1sbf Citations

X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin.

Biochemistry 36 15073-80 (1997)
Related entries: 1sbd, 1sbe

Cited: 46 times
EuropePMC logo PMID: 9398234

Abstract

Soybean agglutinin (SBA) (Glycine max) is a tetrameric GalNAc/Gal-specific lectin which forms unique cross-linked complexes with a series of naturally occurring and synthetic multiantennary carbohydrates with terminal GalNAc or Gal residues [Gupta et al. (1994) Biochemistry 33, 7495-7504]. We recently reported the X-ray crystal structure of SBA cross-linked with a biantennary analog of the blood group I carbohydrate antigen [Dessen et al. (1995) Biochemistry 34, 4933-4942]. In order to determine the molecular basis of different carbohydrate-lectin cross-linked lattices, a comparison has been made of the X-ray crystallographic structures of SBA cross-linked with four isomeric analogs of the biantennary blood group I carbohydrate antigen. The four pentasaccharides possess the common structure of (beta-LacNAc)2Gal-beta-R, where R is -O(CH2)5COOCH3. The beta-LacNAc moieties in the four carbohydrates are linked to the 2,3-, 2,4-, 3,6-, and 2,6-positions of the core Gal residue(s), respectively. The structures of all four complexes have been refined to approximately 2.4-2.8 A. Noncovalent lattice formation in all four complexes is promoted uniquely by the bridging action of the two arms of each bivalent carbohydrate. Association between SBA tetramers involves binding of the terminal Gal residues of the pentasaccharides at identical sites in each monomer, with the sugar(s) cross-linking to a symmetry-related neighbor molecule. While the 2,4-, 3,6-, and 2,6-pentasaccharide complexes possess a common P6422 space group, their unit cell dimensions differ. The 2, 3-pentasaccharide cross-linked complex, on the other hand, possesses the space group I4122. Thus, all four complexes are crystallographically distinct. The four cross-linking carbohydrates are in similar conformations, possessing a pseudo-2-fold axis of symmetry which lies on a crystallographic 2-fold axis of symmetry in each lattice. In the case of the 3,6- and 2,6-pentasaccharides, the symmetry of their cross-linked lattices requires different rotamer orientations about their beta(1,6) glycosidic bonds. The results demonstrate that crystal packing interactions are the molecular basis for the formation of distinct cross-linked lattices between SBA and four isomeric pentasaccharides. The present findings are discussed in terms of lectins forming unique cross-linked complexes with glycoconjugate receptors in biological systems.

Reviews - 1sbf mentioned but not cited (6)

  1. Structure of allergens and structure based epitope predictions. Dall'antonia F, Pavkov-Keller T, Zangger K, Keller W. Methods 66 3-21 (2014)
  2. Structure-function and application of plant lectins in disease biology and immunity. Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, Mohanty SS, Manna D, Dokania P, Mishra A, Patra SK, Dhiman R. Food Chem Toxicol 134 110827 (2019)
  3. Functional protein nanostructures: a chemical toolbox. Kuan SL, Bergamini FRG, Weil T. Chem Soc Rev 47 9069-9105 (2018)
  4. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Barre A, Bourne Y, Van Damme EJM, Rougé P. Int J Mol Sci 20 E254 (2019)
  5. Glycosylated gold nanoparticles in point of care diagnostics: from aggregation to lateral flow. Baker AN, Hawker-Bond GW, Georgiou PG, Dedola S, Field RA, Gibson MI. Chem Soc Rev 51 7238-7259 (2022)
  6. Research advances and prospects of legume lectins. Katoch R, Tripathi A. J Biosci 46 104 (2021)

Articles - 1sbf mentioned but not cited (3)

  1. Transient dimers of allergens. Rouvinen J, Jänis J, Laukkanen ML, Jylhä S, Niemi M, Päivinen T, Mäkinen-Kiljunen S, Haahtela T, Söderlund H, Takkinen K. PLoS One 5 e9037 (2010)
  2. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1. Nguyen CT, Tanaka K, Cao Y, Cho SH, Xu D, Stacey G. PLoS One 11 e0161894 (2016)
  3. Structure predictions of two Bauhinia variegata lectins reveal patterns of C-terminal properties in single chain legume lectins. Moreira GM, Conceição FR, McBride AJ, Pinto Lda S. PLoS One 8 e81338 (2013)


Reviews citing this publication (7)

