci. U.S.A. 93 734-738 (1996)
  7. Biochemical and biological properties of Staphylococcal enterotoxin K. Orwin PM, Leung DY, Donahue HL, Novick RP, Schlievert PM. Infect. Immun. 69 360-366 (2001)
  8. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Stokkers PC, Reitsma PH, Tytgat GN, van Deventer SJ. Gut 45 395-401 (1999)
  9. Three-dimensional structure of the complex between a T cell receptor beta chain and the superantigen staphylococcal enterotoxin B. Li H, Llera A, Tsuchiya D, Leder L, Ysern X, Schlievert PM, Karjalainen K, Mariuzza RA. Immunity 9 807-816 (1998)
  10. Staphylococcus aureus synthesizes adenosine to escape host immune responses. Thammavongsa V, Kern JW, Missiakas DM, Schneewind O. J. Exp. Med. 206 2417-2427 (2009)
  11. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. Hudson KR, Tiedemann RE, Urban RG, Lowe SC, Strominger JL, Fraser JD. J. Exp. Med. 182 711-720 (1995)
  12. Characterization of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. Abrahmsén L, Dohlsten M, Segrén S, Björk P, Jonsson E, Kalland T. EMBO J. 14 2978-2986 (1995)
  13. Crystal structure of a diabody, a bivalent antibody fragment. Perisic O, Webb PA, Holliger P, Winter G, Williams RL. Structure 2 1217-1226 (1994)
  14. The structure of HLA-DM, the peptide exchange catalyst that loads antigen onto class II MHC molecules during antigen presentation. Mosyak L, Zaller DM, Wiley DC. Immunity 9 377-383 (1998)
  15. Stereospecific interactions of proline residues in protein structures and complexes. Bhattacharyya R, Chakrabarti P. J. Mol. Biol. 331 925-940 (2003)
  16. Multiple binding sites for bacterial superantigens on soluble class II MHC molecules. Kozono H, Parker D, White J, Marrack P, Kappler J. Immunity 3 187-196 (1995)
  17. Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site. Papageorgiou AC, Acharya KR, Shapiro R, Passalacqua EF, Brehm RD, Tranter HS. Structure 3 769-779 (1995)
  18. Transcytosis of staphylococcal superantigen toxins. Hamad AR, Marrack P, Kappler JW. J. Exp. Med. 185 1447-1454 (1997)
  19. The class II MHC protein HLA-DR1 in complex with an endogenous peptide: implications for the structural basis of the specificity of peptide binding. Murthy VL, Stern LJ. Structure 5 1385-1396 (1997)
  20. Cross-linking of major histocompatibility complex class II molecules by staphylococcal enterotoxin A superantigen is a requirement for inflammatory cytokine gene expression. Mehindate K, Thibodeau J, Dohlsten M, Kalland T, Sékaly RP, Mourad W. J. Exp. Med. 182 1573-1577 (1995)
  21. Determination of the HLA-DM interaction site on HLA-DR molecules. Doebele RC, Busch R, Scott HM, Pashine A, Mellins ED. Immunity 13 517-527 (2000)
  22. Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mullen MM, Haan KM, Longnecker R, Jardetzky TS. Mol. Cell 9 375-385 (2002)
  23. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor beta chain and major histocompatibility complex class II. Leder L, Llera A, Lavoie PM, Lebedeva MI, Li H, Sékaly RP, Bohach GA, Gahr PJ, Schlievert PM, Karjalainen K, Mariuzza RA. J. Exp. Med. 187 823-833 (1998)
  24. Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Li Y, Li H, Dimasi N, McCormick JK, Martin R, Schuck P, Schlievert PM, Mariuzza RA. Immunity 14 93-104 (2001)
  25. Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 A resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. Papageorgiou AC, Tranter HS, Acharya KR. J. Mol. Biol. 277 61-79 (1998)
  26. The crystal structure of staphylococcal enterotoxin type D reveals Zn2+-mediated homodimerization. Sundström M, Abrahmsén L, Antonsson P, Mehindate K, Mourad W, Dohlsten M. EMBO J. 15 6832-6840 (1996)
  27. Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. Petersson K, Håkansson M, Nilsson H, Forsberg G, Svensson LA, Liljas A, Walse B. EMBO J. 20 3306-3312 (2001)
  28. Crystal structure of MHC class II I-Ab in complex with a human CLIP peptide: prediction of an I-Ab peptide-binding motif. Zhu Y, Rudensky AY, Corper AL, Teyton L, Wilson IA. J. Mol. Biol. 326 1157-1174 (2003)
  29. The binding site of NK receptors on HLA-C molecules. Mandelboim O, Reyburn HT, Sheu EG, Vales-Gomez M, Davis DM, Pazmany L, Strominger JL. Immunity 6 341-350 (1997)
  30. Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules. Roussel A, Anderson BF, Baker HM, Fraser JD, Baker EN. Nat. Struct. Biol. 4 635-643 (1997)
  31. Correlation between the number of T cell receptors required for T cell activation and TCR-ligand affinity. Schodin BA, Tsomides TJ, Kranz DM. Immunity 5 137-146 (1996)
  32. Tumor necrosis factor-induced hepatic DNA fragmentation as an early marker of T cell-dependent liver injury in mice. Gantner F, Leist M, Jilg S, Germann PG, Freudenberg MA, Tiegs G. Gastroenterology 109 166-176 (1995)
  33. Predictions of T-cell receptor- and major histocompatibility complex-binding sites on staphylococcal enterotoxin C1. Hoffmann ML, Jablonski LM, Crum KK, Hackett SP, Chi YI, Stauffacher CV, Stevens DL, Bohach GA. Infect. Immun. 62 3396-3407 (1994)
  34. Inhibition of bacterial superantigens by peptides and antibodies. Visvanathan K, Charles A, Bannan J, Pugach P, Kashfi K, Zabriskie JB. Infect. Immun. 69 875-884 (2001)
  35. Activation of bovine lymphocyte subpopulations by staphylococcal enterotoxin C. Ferens WA, Davis WC, Hamilton MJ, Park YH, Deobald CF, Fox L, Bohach G. Infect. Immun. 66 573-580 (1998)
  36. Generation of protective immunity by inactivated recombinant staphylococcal enterotoxin B vaccine in nonhuman primates and identification of correlates of immunity. Boles JW, Pitt ML, LeClaire RD, Gibbs PH, Torres E, Dyas B, Ulrich RG, Bavari S. Clin. Immunol. 108 51-59 (2003)
