1sdw Citations

Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex.

Science 304 864-7 (2004)
Cited: 166 times
EuropePMC logo PMID: 15131304

Abstract

Copper active sites play a major role in enzymatic activation of dioxygen. We trapped the copper-dioxygen complex in the enzyme peptidylglycine-alphahydroxylating monooxygenase (PHM) by freezing protein crystals that had been soaked with a slow substrate and ascorbate in the presence of oxygen. The x-ray crystal structure of this precatalytic complex, determined to 1.85-angstrom resolution, shows that oxygen binds to one of the coppers in the enzyme with an end-on geometry. Given this structure, it is likely that dioxygen is directly involved in the electron transfer and hydrogen abstraction steps of the PHM reaction. These insights may apply to other copper oxygen-activating enzymes, such as dopamine beta-monooxygenase, and to the design of biomimetic complexes.

Reviews - 1sdw mentioned but not cited (4)

  1. Copper active sites in biology. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem Rev 114 3659-3853 (2014)
  2. Elaboration of copper-oxygen mediated C-H activation chemistry in consideration of future fuel and feedstock generation. Lee JY, Karlin KD. Curr Opin Chem Biol 25 184-193 (2015)
  3. Silver Ions as a Tool for Understanding Different Aspects of Copper Metabolism. Puchkova LV, Broggini M, Polishchuk EV, Ilyechova EY, Polishchuk RS. Nutrients 11 E1364 (2019)
  4. Peptidylglycine α-amidating monooxygenase as a therapeutic target or biomarker for human diseases. Merkler DJ, Hawley AJ, Eipper BA, Mains RE. Br J Pharmacol 179 3306-3324 (2022)

Articles - 1sdw mentioned but not cited (13)

  1. Stepwise protonation and electron-transfer reduction of a primary copper-dioxygen adduct. Peterson RL, Ginsbach JW, Cowley RE, Qayyum MF, Himes RA, Siegler MA, Moore CD, Hedman B, Hodgson KO, Fukuzumi S, Solomon EI, Karlin KD. J Am Chem Soc 135 16454-16467 (2013)
  2. The catalytic copper of peptidylglycine alpha-hydroxylating monooxygenase also plays a critical structural role. Siebert X, Eipper BA, Mains RE, Prigge ST, Blackburn NJ, Amzel LM. Biophys J 89 3312-3319 (2005)
  3. Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases. Cowley RE, Tian L, Solomon EI. Proc Natl Acad Sci U S A 113 12035-12040 (2016)
  4. Copper-peptide complex structure and reactivity when found in conserved His-X(aa)-His sequences. Park GY, Lee JY, Himes RA, Thomas GS, Blackburn NJ, Karlin KD. J Am Chem Soc 136 12532-12535 (2014)
  5. Reaction mechanism of the bicopper enzyme peptidylglycine α-hydroxylating monooxygenase. Abad E, Rommel JB, Kästner J. J Biol Chem 289 13726-13738 (2014)
  6. An unprecedented dioxygen species revealed by serial femtosecond rotation crystallography in copper nitrite reductase. Halsted TP, Yamashita K, Hirata K, Ago H, Ueno G, Tosha T, Eady RR, Antonyuk SV, Yamamoto M, Hasnain SS. IUCrJ 5 22-31 (2018)
  7. Coordination of peroxide to the Cu(M) center of peptidylglycine α-hydroxylating monooxygenase (PHM): structural and computational study. Rudzka K, Moreno DM, Eipper B, Mains R, Estrin DA, Amzel LM. J Biol Inorg Chem 18 223-232 (2013)
  8. Evidence for substrate preorganization in the peptidylglycine α-amidating monooxygenase reaction describing the contribution of ground state structure to hydrogen tunneling. McIntyre NR, Lowe EW, Belof JL, Ivkovic M, Shafer J, Space B, Merkler DJ. J Am Chem Soc 132 16393-16402 (2010)
  9. Substituted hippurates and hippurate analogs as substrates and inhibitors of peptidylglycine alpha-hydroxylating monooxygenase (PHM). Merkler DJ, Asser AS, Baumgart LE, Carballo N, Carpenter SE, Chew GH, Cosner CC, Dusi J, Galloway LC, Lowe AB, Lowe EW, King L, Kendig RD, Kline PC, Malka R, Merkler KA, McIntyre NR, Romero M, Wilcox BJ, Owen TC. Bioorg Med Chem 16 10061-10074 (2008)
  10. Cellular homologs of the double jelly-roll major capsid proteins clarify the origins of an ancient virus kingdom. Krupovic M, Makarova KS, Koonin EV. Proc Natl Acad Sci U S A 119 e2120620119 (2022)
  11. Imino-oxy acetic acid dealkylation as evidence for an inner-sphere alcohol intermediate in the reaction catalyzed by peptidylglycine alpha-hydroxylating monooxygenase. McIntyre NR, Lowe EW, Merkler DJ. J Am Chem Soc 131 10308-10319 (2009)