  1. Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chabre YM, Roy R. Chem Soc Rev 42 4657-4708 (2013)
  2. Structure and conformation of complex carbohydrates of glycoproteins, glycolipids, and bacterial polysaccharides. Bush CA, Martin-Pastor M, Imberty A. Annu Rev Biophys Biomol Struct 28 269-293 (1999)
  3. Protein Assembly by Design. Zhu J, Avakyan N, Kakkis A, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Chem Rev 121 13701-13796 (2021)
  4. The Influences of Soybean Agglutinin and Functional Oligosaccharides on the Intestinal Tract of Monogastric Animals. Pan L, Farouk MH, Qin G, Zhao Y, Bao N. Int J Mol Sci 19 E554 (2018)
  5. Three-dimensional structural aspects of protein-polysaccharide interactions. Nagae M, Yamaguchi Y. Int J Mol Sci 15 3768-3783 (2014)
  6. Nano-carbohydrates: Synthesis and application in genetics, biotechnology, and medicine. Jebali A, Nayeri EK, Roohana S, Aghaei S, Ghaffari M, Daliri K, Fuente G. Adv Colloid Interface Sci 240 1-14 (2017)
  7. Changes of Soybean Protein during Tofu Processing. Guan X, Zhong X, Lu Y, Du X, Jia R, Li H, Zhang M. Foods 10 1594 (2021)

Articles citing this publication (30)