  37. Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Yang Y, McBride KM, Hensley S, Lu Y, Chedin F, Bedford MT. Mol. Cell 53 484-497 (2014)
  38. Analysis of the superantigenic activity of mutant and allelic forms of streptococcal pyrogenic exotoxin A. Kline JB, Collins CM. Infect. Immun. 64 861-869 (1996)
  39. Newly discovered role for Fas ligand in the cell-cycle arrest of CD4+ T cells. Desbarats J, Duke RC, Newell MK. Nat. Med. 4 1377-1382 (1998)
  40. Intranasal exposure to staphylococcal enterotoxin B elicits an acute systemic inflammatory response. Rajagopalan G, Sen MM, Singh M, Murali NS, Nath KA, Iijima K, Kita H, Leontovich AA, Gopinathan U, Patel R, David CS. Shock 25 647-656 (2006)
  41. Structural basis for the recognition of superantigen streptococcal pyrogenic exotoxin A (SpeA1) by MHC class II molecules and T-cell receptors. Papageorgiou AC, Collins CM, Gutman DM, Kline JB, O'Brien SM, Tranter HS, Acharya KR. EMBO J. 18 9-21 (1999)
  42. Different superantigens interact with distinct sites in the Vbeta domain of a single T cell receptor. Hong SC, Waterbury G, Janeway CA. J. Exp. Med. 183 1437-1446 (1996)
  43. Major histocompatibility complex class II-associated peptides control the presentation of bacterial superantigens to T cells. Wen R, Cole GA, Surman S, Blackman MA, Woodland DL. J. Exp. Med. 183 1083-1092 (1996)
  44. Design, engineering and production of functional single-chain T cell receptor ligands. Burrows GG, Chang JW, Bächinger HP, Bourdette DN, Offner H, Vandenbark AA. Protein Eng. 12 771-778 (1999)
  45. The superantigen streptococcal pyrogenic exotoxin C (SPE-C) exhibits a novel mode of action. Li PL, Tiedemann RE, Moffat SL, Fraser JD. J. Exp. Med. 186 375-383 (1997)
  46. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. Sutkowski N, Chen G, Calderon G, Huber BT. J. Virol. 78 7852-7860 (2004)
  47. Evidence for dimers of MHC class II molecules in B lymphocytes and their role in low affinity T cell responses. Schafer PH, Pierce SK. Immunity 1 699-707 (1994)
  48. Binding of a soluble alpha beta T-cell receptor to superantigen/major histocompatibility complex ligands. Kappler J, White J, Kozono H, Clements J, Marrack P. Proc. Natl. Acad. Sci. U.S.A. 91 8462-8466 (1994)
  49. Intranasal exposure to bacterial superantigens induces airway inflammation in HLA class II transgenic mice. Rajagopalan G, Iijima K, Singh M, Kita H, Patel R, David CS. Infect. Immun. 74 1284-1296 (2006)
  50. Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120. Li H, Natarajan K, Malchiodi EL, Margulies DH, Mariuzza RA. J. Mol. Biol. 283 179-191 (1998)
  51. Immunity to Staphylococcus aureus secreted proteins protects rabbits from serious illnesses. Spaulding AR, Lin YC, Merriman JA, Brosnahan AJ, Peterson ML, Schlievert PM. Vaccine 30 5099-5109 (2012)
  52. Clinical role for a superantigen in Yersinia pseudotuberculosis infection. Abe J, Onimaru M, Matsumoto S, Noma S, Baba K, Ito Y, Kohsaka T, Takeda T. J. Clin. Invest. 99 1823-1830 (1997)
  53. The sequence of the Mycoplasma arthritidis superantigen, MAM: identification of functional domains and comparison with microbial superantigens and plant lectin mitogens. Cole BC, Knudtson KL, Oliphant A, Sawitzke AD, Pole A, Manohar M, Benson LS, Ahmed E, Atkin CL. J. Exp. Med. 183 1105-1110 (1996)
  54. T cell receptor-major histocompatibility complex class II interaction is required for the T cell response to bacterial superantigens. Labrecque N, Thibodeau J, Mourad W, Sékaly RP. J. Exp. Med. 180 1921-1929 (1994)
  55. Role of the T cell receptor alpha chain in stabilizing TCR-superantigen-MHC class II complexes. Andersen PS, Lavoie PM, Sékaly RP, Churchill H, Kranz DM, Schlievert PM, Karjalainen K, Mariuzza RA. Immunity 10 473-483 (1999)
  56. Characteristics of carbohydrate antigen binding to the presentation protein HLA-DR. Cobb BA, Kasper DL. Glycobiology 18 707-718 (2008)
  57. Structural basis of T-cell specificity and activation by the bacterial superantigen TSST-1. Moza B, Varma AK, Buonpane RA, Zhu P, Herfst CA, Nicholson MJ, Wilbuer AK, Seth NP, Wucherpfennig KW, McCormick JK, Kranz DM, Sundberg EJ. EMBO J. 26 1187-1197 (2007)
  58. Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes. Arcus VL, Proft T, Sigrell JA, Baker HM, Fraser JD, Baker EN. J. Mol. Biol. 299 157-168 (2000)
  59. Genetically engineered superantigens as tolerable antitumor agents. Hansson J, Ohlsson L, Persson R, Andersson G, Ilbäck NG, Litton MJ, Kalland T, Dohlsten M. Proc. Natl. Acad. Sci. U.S.A. 94 2489-2494 (1997)
  60. Isolation of HLA-DR1.(staphylococcal enterotoxin A)2 trimers in solution. Tiedemann RE, Urban RJ, Strominger JL, Fraser JD. Proc. Natl. Acad. Sci. U.S.A. 92 12156-12159 (1995)
  61. Identification of class II major histocompatibility complex and T cell receptor binding sites in the superantigen toxic shock syndrome toxin 1. Hurley JM, Shimonkevitz R, Hanagan A, Enney K, Boen E, Malmstrom S, Kotzin BL, Matsumura M. J. Exp. Med. 181 2229-2235 (1995)
  62. Invariant chain made in Escherichia coli has an exposed N-terminal segment that blocks antigen binding to HLA-DR1 and a trimeric C-terminal segment that binds empty HLA-DR1. Park SJ, Sadegh-Nasseri S, Wiley DC. Proc. Natl. Acad. Sci. U.S.A. 92 11289-11293 (1995)
  63. Predicted complementarity determining regions of the T cell antigen receptor determine antigen specificity. Katayama CD, Eidelman FJ, Duncan A, Hooshmand F, Hedrick SM. EMBO J. 14 927-938 (1995)