  12. A Thioether-Ligated Cupric Superoxide Model with Hydrogen Atom Abstraction Reactivity. Bhadra M, Transue WJ, Lim H, Cowley RE, Lee JYC, Siegler MA, Josephs P, Henkel G, Lerch M, Schindler S, Neuba A, Hodgson KO, Hedman B, Solomon EI, Karlin KD. J Am Chem Soc 143 3707-3713 (2021)
  13. Inactivation of peptidylglycine α-hydroxylating monooxygenase by cinnamic acid analogs. McIntyre NR, Lowe EW, Battistini MR, Leahy JW, Merkler DJ. J Enzyme Inhib Med Chem 31 551-562 (2016)


Reviews citing this publication (27)

  1. Protein design: toward functional metalloenzymes. Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Chem Rev 114 3495-3578 (2014)
  2. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Loenarz C, Schofield CJ. Trends Biochem Sci 36 7-18 (2011)
  3. The copper-enzyme family of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. Klinman JP. J Biol Chem 281 3013-3016 (2006)
  4. Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Chem Rev 117 2059-2107 (2017)
  5. Oxidant types in copper-dioxygen chemistry: the ligand coordination defines the Cu(n)-O2 structure and subsequent reactivity. Hatcher LQ, Karlin KD. J Biol Inorg Chem 9 669-683 (2004)
  6. Cellulose degradation by polysaccharide monooxygenases. Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA. Annu Rev Biochem 84 923-946 (2015)
  7. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Hemsworth GR, Davies GJ, Walton PH. Curr Opin Struct Biol 23 660-668 (2013)
  8. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities. Decker A, Solomon EI. Curr Opin Chem Biol 9 152-163 (2005)
  9. Mononuclear copper active-oxygen complexes. Itoh S. Curr Opin Chem Biol 10 115-122 (2006)
  10. Copper dioxygen (bio)inorganic chemistry. Solomon EI, Ginsbach JW, Heppner DE, Kieber-Emmons MT, Kjaergaard CH, Smeets PJ, Tian L, Woertink JS. Faraday Discuss 148 11-39; discussion 97-108 (2011)
  11. Activation of dioxygen by copper metalloproteins and insights from model complexes. Quist DA, Diaz DE, Liu JJ, Karlin KD. J Biol Inorg Chem 22 253-288 (2017)
  12. A tale of two methane monooxygenases. Ross MO, Rosenzweig AC. J Biol Inorg Chem 22 307-319 (2017)
  13. Advances in kinetic protein crystallography. Bourgeois D, Royant A. Curr Opin Struct Biol 15 538-547 (2005)
  14. 60 YEARS OF POMC: From POMC and α-MSH to PAM, molecular oxygen, copper, and vitamin C. Kumar D, Mains RE, Eipper BA. J Mol Endocrinol 56 T63-76 (2016)
  15. Structural insights into dioxygen-activating copper enzymes. Rosenzweig AC, Sazinsky MH. Curr Opin Struct Biol 16 729-735 (2006)
  16. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Chem Rev 118 10840-11022 (2018)
  17. Copper binding to the Alzheimer's disease amyloid precursor protein. Kong GK, Miles LA, Crespi GA, Morton CJ, Ng HL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW. Eur Biophys J 37 269-279 (2008)
  18. Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O2 Model Systems to Organometallic Transformations. Trammell R, Rajabimoghadam K, Garcia-Bosch I. Chem Rev 119 2954-3031 (2019)
  19. Peptidylgycine α-amidating monooxygenase and copper: a gene-nutrient interaction critical to nervous system function. Bousquet-Moore D, Mains RE, Eipper BA. J Neurosci Res 88 2535-2545 (2010)
  20. Reduction of dioxygen by enzymes containing copper. Bento I, Carrondo MA, Lindley PF. J Biol Inorg Chem 11 539-547 (2006)
  21. Using synthetic chemistry to understand copper protein active sites: a personal perspective. Tolman WB. J Biol Inorg Chem 11 261-271 (2006)
  22. Advances in studying bioinorganic reaction mechanisms: isotopic probes of activated oxygen intermediates in metalloenzymes. Roth JP. Curr Opin Chem Biol 11 142-150 (2007)
  23. High-valent copper in biomimetic and biological oxidations. Keown W, Gary JB, Stack TD. J Biol Inorg Chem 22 289-305 (2017)
  24. Dioxygen Binding, Activation, and Reduction to H2O by Cu Enzymes. Solomon EI. Inorg Chem 55 6364-6375 (2016)
  25. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Chem Rev 122 12046-12109 (2022)
  26. The power of integrating kinetic isotope effects into the formalism of the Michaelis-Menten equation. Klinman JP. FEBS J 281 489-497 (2014)
  27. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Elife 12 e87705 (2023)

Articles citing this publication (122)