  1. Microarrays with varying carbohydrate density reveal distinct subpopulations of serum antibodies. Oyelaran O, Li Q, Farnsworth D, Gildersleeve JC. J Proteome Res 8 3529-3538 (2009)
  2. Structure and functional analysis of the fungal galectin CGL2. Walser PJ, Haebel PW, Künzler M, Sargent D, Kües U, Aebi M, Ban N. Structure 12 689-702 (2004)
  3. Density variant glycan microarray for evaluating cross-linking of mucin-like glycoconjugates by lectins. Godula K, Bertozzi CR. J Am Chem Soc 134 15732-15742 (2012)
  4. Interactions of surfactant proteins A and D with Saccharomyces cerevisiae and Aspergillus fumigatus. Allen MJ, Voelker DR, Mason RJ. Infect Immun 69 2037-2044 (2001)
  5. Molecular evidence for EBV and CMV persistence in a subset of patients with chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Kostareli E, Hadzidimitriou A, Stavroyianni N, Darzentas N, Athanasiadou A, Gounari M, Bikos V, Agathagelidis A, Touloumenidou T, Zorbas I, Kouvatsi A, Laoutaris N, Fassas A, Anagnostopoulos A, Belessi C, Stamatopoulos K. Leukemia 23 919-924 (2009)
  6. Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Sakai F, Yang G, Weiss MS, Liu Y, Chen G, Jiang M. Nat Commun 5 4634 (2014)
  7. Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands. Ambrosi M, Cameron NR, Davis BG, Stolnik S. Org Biomol Chem 3 1476-1480 (2005)
  8. Unfolding studies on soybean agglutinin and concanavalin a tetramers: a comparative account. Sinha S, Mitra N, Kumar G, Bajaj K, Surolia A. Biophys J 88 1300-1310 (2005)
  9. Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation. Bakkers MJ, Zeng Q, Feitsma LJ, Hulswit RJ, Li Z, Westerbeke A, van Kuppeveld FJ, Boons GJ, Langereis MA, Huizinga EG, de Groot RJ. Proc Natl Acad Sci U S A 113 E3111-9 (2016)
  10. The role of weak protein-protein interactions in multivalent lectin-carbohydrate binding: crystal structure of cross-linked FRIL. Hamelryck TW, Moore JG, Chrispeels MJ, Loris R, Wyns L. J Mol Biol 299 875-883 (2000)
  11. Density-dependent lectin-glycan interactions as a paradigm for conditional regulation by posttranslational modifications. Dennis JW, Brewer CF. Mol Cell Proteomics 12 913-920 (2013)
  12. Weak protein-protein interactions in lectins: the crystal structure of a vegetative lectin from the legume Dolichos biflorus. Buts L, Dao-Thi MH, Loris R, Wyns L, Etzler M, Hamelryck T. J Mol Biol 309 193-201 (2001)
  13. Serine versus threonine glycosylation with α-O-GalNAc: unexpected selectivity in their molecular recognition with lectins. Madariaga D, Martínez-Sáez N, Somovilla VJ, García-García L, Berbis MÁ, Valero-Gónzalez J, Martín-Santamaría S, Hurtado-Guerrero R, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Corzana F, Peregrina JM. Chemistry 20 12616-12627 (2014)
  14. Computational analysis of multivalency in lectins: structures of garlic lectin-oligosaccharide complexes and their aggregates. Ramachandraiah G, Chandra NR, Surolia A, Vijayan M. Glycobiology 13 765-775 (2003)
  15. A lectin from Platypodium elegans with unusual specificity and affinity for asymmetric complex N-glycans. Benevides RG, Ganne G, Simões Rda C, Schubert V, Niemietz M, Unverzagt C, Chazalet V, Breton C, Varrot A, Cavada BS, Imberty A. J Biol Chem 287 26352-26364 (2012)
  16. Identification of novel contributions to high-affinity glycoprotein-receptor interactions using engineered ligands. Coombs PJ, Harrison R, Pemberton S, Quintero-Martinez A, Parry S, Haslam SM, Dell A, Taylor ME, Drickamer K. J Mol Biol 396 685-696 (2010)
  17. Similarity between protein-protein and protein-carbohydrate interactions, revealed by two crystal structures of lectins from the roots of pokeweed. Hayashida M, Fujii T, Hamasu M, Ishiguro M, Hata Y. J Mol Biol 334 551-565 (2003)
  18. A Detailed Study on Understanding Glycopolymer Library and Con A Interactions. Gou Y, Geng J, Richards SJ, Burns J, Remzi Becer C, Haddleton DM. J Polym Sci A Polym Chem 51 2588-2597 (2013)
  19. GalNAc-Tyrosine Is a Ligand of Plant Lectins, Antibodies, and Human and Murine Macrophage Galactose-Type Lectins. Gibadullin R, Farnsworth DW, Barchi JJ, Gildersleeve JC. ACS Chem Biol 12 2172-2182 (2017)
  20. Analysis of equilibrium dissociation and unfolding in denaturants of soybean agglutinin and two of its derivatives. Ghosh M, Mandal DK. Int J Biol Macromol 29 273-280 (2001)
  21. Introducing affinity and selectivity into galectin-targeting nanoparticles with fluorinated glycan ligands. Richards SJ, Keenan T, Vendeville JB, Wheatley DE, Chidwick H, Budhadev D, Council CE, Webster CS, Ledru H, Baker AN, Walker M, Galan MC, Linclau B, Fascione MA, Gibson MI. Chem Sci 12 905-910 (2020)
  22. Organization and dynamics of tryptophan residues in tetrameric and monomeric soybean agglutinin: studies by steady-state and time-resolved fluorescence, phosphorescence and chemical modification. Molla AR, Maity SS, Ghosh S, Mandal DK. Biochimie 91 857-867 (2009)
  23. Purification and characterization of a novel beta-D-galactosides-specific lectin from Clitoria ternatea. Naeem A, Haque S, Khan RH. Protein J 26 403-413 (2007)
  24. Cryo-EM is a powerful tool, but helical applications can have pitfalls. Egelman EH, Wang F. Soft Matter 17 3291-3293 (2021)
  25. Designed ankyrin repeat proteins as scaffolds for multivalent recognition. Hollenbeck JJ, Danner DJ, Landgren RM, Rainbolt TK, Roberts DS. Biomacromolecules 13 1996-2002 (2012)
  26. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus. Kim D, Lee HM, Oh KS, Ki AY, Protzman RA, Kim D, Choi JS, Kim MJ, Kim SH, Vaidya B, Lee SJ, Kwon J. Biomaterials 128 33-43 (2017)
  27. Trifluoroethanol-induced conformational change of tetrameric and monomeric soybean agglutinin: role of structural organization and implication for protein folding and stability. Molla AR, Mandal DK. Biochimie 95 204-214 (2013)
  28. Impact of glycosylation on stability, structure and unfolding of soybean agglutinin (SBA): an insight from thermal perturbation molecular dynamics simulations. Halder S, Surolia A, Mukhopadhyay C. Glycoconj J 32 371-384 (2015)
  29. Purification of normal lymphocytes from leukemic T-cells by lectin-affinity adsorbents - correlation with lectin-cell binding. Bakalova R, Ohba H. Cancer Lett 192 59-65 (2003)
  30. PAN-modular structure of microneme protein SML-2 from the parasite Sarcocystis muris at 1.95 Å resolution and its complex with 1-thio-β-D-galactose. Müller JJ, Weiss MS, Heinemann U. Acta Crystallogr D Biol Crystallogr 67 936-944 (2011)


Related citations provided by authors (1)

  1. X-Ray Crystal Structure of the Soybean Agglutinin Cross-Linked with a Biantennary Analog of the Blood Group I Carbohydrate Antigen. Dessen A, Gupta D, Sabesan S, Brewer CF, Sacchettini JC Biochemistry 34 4933- (1995)