  64. Evidence for a functional interaction between the beta chain of major histocompatibility complex class II and the T cell receptor alpha chain during recognition of a bacterial superantigen. Deckhut AM, Chien Y, Blackman MA, Woodland DL. J. Exp. Med. 180 1931-1935 (1994)
  65. A DNA Spiegelmer to staphylococcal enterotoxin B. Purschke WG, Radtke F, Kleinjung F, Klussmann S. Nucleic Acids Res. 31 3027-3032 (2003)
  66. Conformational isomers of a class II MHC-peptide complex in solution. Schmitt L, Boniface JJ, Davis MM, McConnell HM. J. Mol. Biol. 286 207-218 (1999)
  67. Residues defining V beta specificity in staphylococcal enterotoxins. Swaminathan S, Furey W, Pletcher J, Sax M. Nat. Struct. Biol. 2 680-686 (1995)
  68. Expression of MHC class II molecules contributes to lipopolysaccharide responsiveness. Piani A, Hossle JP, Birchler T, Siegrist CA, Heumann D, Davies G, Loeliger S, Seger R, Lauener RP. Eur. J. Immunol. 30 3140-3146 (2000)
  69. Staphylococcal enterotoxin B mutants (N23K and F44S): biological effects and vaccine potential in a mouse model. Woody MA, Krakauer T, Stiles BG. Vaccine 15 133-139 (1997)
  70. Structural features of the invariant chain fragment CLIP controlling rapid release from HLA-DR molecules and inhibition of peptide binding. Kropshofer H, Vogt AB, Hämmerling GJ. Proc. Natl. Acad. Sci. U.S.A. 92 8313-8317 (1995)
  71. Structural identification of a key protective B-cell epitope in Lyme disease antigen OspA. Ding W, Huang X, Yang X, Dunn JJ, Luft BJ, Koide S, Lawson CL. J. Mol. Biol. 302 1153-1164 (2000)
  72. Staphylococcal enterotoxins A and B share a common structural motif for binding class II major histocompatibility complex molecules. Ulrich RG, Bavari S, Olson MA. Nat. Struct. Biol. 2 554-560 (1995)
  73. The crystal structure of staphylococcal enterotoxin H: implications for binding properties to MHC class II and TcR molecules. Hâkansson M, Petersson K, Nilsson H, Forsberg G, Björk P, Antonsson P, Svensson LA. J. Mol. Biol. 302 527-537 (2000)
  74. Characterization of the canine type C enterotoxin produced by Staphylococcus intermedius pyoderma isolates. Edwards VM, Deringer JR, Callantine SD, Deobald CF, Berger PH, Kapur V, Stauffacher CV, Bohach GA. Infect. Immun. 65 2346-2352 (1997)
  75. T-cell epitope analysis using subtracted expression libraries (TEASEL): application to a 38-kDA autoantigen recognized by T cells from an insulin-dependent diabetic patient. Neophytou PI, Roep BO, Arden SD, Muir EM, Duinkerken G, Kallan A, de Vries RR, Hutton JC. Proc. Natl. Acad. Sci. U.S.A. 93 2014-2018 (1996)
  76. Major histocompatibility complex class II-associated peptides determine the binding of the superantigen toxic shock syndrome toxin-1. von Bonin A, Ehrlich S, Malcherek G, Fleischer B. Eur. J. Immunol. 25 2894-2898 (1995)
  77. Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule. Fernández MM, Guan R, Swaminathan CP, Malchiodi EL, Mariuzza RA. J. Biol. Chem. 281 25356-25364 (2006)
  78. Structural relationships and cellular tropism of staphylococcal superantigen-like proteins. Al-Shangiti AM, Naylor CE, Nair SP, Briggs DC, Henderson B, Chain BM. Infect. Immun. 72 4261-4270 (2004)
  79. Inhibition of staphylococcal enterotoxin B-induced lymphocyte proliferation and tumor necrosis factor alpha secretion by MAb5, an anti-toxic shock syndrome toxin 1 monoclonal antibody. Pang LT, Kum WW, Chow AW. Infect. Immun. 68 3261-3268 (2000)
  80. Selective binding of bacterial toxins to major histocompatibility complex class II-expressing cells is controlled by invariant chain and HLA-DM. Lavoie PM, Thibodeau J, Cloutier I, Busch R, Sékaly RP. Proc. Natl. Acad. Sci. U.S.A. 94 6892-6897 (1997)
  81. A structural and functional comparison of staphylococcal enterotoxins A and C2 reveals remarkable similarity and dissimilarity. Schad EM, Papageorgiou AC, Svensson LA, Acharya KR. J. Mol. Biol. 269 270-280 (1997)
  82. Crystal structure of a SEA variant in complex with MHC class II reveals the ability of SEA to crosslink MHC molecules. Petersson K, Thunnissen M, Forsberg G, Walse B. Structure 10 1619-1626 (2002)
  83. Binding of soluble natural ligands to a soluble human T-cell receptor fragment produced in Escherichia coli. Hilyard KL, Reyburn H, Chung S, Bell JI, Strominger JL. Proc. Natl. Acad. Sci. U.S.A. 91 9057-9061 (1994)
  84. A novel loop domain in superantigens extends their T cell receptor recognition site. Günther S, Varma AK, Moza B, Kasper KJ, Wyatt AW, Zhu P, Rahman AK, Li Y, Mariuzza RA, McCormick JK, Sundberg EJ. J. Mol. Biol. 371 210-221 (2007)
  85. Allelic polymorphisms at the H-2A and HLA-DQ loci influence the response of murine lymphocytes to the Mycoplasma arthritidis superantigen MAM. Cole BC, Sawitzke AD, Ahmed EA, Atkin CL, David CS. Infect. Immun. 65 4190-4198 (1997)
  86. Biological activities of staphylococcal enterotoxin type A mutants with N-terminal substitutions. Harris TO, Betley MJ. Infect. Immun. 63 2133-2140 (1995)
  87. Predicting peptide binding to MHC pockets via molecular modeling, implicit solvation, and global optimization. Schafroth HD, Floudas CA. Proteins 54 534-556 (2004)
  88. Vbeta-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Deringer JR, Ely RJ, Monday SR, Stauffacher CV, Bohach GA. Infect. Immun. 65 4048-4054 (1997)
  89. Rapid clearance of the bacterial superantigen staphylococcal enterotoxin B in vivo. Vabulas R, Bittlingmaier R, Heeg K, Wagner H, Miethke T. Infect. Immun. 64 4567-4573 (1996)