  1. Mononuclear Cu-O2 complexes: geometries, spectroscopic properties, electronic structures, and reactivity. Cramer CJ, Tolman WB. Acc Chem Res 40 601-608 (2007)
  2. The copper active site of CBM33 polysaccharide oxygenases. Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP, Parkin A, Davies GJ, Walton PH. J Am Chem Soc 135 6069-6077 (2013)
  3. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Kjaergaard CH, Qayyum MF, Wong SD, Xu F, Hemsworth GR, Walton DJ, Young NA, Davies GJ, Walton PH, Johansen KS, Hodgson KO, Hedman B, Solomon EI. Proc Natl Acad Sci U S A 111 8797-8802 (2014)
  4. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance. Jiang D, Men L, Wang J, Zhang Y, Chickenyen S, Wang Y, Zhou F. Biochemistry 46 9270-9282 (2007)
  5. Crystallographic characterization of a synthetic 1:1 end-on copper dioxygen adduct complex. Würtele C, Gaoutchenova E, Harms K, Holthausen MC, Sundermeyer J, Schindler S. Angew Chem Int Ed Engl 45 3867-3869 (2006)
  6. Reactions of a copper(II) superoxo complex lead to C-H and O-H substrate oxygenation: modeling copper-monooxygenase C-H hydroxylation. Maiti D, Lee DH, Gaoutchenova K, Würtele C, Holthausen MC, Sarjeant AA, Sundermeyer J, Schindler S, Karlin KD. Angew Chem Int Ed Engl 47 82-85 (2008)
  7. Cupric superoxo-mediated intermolecular C-H activation chemistry. Peterson RL, Himes RA, Kotani H, Suenobu T, Tian L, Siegler MA, Solomon EI, Fukuzumi S, Karlin KD. J Am Chem Soc 133 1702-1705 (2011)
  8. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms. Chen P, Solomon EI. Proc Natl Acad Sci U S A 101 13105-13110 (2004)
  9. Geometric and electronic structure and reactivity of a mononuclear "side-on" nickel(III)-peroxo complex. Cho J, Sarangi R, Annaraj J, Kim SY, Kubo M, Ogura T, Solomon EI, Nam W. Nat Chem 1 568-572 (2009)
  10. VTVH-MCD and DFT studies of thiolate bonding to [FeNO]7/[FeO2]8 complexes of isopenicillin N synthase: substrate determination of oxidase versus oxygenase activity in nonheme Fe enzymes. Brown CD, Neidig ML, Neibergall MB, Lipscomb JD, Solomon EI. J Am Chem Soc 129 7427-7438 (2007)
  11. Enzymatic C-H activation by metal-superoxo intermediates. Bollinger JM, Krebs C. Curr Opin Chem Biol 11 151-158 (2007)
  12. X-ray absorption edge spectroscopy and computational studies on LCuO2 species: Superoxide-Cu(II) versus peroxide-Cu(III) bonding. Sarangi R, Aboelella N, Fujisawa K, Tolman WB, Hedman B, Hodgson KO, Solomon EI. J Am Chem Soc 128 8286-8296 (2006)
  13. Toluene and ethylbenzene aliphatic C-H bond oxidations initiated by a dicopper(II)-mu-1,2-peroxo complex. Lucas HR, Li L, Sarjeant AA, Vance MA, Solomon EI, Karlin KD. J Am Chem Soc 131 3230-3245 (2009)
  14. Structural studies of the Alzheimer's amyloid precursor protein copper-binding domain reveal how it binds copper ions. Kong GK, Adams JJ, Harris HH, Boas JF, Curtain CC, Galatis D, Masters CL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW. J Mol Biol 367 148-161 (2007)
  15. The Role of the Secondary Coordination Sphere in a Fungal Polysaccharide Monooxygenase. Span EA, Suess DLM, Deller MC, Britt RD, Marletta MA. ACS Chem Biol 12 1095-1103 (2017)
  16. O2 and N2O activation by Bi-, Tri-, and tetranuclear Cu clusters in biology. Solomon EI, Sarangi R, Woertink JS, Augustine AJ, Yoon J, Ghosh S. Acc Chem Res 40 581-591 (2007)
  17. Mechanistic insights into the oxidation of substituted phenols via hydrogen atom abstraction by a cupric-superoxo complex. Lee JY, Peterson RL, Ohkubo K, Garcia-Bosch I, Himes RA, Woertink J, Moore CD, Solomon EI, Fukuzumi S, Karlin KD. J Am Chem Soc 136 9925-9937 (2014)
  18. Synthesis, structural, and spectroscopic characterization and reactivities of mononuclear cobalt(III)-peroxo complexes. Cho J, Sarangi R, Kang HY, Lee JY, Kubo M, Ogura T, Solomon EI, Nam W. J Am Chem Soc 132 16977-16986 (2010)
  19. RPE65, visual cycle retinol isomerase, is not inherently 11-cis-specific: support for a carbocation mechanism of retinol isomerization. Redmond TM, Poliakov E, Kuo S, Chander P, Gentleman S. J Biol Chem 285 1919-1927 (2010)
  20. Intermediates in the oxygenation of a nonheme diiron(II) complex, including the first evidence for a bound superoxo species. Shan X, Que L. Proc Natl Acad Sci U S A 102 5340-5345 (2005)
  21. Amidation of bioactive peptides: the structure of the lyase domain of the amidating enzyme. Chufán EE, De M, Eipper BA, Mains RE, Amzel LM. Structure 17 965-973 (2009)
