1rwx Citations

Tethering identifies fragment that yields potent inhibitors of human caspase-1.

Bioorg Med Chem Lett 16 559-62 (2006)
Cited: 22 times
EuropePMC logo PMID: 16274992

Abstract

Disulfide Tethering was applied to the active site of human caspase-1, resulting in the discovery of a novel, tricyclic molecular fragment that selectively binds in S4. This fragment was developed into a class of potent inhibitors of human caspase-1. Several key analogues determined the optimal distance of the tricycle from the catalytic residues, the relative importance of various features of the tricycle, and the importance of the linker.

Reviews - 1rwx mentioned but not cited (2)

  1. The protein structures that shape caspase activity, specificity, activation and inhibition. Fuentes-Prior P, Salvesen GS. Biochem J 384 201-232 (2004)
  2. Recent Advances in Studying Toll-like Receptors with the Use of Computational Methods. Bzówka M, Bagrowska W, Góra A. J Chem Inf Model 63 3669-3687 (2023)

Articles - 1rwx mentioned but not cited (11)

  1. Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. Elliott JM, Rouge L, Wiesmann C, Scheer JM. J Biol Chem 284 6546-6553 (2009)
  2. A highly potent and selective caspase 1 inhibitor that utilizes a key 3-cyanopropanoic acid moiety. Boxer MB, Quinn AM, Shen M, Jadhav A, Leister W, Simeonov A, Auld DS, Thomas CJ. ChemMedChem 5 730-738 (2010)
  3. Berkeleyones and related meroterpenes from a deep water acid mine waste fungus that inhibit the production of interleukin 1-β from induced inflammasomes. Stierle DB, Stierle AA, Patacini B, McIntyre K, Girtsman T, Bolstad E. J Nat Prod 74 2273-2277 (2011)
  4. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Smith KP, Gifford KM, Waitzman JS, Rice SE. Proteins 83 25-36 (2015)
  5. A Novel Defined Pyroptosis-Related Gene Signature for Predicting Prognosis and Treatment of Glioma. Yang Z, Chen Z, Wang Y, Wang Z, Zhang D, Yue X, Zheng Y, Li L, Bian E, Zhao B. Front Oncol 12 717926 (2022)
  6. Relating the shape of protein binding sites to binding affinity profiles: is there an association? Simon Z, Vigh-Smeller M, Peragovics A, Csukly G, Zahoránszky-Kohalmi G, Rauscher AA, Jelinek B, Hári P, Bitter I, Málnási-Csizmadia A, Czobor P. BMC Struct Biol 10 32 (2010)
  7. Gypensapogenin I Ameliorates Isoproterenol (ISO)-Induced Myocardial Damage through Regulating the TLR4/NF-κB/NLRP3 Pathway. Li M, Tan H, Gao T, Han L, Teng X, Wang F, Zhang X. Molecules 27 5298 (2022)
  8. A novel artificial intelligence protocol to investigate potential leads for Parkinson's disease. Chen ZD, Zhao L, Chen HY, Gong JN, Chen X, Chen CY. RSC Adv 10 22939-22958 (2020)
  9. Exploring the Mechanism of Ling-Gui-Zhu-Gan Decoction in Ventricular Remodeling after Acute Myocardial Infarction Based on UPLC and In Vivo Experiments. Zhou P, Zhang M, Zhao XN, Tang TJ, Wang X, Huang LL, Kong Q, Wang L, Huang JL. Evid Based Complement Alternat Med 2022 8593176 (2022)
  10. Effects of Corchorusoside C on NF-κB and PARP-1 Molecular Targets and Toxicity Profile in Zebrafish. Mirtallo Ezzone NP, Anaya-Eugenio GD, Addo EM, Ren Y, Kinghorn AD, Carcache de Blanco EJ. Int J Mol Sci 23 14546 (2022)
  11. Punicalagin attenuates ventricular remodeling after acute myocardial infarction via regulating the NLRP3/caspase-1 pathway. Peng JF, Zhao XN, Zhang M, Li JY, Zhao CC, Wang SS, Wang JL, Shi H, Zhou P, Wang L. Pharm Biol 61 963-972 (2023)


Reviews citing this publication (2)

  1. Fragment-based lead discovery: a chemical update. Erlanson DA. Curr Opin Biotechnol 17 643-652 (2006)
  2. Small Molecule Active Site Directed Tools for Studying Human Caspases. Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Chem Rev 115 12546-12629 (2015)

Articles citing this publication (7)

  1. Molecular docking and ligand specificity in fragment-based inhibitor discovery. Chen Y, Shoichet BK. Nat Chem Biol 5 358-364 (2009)
  2. Kinetic template-guided tethering of fragments. Nonoo RH, Armstrong A, Mann DJ. ChemMedChem 7 2082-2086 (2012)
  3. Naturally occurring genetic variants of human caspase-1 differ considerably in structure and the ability to activate interleukin-1β. Luksch H, Romanowski MJ, Chara O, Tüngler V, Caffarena ER, Heymann MC, Lohse P, Aksentijevich I, Remmers EF, Flecks S, Quoos N, Gramatté J, Petzold C, Hofmann SR, Winkler S, Pessler F, Kallinich T, Ganser G, Nimtz-Talaska A, Baumann U, Runde V, Grimbacher B, Birmelin J, Gahr M, Roesler J, Rösen-Wolff A. Hum Mutat 34 122-131 (2013)
  4. Protective effect of gedunin on TLR-mediated inflammation by modulation of inflammasome activation and cytokine production: Evidence of a multitarget compound. Borges PV, Moret KH, Raghavendra NM, Maramaldo Costa TE, Monteiro AP, Carneiro AB, Pacheco P, Temerozo JR, Bou-Habib DC, das Graças Henriques M, Penido C. Pharmacol Res 115 65-77 (2017)
  5. Letter Lazaroids U83836E and U74389G are potent, time-dependent inhibitors of caspase-1. Kawarski M, Hagerman TK, Karver CE. Chem Biol Drug Des 86 1049-1054 (2015)
  6. Synthesis of novel antibacterial and antifungal quinoxaline derivatives. Tang X, Zhou Q, Zhan W, Hu D, Zhou R, Sun N, Chen S, Wu W, Xue W. RSC Adv 12 2399-2407 (2022)
  7. Carboxylate isosteres for caspase inhibitors: the acylsulfonamide case revisited. Adriaenssens Y, Jiménez Fernández D, Vande Walle L, Elvas F, Joossens J, Lambeir A, Augustyns K, Lamkanfi M, Van der Veken P. Org Biomol Chem 15 7456-7473 (2017)