  90. Crystal structure of the streptococcal superantigen SpeI and functional role of a novel loop domain in T cell activation by group V superantigens. Brouillard JN, Günther S, Varma AK, Gryski I, Herfst CA, Rahman AK, Leung DY, Schlievert PM, Madrenas J, Sundberg EJ, McCormick JK. J. Mol. Biol. 367 925-934 (2007)
  91. Broad-spectrum immunity against superantigens is elicited in mice protected from lethal shock by a superantigen antagonist peptide. Arad G, Hillman D, Levy R, Kaempfer R. Immunol. Lett. 91 141-145 (2004)
  92. Crystal structure of Urtica dioica agglutinin, a superantigen presented by MHC molecules of class I and class II. Saul FA, Rovira P, Boulot G, Damme EJ, Peumans WJ, Truffa-Bachi P, Bentley GA. Structure 8 593-603 (2000)
  93. Binding of natural variants of staphylococcal superantigens SEG and SEI to TCR and MHC class II molecule. Fernández MM, De Marzi MC, Berguer P, Burzyn D, Langley RJ, Piazzon I, Mariuzza RA, Malchiodi EL. Mol. Immunol. 43 927-938 (2006)
  94. Staphylococcal enterotoxin A and toxic shock syndrome toxin compete with CD4 for human major histocompatibility complex class II binding. Bavari S, Ulrich RG. Infect. Immun. 63 423-429 (1995)
  95. Protective effect of the HLA-DRB1*13:02 allele in Japanese rheumatoid arthritis patients. Oka S, Furukawa H, Kawasaki A, Shimada K, Sugii S, Hashimoto A, Komiya A, Fukui N, Ito S, Nakamura T, Saisho K, Katayama M, Tsunoda S, Sano H, Migita K, Suda A, Nagaoka S, Tsuchiya N, Tohma S. PLoS ONE 9 e99453 (2014)
  96. Biochemical and mutational analysis of the histidine residues of staphylococcal enterotoxin A. Hoffman M, Tremaine M, Mansfield J, Betley M. Infect. Immun. 64 885-890 (1996)
  97. Identification of residues in the V domain of CD80 (B7-1) implicated in functional interactions with CD28 and CTLA4. Fargeas CA, Truneh A, Reddy M, Hurle M, Sweet R, Sékaly RP. J. Exp. Med. 182 667-675 (1995)
  98. Structural features of a zinc binding site in the superantigen strepococcal pyrogenic exotoxin A (SpeA1): implications for MHC class II recognition. Baker M, Gutman DM, Papageorgiou AC, Collins CM, Acharya KR. Protein Sci. 10 1268-1273 (2001)
  99. Synergistic effect between CD40 and class II signals overcome the requirement for class II dimerization in superantigen-induced cytokine gene expression. Mehindate K, al-Daccak R, Damdoumi F, Mourad W. Eur. J. Immunol. 26 2075-2080 (1996)
  100. An insulin peptide that binds an alternative site in class II major histocompatibility complex. Tompkins SM, Moore JC, Jensen PE. J. Exp. Med. 183 857-866 (1996)
  101. The J beta segment of the T cell receptor contributes to the V beta-specific T cell expansion caused by staphylococcal enterotoxin B and Urtica dioica superantigens. Musette P, Galelli A, Truffa-Bachi P, Peumans W, Kourilsky P, Gachelin G. Eur. J. Immunol. 26 618-622 (1996)
  102. Crystal structure of Mycoplasma arthritidis mitogen complexed with HLA-DR1 reveals a novel superantigen fold and a dimerized superantigen-MHC complex. Zhao Y, Li Z, Drozd SJ, Guo Y, Mourad W, Li H. Structure 12 277-288 (2004)
  103. Mutational analysis of critical residues determining antigen presentation and activation of HLA-DQ0602 restricted T-cell clones. Reichstetter S, Papadopoulos GK, Moustakas AK, Swanson E, Liu AW, Beheray S, Ettinger RA, Nepom GT, Kwok WW. Hum. Immunol. 63 185-193 (2002)
  104. Purified bovine WC1+ gamma delta T lymphocytes are activated by staphylococcal enterotoxins and toxic shock syndrome toxin-1 superantigens: proliferation response, TCR V gamma profile and cytokines expression. Fikri Y, Denis O, Pastoret P, Nyabenda J. Immunol. Lett. 77 87-95 (2001)
  105. Streptococcus dysgalactiae-derived mitogen (SDM), a novel bacterial superantigen: characterization of its biological activity and predicted tertiary structure. Miyoshi-Akiyama T, Zhao J, Kato H, Kikuchi K, Totsuka K, Kataoka Y, Katsumi M, Uchiyama T. Mol. Microbiol. 47 1589-1599 (2003)
  106. Specific T cell recognition of kinetic isomers in the binding of peptide to class II major histocompatibility complex. Rabinowitz JD, Tate K, Lee C, Beeson C, McConnell HM. Proc. Natl. Acad. Sci. U.S.A. 94 8702-8707 (1997)
  107. Rhodamine 123: a useful probe for monitoring T cell activation. Ferlini C, Biselli R, Nisini R, Fattorossi A. Cytometry 21 284-293 (1995)
  108. A toxic shock syndrome toxin 1 mutant that defines a functional site critical for T-cell activation. Cullen CM, Blanco LR, Bonventre PF, Choi E. Infect. Immun. 63 2141-2146 (1995)
  109. Peptide length significantly influences in vitro affinity for MHC class II molecules. O'Brien C, Flower DR, Feighery C. Immunome Res 4 6 (2008)
  110. Structural, energetic, and functional analysis of a protein-protein interface at distinct stages of affinity maturation. Sundberg EJ, Andersen PS, Schlievert PM, Karjalainen K, Mariuzza RA. Structure 11 1151-1161 (2003)
  111. Crystal and solution structures of a superantigen from Yersinia pseudotuberculosis reveal a jelly-roll fold. Donadini R, Liew CW, Kwan AH, Mackay JP, Fields BA. Structure 12 145-156 (2004)
  112. Mitogenic activities of amino acid substitution mutants of staphylococcal enterotoxin B in human and mouse lymphocyte cultures. Neill RJ, Jett M, Crane R, Wootres J, Welch C, Hoover D, Gemski P. Infect. Immun. 64 3007-3015 (1996)
  113. Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules. Bouvier M, Wiley DC. Proc. Natl. Acad. Sci. U.S.A. 93 4583-4588 (1996)
  114. Major histocompatibility complex class I molecule serves as a ligand for presentation of the superantigen staphylococcal enterotoxin B to T cells. Häffner AC, Zepter K, Elmets CA. Proc. Natl. Acad. Sci. U.S.A. 93 3037-3042 (1996)