  22. Amine oxidative N-dealkylation via cupric hydroperoxide Cu-OOH homolytic cleavage followed by site-specific fenton chemistry. Kim S, Ginsbach JW, Lee JY, Peterson RL, Liu JJ, Siegler MA, Sarjeant AA, Solomon EI, Karlin KD. J Am Chem Soc 137 2867-2874 (2015)
  23. Spectroscopic and computational studies of an end-on bound superoxo-Cu(II) complex: geometric and electronic factors that determine the ground state. Woertink JS, Tian L, Maiti D, Lucas HR, Himes RA, Karlin KD, Neese F, Würtele C, Holthausen MC, Bill E, Sundermeyer J, Schindler S, Solomon EI. Inorg Chem 49 9450-9459 (2010)
  24. Calix[6]tren and copper(II): a third generation of funnel complexes on the way to redox calix-zymes. Izzet G, Douziech B, Prangé T, Tomas A, Jabin I, Le Mest Y, Reinaud O. Proc Natl Acad Sci U S A 102 6831-6836 (2005)
  25. Characterization of the structure and reactivity of monocopper-oxygen complexes supported by beta-diketiminate and anilido-imine ligands. Gherman BF, Tolman WB, Cramer CJ. J Comput Chem 27 1950-1961 (2006)
  26. Kinetics and thermodynamics of formation and electron-transfer reactions of Cu-O2 and Cu2-O2 complexes. Fukuzumi S, Karlin KD. Coord Chem Rev 257 187-195 (2013)
  27. A N3S(thioether)-ligated Cu(II)-superoxo with enhanced reactivity. Kim S, Lee JY, Cowley RE, Ginsbach JW, Siegler MA, Solomon EI, Karlin KD. J Am Chem Soc 137 2796-2799 (2015)
  28. Copper-hydroperoxo-mediated N-debenzylation chemistry mimicking aspects of copper monooxygenases. Maiti D, Narducci Sarjeant AA, Karlin KD. Inorg Chem 47 8736-8747 (2008)
  29. De novo-designed metallopeptides with type 2 copper centers: modulation of reduction potentials and nitrite reductase activities. Yu F, Penner-Hahn JE, Pecoraro VL. J Am Chem Soc 135 18096-18107 (2013)
  30. Factors that control catalytic two- versus four-electron reduction of dioxygen by copper complexes. Fukuzumi S, Tahsini L, Lee YM, Ohkubo K, Nam W, Karlin KD. J Am Chem Soc 134 7025-7035 (2012)
  31. Intermittent hypoxia activates peptidylglycine alpha-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing. Sharma SD, Raghuraman G, Lee MS, Prabhakar NR, Kumar GK. J Appl Physiol (1985) 106 12-19 (2009)
  32. Intramolecular Hydrogen Bonding Enhances Stability and Reactivity of Mononuclear Cupric Superoxide Complexes. Bhadra M, Lee JYC, Cowley RE, Kim S, Siegler MA, Solomon EI, Karlin KD. J Am Chem Soc 140 9042-9045 (2018)
  33. Nucleophilic reactivity of a copper(II)-superoxide complex. Pirovano P, Magherusan AM, McGlynn C, Ure A, Lynes A, McDonald AR. Angew Chem Int Ed Engl 53 5946-5950 (2014)
  34. Correlation of the electronic and geometric structures in mononuclear copper(II) superoxide complexes. Ginsbach JW, Peterson RL, Cowley RE, Karlin KD, Solomon EI. Inorg Chem 52 12872-12874 (2013)
  35. Temperature-independent catalytic two-electron reduction of dioxygen by ferrocenes with a copper(II) tris[2-(2-pyridyl)ethyl]amine catalyst in the presence of perchloric acid. Das D, Lee YM, Ohkubo K, Nam W, Karlin KD, Fukuzumi S. J Am Chem Soc 135 2825-2834 (2013)
  36. Models for dioxygen activation by the CuB site of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase. Gherman BF, Heppner DE, Tolman WB, Cramer CJ. J Biol Inorg Chem 11 197-205 (2006)
  37. Copper-catalyzed rearrangement of tertiary amines through oxidation of aliphatic C-H bonds in air or oxygen: direct synthesis of α-amino acetals. Tian JS, Loh TP. Angew Chem Int Ed Engl 49 8417-8420 (2010)
  38. Enhanced catalytic four-electron dioxygen (O2) and two-electron hydrogen peroxide (H2O2) reduction with a copper(II) complex possessing a pendant ligand pivalamido group. Kakuda S, Peterson RL, Ohkubo K, Karlin KD, Fukuzumi S. J Am Chem Soc 135 6513-6522 (2013)
  39. An unexpected example of protein-templated click chemistry. Suzuki T, Ota Y, Kasuya Y, Mutsuga M, Kawamura Y, Tsumoto H, Nakagawa H, Finn MG, Miyata N. Angew Chem Int Ed Engl 49 6817-6820 (2010)
  40. Copper(I)-Dioxygen Adducts and Copper Enzyme Mechanisms. Liu JJ, Diaz DE, Quist DA, Karlin KD. Isr J Chem 56 9-10 (2016)
  41. Structural insight of dopamine β-hydroxylase, a drug target for complex traits, and functional significance of exonic single nucleotide polymorphisms. Kapoor A, Shandilya M, Kundu S. PLoS One 6 e26509 (2011)
  42. The copper centers of tyramine β-monooxygenase and its catalytic-site methionine variants: an X-ray absorption study. Hess CR, Klinman JP, Blackburn NJ. J Biol Inorg Chem 15 1195-1207 (2010)
  43. Galactose oxidase as a model for reactivity at a copper superoxide center. Humphreys KJ, Mirica LM, Wang Y, Klinman JP. J Am Chem Soc 131 4657-4663 (2009)
  44. Electronic tuning of beta-diketiminate ligands with fluorinated substituents: effects on the O2-reactivity of mononuclear Cu(I) complexes. Hill LM, Gherman BF, Aboelella NW, Cramer CJ, Tolman WB. Dalton Trans 4944-4953 (2006)
  45. HHM motif at the CuH-site of peptidylglycine monooxygenase is a pH-dependent conformational switch. Kline CD, Mayfield M, Blackburn NJ. Biochemistry 52 2586-2596 (2013)
  46. How do copper enzymes hydroxylate aliphatic substrates? Recent insights from the chemistry of model systems. Rolff M, Tuczek F. Angew Chem Int Ed Engl 47 2344-2347 (2008)
  47. Kβ Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase. Martin-Diaconescu V, Chacón KN, Delgado-Jaime MU, Sokaras D, Weng TC, DeBeer S, Blackburn NJ. Inorg Chem 55 3431-3439 (2016)
  48. CO and O2 binding to pseudo-tetradentate ligand-copper(I) complexes with a variable N-donor moiety: kinetic/thermodynamic investigation reveals ligand-induced changes in reaction mechanism. Lucas HR, Meyer GJ, Karlin KD. J Am Chem Soc 132 12927-12940 (2010)
  49. Copper is a Cofactor of the Formylglycine-Generating Enzyme. Knop M, Dang TQ, Jeschke G, Seebeck FP. Chembiochem 18 161-165 (2017)
  50. Efficient C-H Bond Activations via O2 Cleavage by a Dianionic Cobalt(II) Complex. Nguyen AI, Hadt RG, Solomon EI, Tilley TD. Chem Sci 5 2874-2878 (2014)
  51. How useful are vibrational frequencies of isotopomeric O2 fragments for assessing local symmetry? Some simple systems and the vexing case of a galactose oxidase model. Kinsinger CR, Gherman BF, Gagliardi L, Cramer CJ. J Biol Inorg Chem 10 778-789 (2005)
  52. Electronic structure and relative stability of 1:1 Cu-O2 adducts from difference-dedicated configuration interaction calculations. Zapata-Rivera J, Caballol R, Calzado CJ. J Comput Chem 32 1144-1158 (2011)
  53. Interdomain long-range electron transfer becomes rate-limiting in the Y216A variant of tyramine β-monooxygenase. Osborne RL, Zhu H, Iavarone AT, Blackburn NJ, Klinman JP. Biochemistry 52 1179-1191 (2013)
  54. Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene. Bakandritsos A, Kadam RG, Kumar P, Zoppellaro G, Medved' M, Tuček J, Montini T, Tomanec O, Andrýsková P, Drahoš B, Varma RS, Otyepka M, Gawande MB, Fornasiero P, Zbořil R. Adv Mater 31 e1900323 (2019)
  55. Sulfur donor atom effects on copper(I)/O(2) chemistry with thioanisole containing tetradentate N(3)S ligand leading to μ-1,2-peroxo-dicopper(II) species. Lee Y, Lee DH, Park GY, Lucas HR, Narducci Sarjeant AA, Kieber-Emmons MT, Vance MA, Milligan AE, Solomon EI, Karlin KD. Inorg Chem 49 8873-8885 (2010)
  56. H-atom abstraction reaction for organic substrates via mononuclear copper(II)-superoxo species as a model for DbetaM and PHM. Fujii T, Yamaguchi S, Hirota S, Masuda H. Dalton Trans 164-170 (2008)
  57. Spectroscopic and computational characterization of CuII-OOR (R = H or cumyl) complexes bearing a Me6-tren ligand. Choi YJ, Cho KB, Kubo M, Ogura T, Karlin KD, Cho J, Nam W. Dalton Trans 40 2234-2241 (2011)
  58. Theoretical exploration of the oxidative properties of a [(tren Me1)CuO2]+ adduct relevant to copper monooxygenase enzymes: insights into competitive dehydrogenation versus hydroxylation reaction pathways. de la Lande A, Parisel O, Gérard H, Moliner V, Reinaud O. Chemistry 14 6465-6473 (2008)
  59. Thioether S-ligation in a side-on micro-eta2:eta2-peroxodicopperii complex. Park GY, Lee Y, Lee DH, Woertink JS, Narducci Sarjeant AA, Solomon EI, Karlin KD. Chem Commun (Camb) 46 91-93 (2010)
  60. Tuning of the copper-thioether bond in tetradentate N₃S(thioether) ligands; O-O bond reductive cleavage via a [Cu(II)₂(μ-1,2-peroxo)]²⁺/[Cu(III)₂(μ-oxo)₂]²⁺ equilibrium. Kim S, Ginsbach JW, Billah AI, Siegler MA, Moore CD, Solomon EI, Karlin KD. J Am Chem Soc 136 8063-8071 (2014)
  61. The wonderful world of pyridine-2,6-dicarboxamide based scaffolds. Kumar P, Gupta R. Dalton Trans 45 18769-18783 (2016)