  115. A patient-derived cytotoxic T-lymphocyte clone and two peptide-dependent monoclonal antibodies recognize HLA-B27-peptide complexes with low stringency for peptide sequences. Huang F, Hermann E, Wang J, Cheng XK, Tsai WC, Wen J, Kuipers JG, Kellner H, Ackermann B, Roth G, Williams KM, Yu DK, Raybourne RB. Infect. Immun. 64 120-127 (1996)
  116. Superantigens subvert the neutrophil response to promote abscess formation and enhance Staphylococcus aureus survival in vivo. Xu SX, Gilmore KJ, Szabo PA, Zeppa JJ, Baroja ML, Haeryfar SM, McCormick JK. Infect. Immun. 82 3588-3598 (2014)
  117. Human leukocyte antigens and systemic lupus erythematosus: a protective role for the HLA-DR6 alleles DRB1*13:02 and *14:03. Furukawa H, Kawasaki A, Oka S, Ito I, Shimada K, Sugii S, Hashimoto A, Komiya A, Fukui N, Kondo Y, Ito S, Hayashi T, Matsumoto I, Kusaoi M, Amano H, Nagai T, Hirohata S, Setoguchi K, Kono H, Okamoto A, Chiba N, Suematsu E, Katayama M, Migita K, Suda A, Ohno S, Hashimoto H, Takasaki Y, Sumida T, Nagaoka S, Tsuchiya N, Tohma S. PLoS ONE 9 e87792 (2014)
  118. Highly biased CDR3 usage in restricted sets of beta chain variable regions during viral superantigen 9 response. Ciurli C, Posnett DN, Sékaly RP, Denis F. J. Exp. Med. 187 253-258 (1998)
  119. Functional analysis of Mycoplasma arthritidis-derived mitogen interactions with class II molecules. Bernatchez C, Al-Daccak R, Mayer PE, Mehindate K, Rink L, Mecheri S, Mourad W. Infect. Immun. 65 2000-2005 (1997)
  120. A T cell receptor V alpha domain expressed in bacteria: does it dimerize in solution? Plaksin D, Chacko S, McPhie P, Bax A, Padlan EA, Margulies DH. J. Exp. Med. 184 1251-1258 (1996)
  121. Regulation of receptor internalization by the major histocompatibility complex class I molecule. Olsson L, Goldstein A, Stagsted J. Proc. Natl. Acad. Sci. U.S.A. 91 9086-9090 (1994)
  122. Correlation of body temperature with protection against staphylococcal enterotoxin B exposure and use in determining vaccine dose-schedule. Boles JW, Pitt ML, LeClaire RD, Gibbs PH, Ulrich RG, Bavari S. Vaccine 21 2791-2796 (2003)
  123. Carboxy-terminal residues of major histocompatibility complex class II-associated peptides control the presentation of the bacterial superantigen toxic shock syndrome toxin-1 to T cells. Wen R, Broussard DR, Surman S, Hogg TL, Blackman MA, Woodland DL. Eur. J. Immunol. 27 772-781 (1997)
  124. Localization of binding sites of staphylococcal enterotoxin B (SEB), a superantigen, for HLA-DR by inhibition with synthetic peptides of SEB. Komisar JL, Small-Harris S, Tseng J. Infect. Immun. 62 4775-4780 (1994)
  125. Staphylococcal enterotoxins bind H-2Db molecules on macrophages. Beharka AA, Iandolo JJ, Chapes SK. Proc. Natl. Acad. Sci. U.S.A. 92 6294-6298 (1995)
  126. Man-made superantigens: Tumor-selective agents for T-cell-based therapy. Dohlsten M, Kalland T, Gunnarsson P, Antonsson P, Molander A, Olsson J, d'Argy R, Ohlsson L, Soegaard M, Persson R, Brodin TN. Adv. Drug Deliv. Rev. 31 131-142 (1998)
  127. Superantigen activation and kinetics of cytokines in the Long-Evans rat. Huang W, Koller LD. Immunology 95 331-338 (1998)
  128. Definition of sites on HLA-DR1 involved in the T cell response to staphylococcal enterotoxins E and C2. Hargreaves RE, Brehm RD, Tranter H, Warrens AN, Lombardi G, Lechler RI. Eur. J. Immunol. 25 3437-3444 (1995)
  129. Direct binding of the Mtv7 superantigen (Mls-1) to soluble MHC class II molecules. Mottershead DG, Hsu PN, Urban RG, Strominger JL, Huber BT. Immunity 2 149-154 (1995)
  130. A natural mutation of the amino acid residue at position 60 destroys staphylococcal enterotoxin A murine T-cell mitogenicity. Mahana W, al-Daccak R, Lévéillé C, Valet JP, Hébert J, Ouellette M, Mourad W. Infect. Immun. 63 2826-2832 (1995)
  131. Association of increased frequencies of HLA-DPB1*05:01 with the presence of anti-Ro/SS-A and anti-La/SS-B antibodies in Japanese rheumatoid arthritis and systemic lupus erythematosus patients. Furukawa H, Oka S, Shimada K, Sugii S, Hashimoto A, Komiya A, Fukui N, Nagai T, Hirohata S, Setoguchi K, Okamoto A, Chiba N, Suematsu E, Miyashita T, Migita K, Suda A, Nagaoka S, Tsuchiya N, Tohma S. PLoS ONE 8 e53910 (2013)
  132. The T cell receptor beta-chain second complementarity determining region loop (CDR2beta governs T cell activation and Vbeta specificity by bacterial superantigens. Nur-ur Rahman AK, Bonsor DA, Herfst CA, Pollard F, Peirce M, Wyatt AW, Kasper KJ, Madrenas J, Sundberg EJ, McCormick JK. J. Biol. Chem. 286 4871-4881 (2011)
  133. Evaluating the role of HLA-DQ polymorphisms on immune response to bacterial superantigens using transgenic mice. Rajagopalan G, Polich G, Sen MM, Singh M, Epstein BE, Lytle AK, Rouse MS, Patel R, David CS. Tissue Antigens 71 135-145 (2008)
  134. Inhibition of T-cell activation with HLA-DR1/DR4 restricted Non-T-cell stimulating peptides. Zhou Q, Cheng Y, Lü H, Zhou W, Li Z. Hum. Immunol. 64 857-865 (2003)
  135. In vitro expansion of T-cell-receptor Valpha2.3(+) CD4(+) T lymphocytes in HLA-DR17(3), DQ2(+) individuals upon stimulation with Mycobacterium tuberculosis. Esin S, Batoni G, Saruhan-Direskeneli G, Harris RA, Grunewald J, Pardini M, Svenson SB, Campa M, Wigzell H. Infect. Immun. 67 3800-3809 (1999)
  136. Molecular characterization of the putative T-cell receptor cavity of the superantigen staphylococcal enterotoxin B. Garcia C, Briggs C, Zhang L, Guan L, Gabriel JL, Rogers TJ. Immunology 94 160-166 (1998)