  62. Binding of copper and silver to single-site variants of peptidylglycine monooxygenase reveals the structure and chemistry of the individual metal centers. Chauhan S, Kline CD, Mayfield M, Blackburn NJ. Biochemistry 53 1069-1080 (2014)
  63. Kinetics and DFT studies on the reaction of copper(II) complexes and H2O2. Osako T, Nagatomo S, Kitagawa T, Cramer CJ, Itoh S. J Biol Inorg Chem 10 581-590 (2005)
  64. Structure and reactivity of the first-row d-block metal-superoxo complexes. Fukuzumi S, Lee YM, Nam W. Dalton Trans 48 9469-9489 (2019)
  65. Theoretical modelling of tripodal CuN3 and CuN4 cuprous complexes interacting with O2, CO or CH3CN. de la Lande A, Gérard H, Moliner V, Izzet G, Reinaud O, Parisel O. J Biol Inorg Chem 11 593-608 (2006)
  66. A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(II) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations. Mutti FG, Gullotti M, Casella L, Santagostini L, Pagliarin R, Andersson KK, Iozzi MF, Zoppellaro G. Dalton Trans 40 5436-5457 (2011)
  67. C-H bond activation by metal-superoxo species: what drives high reactivity? Ansari A, Jayapal P, Rajaraman G. Angew Chem Int Ed Engl 54 564-568 (2015)
  68. Cu(I)/O2 chemistry using a β-diketiminate supporting ligand derived from N,N-dimethylhydrazine: a [Cu3O2]3+ complex with novel reactivity. Gupta AK, Tolman WB. Inorg Chem 51 1881-1888 (2012)
  69. Large scale production of the copper enzyme peptidylglycine monooxygenase using an automated bioreactor. Bauman AT, Ralle M, Blackburn NJ. Protein Expr Purif 51 34-38 (2007)
  70. Side-on cupric-superoxo triplet complexes as competent agents for H-abstraction relevant to the active site of PHM. Sánchez-Eguía BN, Flores-Alamo M, Orio M, Castillo I. Chem Commun (Camb) 51 11134-11137 (2015)
  71. Stopped-Flow Studies of the Reduction of the Copper Centers Suggest a Bifurcated Electron Transfer Pathway in Peptidylglycine Monooxygenase. Chauhan S, Hosseinzadeh P, Lu Y, Blackburn NJ. Biochemistry 55 2008-2021 (2016)
  72. Direct use of dioxygen as an oxygen source: catalytic oxidative synthesis of amides. Wei W, Hu XY, Yan XW, Zhang Q, Cheng M, Ji JX. Chem Commun (Camb) 48 305-307 (2012)
  73. Effects of copper occupancy on the conformational landscape of peptidylglycine α-hydroxylating monooxygenase. Maheshwari S, Shimokawa C, Rudzka K, Kline CD, Eipper BA, Mains RE, Gabelli SB, Blackburn N, Amzel LM. Commun Biol 1 74 (2018)
  74. Hydroxyl Radical Generation and DNA Nuclease Activity: A Mechanistic Study Based on a Surface-Immobilized Copper Thioether Clip-Phen Derivative. Romo AI, Abreu DS, de F Paulo T, Carepo MS, Sousa EH, Lemus L, Aliaga C, Batista AA, Nascimento OR, Abruña HD, Diógenes IC. Chemistry 22 10081-10089 (2016)
  75. Solid-state chemistry at an isolated copper(I) center with O2. Thiabaud G, Guillemot G, Schmitz-Afonso I, Colasson B, Reinaud O. Angew Chem Int Ed Engl 48 7383-7386 (2009)
  76. Structural, spectroscopic, and electrochemical properties of tri- and tetradentate N3 and N3S copper complexes with mixed benzimidazole/thioether donors. Castillo I, Ugalde-Saldívar VM, Rodríguez Solano LA, Sánchez Eguía BN, Zeglio E, Nordlander E. Dalton Trans 41 9394-9404 (2012)
  77. Substrate-Induced Carbon Monoxide Reactivity Suggests Multiple Enzyme Conformations at the Catalytic Copper M-Center of Peptidylglycine Monooxygenase. Kline CD, Blackburn NJ. Biochemistry 55 6652-6661 (2016)
  78. Benzylic ligand hydroxylation starting from a dicopper μ-η2:η2 peroxo intermediate: dramatic acceleration of the reaction by hydrogen-atom donors. Rolff M, Hamann JN, Tuczek F. Angew Chem Int Ed Engl 50 6924-6927 (2011)
  79. Can an ancillary ligand lead to a thermodynamically stable end-on 1 : 1 Cu-O2 adduct supported by a beta-diketiminate ligand? Heppner DE, Gherman BF, Tolman WB, Cramer CJ. Dalton Trans 4773-4782 (2006)
  80. Copper-Mediated Selective Hydroxylation of a Non-activated C-H Bond in Steroids: A DFT Study of Schönecker's Reaction. Gupta P, Diefenbach M, Holthausen MC, Förster M. Chemistry 23 1427-1435 (2017)
  81. Hemicryptophane-assisted electron transfer: a structural and electronic study. Perraud O, Tommasino JB, Robert V, Albela B, Khrouz L, Bonneviot L, Dutasta JP, Martinez A. Dalton Trans 42 1530-1535 (2013)