  137. TCR binding differs for a bacterial superantigen (SEE) and a viral superantigen (Mtv-9). Liao L, Marinescu A, Molano A, Ciurli C, Sekaly RP, Fraser JD, Popowicz A, Posnett DN. J. Exp. Med. 184 1471-1482 (1996)
  138. Mechanisms mediating enhanced neutralization efficacy of staphylococcal enterotoxin B by combinations of monoclonal antibodies. Dutta K, Varshney AK, Franklin MC, Goger M, Wang X, Fries BC. J. Biol. Chem. 290 6715-6730 (2015)
  139. Staphylococcus aureus isolates encode variant staphylococcal enterotoxin B proteins that are diverse in superantigenicity and lethality. Kohler PL, Greenwood SD, Nookala S, Kotb M, Kranz DM, Schlievert PM. PLoS ONE 7 e41157 (2012)
  140. Superantigen natural affinity maturation revealed by the crystal structure of staphylococcal enterotoxin G and its binding to T-cell receptor Vbeta8.2. Fernández MM, Bhattacharya S, De Marzi MC, Brown PH, Kerzic M, Schuck P, Mariuzza RA, Malchiodi EL. Proteins 68 389-402 (2007)
  141. Persistence of zinc-binding bacterial superantigens at the surface of antigen-presenting cells contributes to the extreme potency of these superantigens as T-cell activators. Pless DD, Ruthel G, Reinke EK, Ulrich RG, Bavari S. Infect. Immun. 73 5358-5366 (2005)
  142. In vitro and in vivo T cell oligoclonality following chronic stimulation with staphylococcal superantigens. Kim KS, Jacob N, Stohl W. Clin. Immunol. 108 182-189 (2003)
  143. Towards the MHC-peptide combinatorics. Kangueane P, Sakharkar MK, Kolatkar PR, Ren EC. Hum. Immunol. 62 539-556 (2001)
  144. Production of tumor necrosis factor alpha in human T lymphocytes by staphylococcal enterotoxin B correlates with toxin-induced proliferation and is regulated through protein kinase C. Yan Z, Yang DC, Neill R, Jett M. Infect. Immun. 67 6611-6618 (1999)
  145. Major histocompatibility class I molecules present Urtica dioica agglutinin, a superantigen of vegetal origin, to T lymphocytes. Rovira P, Buckle M, Abastado JP, Peumans WJ, Truffa-Bachi P. Eur. J. Immunol. 29 1571-1580 (1999)
  146. Molecular docking of superantigens with class II major histocompatibility complex proteins. Olson MA, Cuff L. J. Mol. Recognit. 10 277-289 (1997)
  147. A mutation of F47 to A in staphylococcus enterotoxin A activates the T-cell receptor Vbeta repertoire in vivo. Rosendahl A, Hansson J, Antonsson P, Sékaly RP, Kalland T, Dohlsten M. Infect. Immun. 65 5118-5124 (1997)
  148. Differential geometric analysis of alterations in MH α-helices. Hischenhuber B, Havlicek H, Todoric J, Höllrigl-Binder S, Schreiner W, Knapp B. J Comput Chem 34 1862-1879 (2013)
  149. Zinc induces dimerization of the class II major histocompatibility complex molecule that leads to cooperative binding to a superantigen. Li H, Zhao Y, Guo Y, Li Z, Eisele L, Mourad W. J. Biol. Chem. 282 5991-6000 (2007)
  150. The immune function of MHC class II molecules mutated in the putative superdimer interface. Hayball JD, Lake RA. Mol. Cell. Biochem. 273 1-9 (2005)
  151. Crystal structure of a dimeric form of streptococcal pyrogenic exotoxin A (SpeA1). Baker MD, Gendlina I, Collins CM, Acharya KR. Protein Sci. 13 2285-2290 (2004)
  152. Overview of clinical trials employing antibody-targeted superantigens. Persson B, Persson R, Weiner LM, Alpaugh RK. Adv. Drug Deliv. Rev. 31 143-152 (1998)
  153. Analysis of functional regions of YPM, a superantigen derived from gram-negative bacteria. Ito Y, Seprényi G, Abe J, Kohsaka T. Eur. J. Biochem. 263 326-337 (1999)
  154. T cell receptor beta chain genotyping in Australian relapsing-remitting multiple sclerosis patients. Buhler MM, Bennetts BH, Heard RN, Stewart GJ. Mult. Scler. 6 140-147 (2000)
  155. A dominant V beta bias in the CTL response after HSV-1 infection is determined by peptide residues predicted to also interact with the TCR beta-chain CDR3. Turner SJ, Carbone FR. Mol. Immunol. 35 307-316 (1998)
  156. Macrophage cell lines derived from major histocompatibility complex II-negative mice. Beharka AA, Armstrong JW, Chapes SK. In Vitro Cell. Dev. Biol. Anim. 34 499-507 (1998)
  157. A recombinant single-chain human class II MHC molecule (HLA-DR1) as a covalently linked heterotrimer of alpha chain, beta chain, and antigenic peptide, with immunogenicity in vitro and reduced affinity for bacterial superantigens. Zhu X, Bavari S, Ulrich R, Sadegh-Nasseri S, Ferrone S, McHugh L, Mage M. Eur. J. Immunol. 27 1933-1941 (1997)
  158. V alpha domain modulates the multiple topologies of mouse T cell receptor V beta20/staphylococcal enterotoxins A and E complexes. Bravo de Alba Y, Marche PN, Cazenave PA, Cloutier I, Sekaly RP, Thibodeau J. Eur. J. Immunol. 27 92-99 (1997)
  159. Molecular modeling of a T-cell receptor bound to a major histocompatibility complex molecule: implications for T-cell recognition. Almagro JC, Vargas-Madrazo E, Lara-Ochoa F, Horjales E. Protein Sci. 4 1708-1717 (1995)
  160. Clarifying the mechanism of superantigen toxicity. Fraser JD. PLoS Biol. 9 e1001145 (2011)
  161. HLA-DR alpha 2 mediates negative signalling via binding to Tirc7 leading to anti-inflammatory and apoptotic effects in lymphocytes in vitro and in vivo. Bulwin GC, Wälter S, Schlawinsky M, Heinemann T, Schulze A, Höhne W, Krause G, Kalka-Moll W, Fraser P, Volk HD, Löhler J, Milford EL, Utku N. PLoS ONE 3 e1576 (2008)
  162. Types of inter-atomic interactions at the MHC-peptide interface: identifying commonality from accumulated data. Adrian PE, Rajaseger G, Mathura VS, Sakharkar MK, Kangueane P. BMC Struct. Biol. 2 2 (2002)