  82. Insights into the binding properties of a cuprous ion embedded in the tren cap of a calix[6]arene and supramolecular trapping of an intermediate. Izzet G, Rager MN, Reinaud O. Dalton Trans 771-780 (2007)
  83. Investigation of the hydroxylation mechanism of noncoupled copper oxygenases by ab initio molecular dynamics simulations. Meliá C, Ferrer S, Řezáč J, Parisel O, Reinaud O, Moliner V, de la Lande A. Chemistry 19 17328-17337 (2013)
  84. Probing the peptidylglycine alpha-hydroxylating monooxygenase active site with novel 4-phenyl-3-butenoic acid based inhibitors. Langella E, Pierre S, Ghattas W, Giorgi M, Réglier M, Saviano M, Esposito L, Hardré R. ChemMedChem 5 1568-1576 (2010)
  85. Copper versus thioether-centered oxidation: mechanistic insights into the non-innocent redox behavior of tripodal benzimidazolylaminothioether ligands. Martínez-Alanis PR, Sánchez Eguía BN, Ugalde-Saldívar VM, Regla I, Demare P, Aullón G, Castillo I. Chemistry 19 6067-6079 (2013)
  86. Rh-catalyzed aerobic oxidative cyclization of anilines, alkynes, and CO. Li X, Pan J, Wu H, Jiao N. Chem Sci 8 6266-6273 (2017)
  87. Thiorphan, tiopronin, and related analogs as substrates and inhibitors of peptidylglycine alpha-amidating monooxygenase (PAM). McIntyre NR, Lowe EW, Chew GH, Owen TC, Merkler DJ. FEBS Lett 580 521-532 (2006)
  88. CO/O2 assisted oxidative carbon-carbon and carbon-heteroatom bond cleavage for the synthesis of oxosulfonates from DMSO and olefins. Shao A, Gao M, Chen S, Wang T, Lei A. Chem Sci 8 2175-2178 (2017)
  89. Catalytic M Center of Copper Monooxygenases Probed by Rational Design. Effects of Selenomethionine and Histidine Substitution on Structure and Reactivity. Alwan KB, Welch EF, Blackburn NJ. Biochemistry 58 4436-4446 (2019)
  90. Mechanistic insight into alcohol oxidation mediated by an efficient green Cu(II)-bipy catalyst with and without TEMPO by density functional methods. Cheng L, Wang J, Wang M, Wu Z. Dalton Trans 39 5377-5387 (2010)
  91. Novel insights into peptide amidation and amidating activity in the human circulation. Kaufmann P, Bergmann A, Melander O. Sci Rep 11 15791 (2021)
  92. Reversible coordination of dioxygen by tripodal tetraamine copper complexes incorporated in a porous silica framework. Suspène C, Brandès S, Guilard R. Chemistry 16 6352-6364 (2010)
  93. A modular trigger for the development of selective superoxide probes. Yu ZH, Chung CY, Tang FK, Brewer TF, Au-Yeung HY. Chem Commun (Camb) 53 10042-10045 (2017)
  94. Copper, zinc and calcium: imaging and quantification in anterior pituitary secretory granules. Bonnemaison ML, Duffy ME, Mains RE, Vogt S, Eipper BA, Ralle M. Metallomics 8 1012-1022 (2016)
  95. Direct Determination of Electron-Transfer Properties of Dicopper-Bound Reduced Dioxygen Species by a Cryo-Spectroelectrochemical Approach. López I, Cao R, Quist DA, Karlin KD, Le Poul N. Chemistry 23 18314-18319 (2017)
  96. Generation of soluble oligomeric beta-amyloid species via copper catalyzed oxidation with implications for Alzheimer's disease: a DFT study. Haeffner F, Barnham KJ, Bush AI, Brinck T. J Mol Model 16 1103-1108 (2010)
  97. Picolinic acids as inhibitors of dopamine beta-monooxygenase: QSAR and putative binding site. Dove S. Arch Pharm (Weinheim) 337 645-653 (2004)
  98. Rational Design of a Histidine-Methionine Site Modeling the M-Center of Copper Monooxygenases in a Small Metallochaperone Scaffold. Alwan KB, Welch EF, Arias RJ, Gambill BF, Blackburn NJ. Biochemistry 58 3097-3108 (2019)
  99. Spin-driven activation of dioxygen in various metalloenzymes and their inspired models. de la Lande A, Salahub DR, Maddaluno J, Scemama A, Pilme J, Parisel O, Gerard H, Caffarel M, Piquemal JP. J Comput Chem 32 1178-1182 (2011)
  100. Structural and Spectroscopic Evidence for a Side-on Fe(III)-Superoxo Complex Featuring Discrete O-O Bond Distances. Pan HR, Chen HJ, Wu ZH, Ge P, Ye S, Lee GH, Hsu HF. JACS Au 1 1389-1398 (2021)
  101. Theoretical study of the hydroxylation of phenols mediated by an end-on bound superoxo-copper(II) complex. Güell M, Luis JM, Siegbahn PE, Solà M. J Biol Inorg Chem 14 273-285 (2009)
  102. Thiol-copper(I) and disulfide-dicopper(I) complex O2-reactivity leading to sulfonate-copper(II) complex or the formation of a cross-linked thioether-phenol product with phenol addition. Lee Y, Lee DH, Sarjeant AA, Karlin KD. J Inorg Biochem 101 1845-1858 (2007)