  163. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion. Wright AD, Chapes SK. Cell. Immunol. 197 129-135 (1999)
  164. Functional activity of staphylococcal enterotoxin A requires interactions with both the alpha and beta chains of HLA-DR. Dowd JE, Karr RW, Karp DR. Mol. Immunol. 33 1267-1274 (1996)
  165. Structure of Staphylococcal Enterotoxin E in Complex with TCR Defines the Role of TCR Loop Positioning in Superantigen Recognition. Rödström KE, Regenthal P, Lindkvist-Petersson K. PLoS ONE 10 e0131988 (2015)
  166. Crystal structure of staphylococcal enterotoxin G (SEG) in complex with a mouse T-cell receptor {beta} chain. Fernández MM, Cho S, De Marzi MC, Kerzic MC, Robinson H, Mariuzza RA, Malchiodi EL. J. Biol. Chem. 286 1189-1195 (2011)
  167. Prediction of the multimeric assembly of staphylococcal enterotoxin A with cell-surface protein receptors. Cuff L, Ulrich RG, Olson MA. J. Mol. Graph. Model. 21 473-486 (2003)
  168. Staphylococcal enterotoxin H contrasts closely related enterotoxins in species reactivity. Pettersson H, Forsberg G. Immunology 106 71-79 (2002)
  169. Structural basis for abrogated binding between staphylococcal enterotoxin A superantigen vaccine and MHC-IIalpha. Krupka HI, Segelke BW, Ulrich RG, Ringhofer S, Knapp M, Rupp B. Protein Sci. 11 642-651 (2002)
  170. Analysis of peptide affinity to major histocompatibility complex proteins for the two-step binding mechanism. Berezhkovskiy LM, Astafieva IV, Cardoso C. Anal. Biochem. 308 239-246 (2002)
  171. Mutational analysis of superantigen activity responsible for the induction of skin erythema by streptococcal pyrogenic exotoxin C. Yamaoka J, Nakamura E, Takeda Y, Imamura S, Minato N. Infect. Immun. 66 5020-5026 (1998)
  172. The solution structure of a class II major histocompatibility complex superantigen binding domain. Jablonsky MJ, Subramaniam PS, Johnson HM, Russell JK, Krishna NR. Biochem. Biophys. Res. Commun. 234 660-665 (1997)
  173. Expression of bacterial superantigen genes in mice induces localized mononuclear cell inflammatory responses. Dow SW, Potter TA. J. Clin. Invest. 99 2616-2624 (1997)
  174. Bacterial superantigen specificities of mouse T cell receptor V beta 20. Bravo de Alba Y, Cazenave PA, Marche PN. Eur. J. Immunol. 25 3425-3430 (1995)
  175. Major histocompatibility complex class II binding site for streptococcal pyrogenic (erythrogenic) toxin A. Hartwig UF, Gerlach D, Fleischer B. Med. Microbiol. Immunol. 183 257-264 (1994)
  176. Human Leukocyte Antigen and Systemic Sclerosis in Japanese: The Sign of the Four Independent Protective Alleles, DRB1*13:02, DRB1*14:06, DQB1*03:01, and DPB1*02:01. Furukawa H, Oka S, Kawasaki A, Shimada K, Sugii S, Matsushita T, Hashimoto A, Komiya A, Fukui N, Kobayashi K, Osada A, Ihata A, Kondo Y, Nagai T, Setoguchi K, Okamoto A, Okamoto A, Chiba N, Suematsu E, Kono H, Katayama M, Hirohata S, Sumida T, Migita K, Hasegawa M, Fujimoto M, Sato S, Nagaoka S, Takehara K, Tohma S, Tsuchiya N. PLoS ONE 11 e0154255 (2016)
  177. Soybean seeds: a practical host for the production of functional subunit vaccines. Hudson LC, Garg R, Bost KL, Piller KJ. Biomed Res Int 2014 340804 (2014)
  178. Uptake and intracellular trafficking of superantigens in dendritic cells. Ganem MB, De Marzi MC, Fernández-Lynch MJ, Jancic C, Vermeulen M, Geffner J, Mariuzza RA, Fernández MM, Malchiodi EL. PLoS ONE 8 e66244 (2013)
  179. The tortuous journey of a biochemist to immunoland and what he found there. Strominger JL. Annu. Rev. Immunol. 24 1-31 (2006)
  180. Crystal structures of T cell receptor (beta) chains related to rheumatoid arthritis. Li H, Van Vranken S, Zhao Y, Li Z, Guo Y, Eisele L, Li Y. Protein Sci. 14 3025-3038 (2005)
  181. Partial T cell activation with an altered superantigenic ligand. Hayball JD, Lake RA. Immunol. Cell Biol. 78 13-19 (2000)
  182. Cytokine induction by Mycoplasma arthritidis-derived superantigen (MAS), but not by TSST-1 or SEC-3, is correlated to certain HLA-DR types. Alvarez-Ossorio L, Johannsen M, Alvarez-Ossorio R, Nicklas W, Kirchner H, Rink L. Scand. J. Immunol. 47 43-47 (1998)
  183. Identification of antigenic sites on staphylococcal enterotoxin B and toxoid. Wood AC, Chadwick JS, Brehm RS, Todd I, Arbuthnott JP, Tranter HS. FEMS Immunol. Med. Microbiol. 17 1-10 (1997)
  184. Enhanced prevalence of T cell receptor V beta 7 gene family expression in human intestine-associated T lymphocytes. Esin S, Hodara V, Jeddi-Tehrani M, Grunewald J, Svenberg T, Andersson R, Wigzell H. Immunol. Lett. 51 149-155 (1996)
  185. The domain structure and functional relationships in the bacterial superantigen, SEB. Hayball JD, O'Hehir RE, Lamb JR, Lake RA. Biol. Chem. Hoppe-Seyler 376 303-309 (1995)
  186. Structural basis for the neutralization and specificity of Staphylococcal enterotoxin B against its MHC Class II binding site. Xia T, Liang S, Wang H, Hu S, Sun Y, Yu X, Han J, Li J, Guo S, Dai J, Lou Z, Guo Y. MAbs 6 119-129 (2014)
  187. Assessment of the functional regions of the superantigen staphylococcal enterotoxin B. Zhang L, Rogers TJ. Toxins (Basel) 5 1859-1871 (2013)
  188. HLA-DO increases bacterial superantigen binding to human MHC molecules by inhibiting dissociation of class II-associated invariant chain peptides. Pezeshki AM, Azar GA, Mourad W, Routy JP, Boulassel MR, Denzin LK, Thibodeau J. Hum. Immunol. 74 1280-1287 (2013)
  189. Identification of a new HLA-DRB1 allele in three members of an Italian family. Garino E, Berrino M, Mazzola G, Boccadoro M, Bruno B, Bertinetto F, Bertola L, Caropreso P, Frisaldi E, Marin F, Panniello ML, Tondat F, Dall'Omo AM. Tissue Antigens 64 210-212 (2004)
  190. Interferon-gamma administration after abdominal surgery rescues antigen-specific helper T cell immune reactivity. Rentenaar RJ, de Metz J, Bunders M, Wertheim-van Dillen PM, Gouma DJ, Romijn JA, Sauerwein HP, ten Berge IJ, van Lier RA. Clin. Exp. Immunol. 125 401-408 (2001)
  191. Pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 superantigen. Aude-Garcia C, Attinger A, Housset D, MacDonald HR, Acha-Orbea H, Marche PN, Jouvin-Marche E. Mol. Immunol. 37 1005-1012 (2000)
  192. Identification of domains involved in superantigenicity of streptococcal pyrogenic exotoxin F (SpeF). Eriksson A, Holm SE, Norgren M. Microb. Pathog. 25 279-290 (1998)
  193. The interchain disulfide linkage of T-cell antigen receptor-alpha and -beta chains is a prerequisite for T-cell activation. Li Z, Wu W, Kemp O, Stephen M, Manolios N. Cell. Immunol. 190 101-111 (1998)
  194. Fully human antibody exhibits pan-human leukocyte antigen-DR recognition and high in vitro/vivo efficacy against human leukocyte antigen-DR-positive lymphomas. Tawara T, Hasegawa K, Sugiura Y, Tahara T, Ishida I, Kataoka S. Cancer Sci. 98 921-928 (2007)
  195. Modeling of receptor mimics that inhibit superantigen pathogenesis. Möllhoff M, Zanden HB, Shiflett PR, Gupta G. J. Mol. Recognit. 18 73-83 (2005)
  196. Identification of the novel allele HLA-DRB1*1137 which probably originated from DRB1*11011: implications for mismatch with its ancestor allele at bone marrow transplantation. Elsner HA, Kotsch K, Blasczyk R. Tissue Antigens 58 47-49 (2001)
  197. Regulation of the immune response--lessons from transgenic models. Fazekas de St Groth B. Aust N Z J Med 25 761-767 (1995)
  198. On recognizing 'shades-of-gray' (self-nonself discrimination) or 'colour' (Integrity model) by the immune system. Dembic Z. Scand. J. Immunol. 78 325-338 (2013)
  199. Crystal structure of Streptococcus dysgalactiae-derived mitogen reveals a zinc-binding site and alterations in TcR binding. Saarinen S, Kato H, Uchiyama T, Miyoshi-Akiyama T, Papageorgiou AC. J. Mol. Biol. 373 1089-1097 (2007)
  200. Roles of I-E molecule and CD28 costimulation in induction of suppression by staphylococcal enterotoxin B in vivo. Hsu LJ, Lin YS. Cell. Immunol. 212 35-43 (2001)
  201. Mapping of staphylococcal enterotoxin A functional binding sites and presentation by monoclonal antibodies and fusion proteins. Mahana W. Infect. Immun. 67 1894-1900 (1999)
  202. Mouse xenoantigens contribute to rat T-cell Vbeta repertoire generation in mixed xenogeneic bone marrow chimeras. Huang Y, Ildstad ST, Neipp M, Shirwan H. Immunology 100 317-325 (2000)
  203. Conformation study of HA(306-318) antigenic peptide of the haemagglutinin influenza virus protein. Bertrand A, Brito RM, Alix AJ, Lancelin JM, Carvalho RA, Geraldes CF, Lakhdar-Ghazal F. Spectrochim Acta A Mol Biomol Spectrosc 65 711-718 (2006)
  204. Antitumour response of a double mutant of staphylococcal enterotoxin C2 with the decreased affinity for MHC class II molecule. Cheng X, Cao P, Ji X, Lu W, Cai X, Hu C, Wang Z, Zhang S. Scand. J. Immunol. 71 169-175 (2010)
  205. HLA-DRB1 may be antagonistically regulated by the coordinately evolved promoter and 3'-UTR under stabilizing selection. Liu B, Fu Y, Wang Z, Zhou S, Sun Y, Wu Y, Xu A. PLoS ONE 6 e25794 (2011)
  206. Evaluation of a recombinant double mutant of staphylococcal enterotoxin B (SEB-H32Q/K173E) with enhanced antitumor activity effects and decreased pyrexia. Gu L, Yue J, Zheng Y, Zheng X, Wang J, Wang Y, Li J, Jiang Y, Jiang H. PLoS ONE 8 e55892 (2013)
  207. A model of an integrated immune system pathway in Homo sapiens and its interaction with superantigen producing expression regulatory pathway in Staphylococcus aureus: comparing behavior of pathogen perturbed and unperturbed pathway. Tomar N, De RK. PLoS ONE 8 e80918 (2013)
  208. Control of established colon cancer xenografts using a novel humanized single chain antibody-streptococcal superantigen fusion protein targeting the 5T4 oncofetal antigen. Patterson KG, Dixon Pittaro JL, Bastedo PS, Hess DA, Haeryfar SM, McCormick JK. PLoS ONE 9 e95200 (2014)
  209. Two common structural motifs for TCR recognition by staphylococcal enterotoxins. Rödström KE, Regenthal P, Bahl C, Ford A, Baker D, Lindkvist-Petersson K. Sci Rep 6 25796 (2016)
  210. Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: An overview. Benkerroum N. Crit Rev Food Sci Nutr 1-28 (2017)
  211. Staphylococcal enterotoxin-like X (SElX) is a unique superantigen with functional features of two major families of staphylococcal virulence factors. Langley RJ, Ting YT, Clow F, Young PG, Radcliff FJ, Choi JM, Sequeira RP, Holtfreter S, Baker H, Fraser JD. PLoS Pathog. 13 e1006549 (2017)
  212. Effects of HLA-DRB1 alleles on susceptibility and clinical manifestations in Japanese patients with adult onset Still's disease. Asano T, Furukawa H, Sato S, Yashiro M, Kobayashi H, Watanabe H, Suzuki E, Ito T, Ubara Y, Kobayashi D, Iwanaga N, Izumi Y, Fujikawa K, Yamasaki S, Nakamura T, Koga T, Shimizu T, Umeda M, Nonaka F, Yasunami M, Ueki Y, Eguchi K, Tsuchiya N, Tohma S, Yoshiura KI, Ohira H, Kawakami A, Migita K. Arthritis Res. Ther. 19 199 (2017)


Related citations provided by authors (1)

  1. Crystallographic Analysis of Endogenous Peptides Associated with Hla-Dr1 Suggests a Common, Polyproline II-Like Conformation for Bound Peptides. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC Proc. Natl. Acad. Sci. U.S.A. 93 734- (1996)