  103. A Highly Sensitive and Selective Fluorescein-Based Cu2+ Probe and Its Bioimaging in Cell. Leng X, She M, Jin X, Chen J, Ma X, Chen F, Li J, Yang B. Front Nutr 9 932826 (2022)
  104. Copper complexes of mono- and ditopic [(methylthio)methyl]borates: missing links and linked systems en route to copper enzyme models. Ruth K, Tüllmann S, Vitze H, Bolte M, Lerner HW, Holthausen MC, Wagner M. Chemistry 14 6754-6770 (2008)
  105. Copper coordinated ligand thioether-S and NO2(-) oxidation: relevance to the CuM site of hydroxylases. Maji RC, Bhandari A, Singh R, Roy S, Chatterjee SK, Bowles FL, Ghiassi KB, Maji M, Olmstead MM, Patra AK. Dalton Trans 44 17587-17599 (2015)
  106. Copper-catalyzed aerobic oxidative coupling of o-phenylenediamines with 2-aryl/heteroarylethylamines: direct access to construct quinoxalines. Gopalaiah K, Saini A, Chandrudu SN, Rao DC, Yadav H, Kumar B. Org Biomol Chem 15 2259-2268 (2017)
  107. Electron transfer mechanism of catalytic superoxide dismutation via Cu(ii/i) complexes: evidence of cupric-superoxo/-hydroperoxo species. Maji RC, Das PP, Mishra S, Bhandari A, Maji M, Patra AK. Dalton Trans 45 11898-11910 (2016)
  108. Preliminary results of neutron and X-ray diffraction data collection on a lytic polysaccharide monooxygenase under reduced and acidic conditions. Schröder GC, O'Dell WB, Swartz PD, Meilleur F. Acta Crystallogr F Struct Biol Commun 77 128-133 (2021)
  109. Selective catecholamine detection in living cells by a copper-mediated oxidative bond cleavage. Tong KY, Zhao J, Tse CW, Wan PK, Rong J, Au-Yeung HY. Chem Sci 10 8519-8526 (2019)
  110. Structure of formylglycine-generating enzyme in complex with copper and a substrate reveals an acidic pocket for binding and activation of molecular oxygen. Miarzlou DA, Leisinger F, Joss D, Häussinger D, Seebeck FP. Chem Sci 10 7049-7058 (2019)
  111. Theoretical studies on the reaction mechanism of oxidation of primary alcohols by Zn/Cu(ii)-phenoxyl radical catalyst. Cheng L, Wang J, Wang M, Wu Z. Dalton Trans 3286-3297 (2009)
  112. Copper monooxygenase reactivity: Do consensus mechanisms accurately reflect experimental observations? Welch EF, Rush KW, Arias RJ, Blackburn NJ. J Inorg Biochem 231 111780 (2022)
  113. Copper-promoted methylene C-H oxidation to a ketone derivative by O2. Deville C, McKee V, McKenzie CJ. Dalton Trans 46 709-719 (2017)
  114. Inactivation of Met471Cys tyramine β-monooxygenase results from site-specific cysteic acid formation. Osborne RL, Zhu H, Iavarone AT, Hess CR, Klinman JP. Biochemistry 51 7488-7495 (2012)
  115. Mononuclear [(BP)(2)MX](n+) (M = Cu(2+), Co(2+), Zn(2+); X = OH(2), Cl(-)) complexes with a new biphenyl appended N-bidentate ligand: structural, spectroscopic, solution equilibrium and ligand dynamic studies. Sabiah S, Varghese B, Murthy NN. Dalton Trans 9770-9780 (2009)
  116. New structures reveal flexible dynamics between the subdomains of peptidylglycine monooxygenase. Implications for an open to closed mechanism. Arias RJ, Welch EF, Blackburn NJ. Protein Sci 32 e4615 (2023)
  117. Pre-Steady-State Reactivity of Peptidylglycine Monooxygenase Implicates Ascorbate in Substrate Triggering of the Active Conformer. Welch EF, Rush KW, Arias RJ, Blackburn NJ. Biochemistry 61 665-677 (2022)
  118. Syntheses and characterization of copper complexes with the ligand 2-aminoethyl(2-pyridylmethyl)-1,2-ethanediamine (apme). Utz D, Kisslinger S, Hampel F, Schindler S. J Inorg Biochem 102 1236-1245 (2008)
  119. Synthesis, structure, redox properties and azide binding for a series of biphenyl-based Cu(II) complexes. Chen J, Russo R, Chao W, Margerum LD, Malachowski MR, White R, Thawley Z, Thayer A, Rheingold AL, Zakharov LN. Dalton Trans 2571-2579 (2007)
  120. Immunoassay-based quantification of full-length peptidylglycine alpha-amidating monooxygenase in human plasma. Ilina Y, Kaufmann P, Melander O, Press M, Thuene K, Bergmann A. Sci Rep 13 10827 (2023)
  121. N-Hydroxyguanidines oxidation by a N3S copper-complex mimicking the reactivity of Dopamine beta-Hydroxylase. Slama P, Boucher JL, Réglier M. J Inorg Biochem 103 455-462 (2009)
  122. Soft Deposition of Organic Molecules Based on Cluster-Induced Desorption for the Investigation of On-Surface and Surface-Mediated Reactions. Pluschke K, Herrmann A, Dürr M. ACS Omega 8 40639-40646 (2023)