1rva Citations

Mg2+ binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 A resolution.

Biochemistry 34 683-96 (1995)
Related entries: 1rvb, 1rvc

Cited: 129 times
EuropePMC logo PMID: 7819264

Abstract

The type II restriction endonuclease EcoRV was crystallized as a complex with the substrate DNA undecamer AAAGATATCTT (recognition sequence underlined). These crystals diffract to much better resolution (2 A) than was the case for the previously reported complex with the decamer GGGATATCCC [Winkler, F. K., Banner, D. W., Oefner, C., Tsernoglou, D., Brown, R. S., Heathman, S. P., Bryan, R. K., Martin, P. D., Petratos, K., & Wilson, K. S. (1993) EMBO J. 12, 1781-1795]. The crystal structure contains one dimer complex in the asymmetric unit and was solved by molecular replacement. The same kinked DNA conformation characteristic for enzyme-bound cognate DNA is observed. Crystals, soaked with Mg2+, show the essential cofactor bound at only one active site of the dimer, and the DNA is not cleaved. The Mg2+ has one oxygen from the scissile phosphodiester group and two carboxylate oxygens, one form Asp74 and one from Asp90, in its octahedral ligand sphere. The scissile phosphodiester group is pulled by 1 A toward the Mg2+. After substrate cleavage in solution, isomorphous crystals containing the enzyme--product--Mg2+ complex were obtained. In this structure, each of the 5'-phosphate groups is bound to two Mg2+. The kinked DNA conformation is essentially maintained, but the two central adenines, 3' to the cleavage sites, form an unusual cross-strand base stacking. The structures have been refined to R factors of 0.16 at 2.1-2.0 A resolution maintaining very good stereochemistry. On the basis of these structures and inspired by recent kinetic data [Vipond, I. B., & Halford, S. E. (1994) Biochemistry (second paper of three in this issue)], we have constructed a transition state model with two metals bound to the scissile phosphorane group.

Reviews - 1rva mentioned but not cited (1)

  1. An overview of the structures of protein-DNA complexes. Luscombe NM, Austin SE, Berman HM, Thornton JM. Genome Biol 1 REVIEWS001 (2000)

Articles - 1rva mentioned but not cited (9)

  1. Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus. Bond CS, Kvaratskhelia M, Richard D, White MF, Hunter WN. Proc Natl Acad Sci U S A 98 5509-5514 (2001)
  2. A protein-DNA docking benchmark. van Dijk M, Bonvin AM. Nucleic Acids Res 36 e88 (2008)
  3. Crystal structure of NaeI-an evolutionary bridge between DNA endonuclease and topoisomerase. Huai Q, Colandene JD, Chen Y, Luo F, Zhao Y, Topal MD, Ke H. EMBO J 19 3110-3118 (2000)
  4. Structure of HinP1I endonuclease reveals a striking similarity to the monomeric restriction enzyme MspI. Yang Z, Horton JR, Maunus R, Wilson GG, Roberts RJ, Cheng X. Nucleic Acids Res 33 1892-1901 (2005)
  5. Protein-DNA docking with a coarse-grained force field. Setny P, Bahadur RP, Zacharias M. BMC Bioinformatics 13 228 (2012)
  6. The energetic contribution of induced electrostatic asymmetry to DNA bending by a site-specific protein. Hancock SP, Hiller DA, Perona JJ, Jen-Jacobson L. J Mol Biol 406 285-312 (2011)
  7. Protein stability indicates divergent evolution of PD-(D/E)XK type II restriction endonucleases. Fuxreiter M, Simon I. Protein Sci 11 1978-1983 (2002)
  8. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes. Malhotra S, Sowdhamini R. BMC Bioinformatics 13 165 (2012)
  9. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein-DNA Complex. Sinha K, Sangani SS, Kehr AD, Rule GS, Jen-Jacobson L. Biochemistry 55 6115-6132 (2016)


Reviews citing this publication (20)

  1. Structure and function of type II restriction endonucleases. Pingoud A, Jeltsch A. Nucleic Acids Res 29 3705-3727 (2001)
  2. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Chevalier BS, Stoddard BL. Nucleic Acids Res 29 3757-3774 (2001)
  3. Recognition and cleavage of DNA by type-II restriction endonucleases. Pingoud A, Jeltsch A. Eur J Biochem 246 1-22 (1997)
  4. Type II restriction endonucleases--a historical perspective and more. Pingoud A, Wilson GG, Wende W. Nucleic Acids Res 42 7489-7527 (2014)
  5. Protein-DNA recognition complexes: conservation of structure and binding energy in the transition state. Jen-Jacobson L. Biopolymers 44 153-180 (1997)
  6. Optical detection of single molecules. Nie S, Zare RN. Annu Rev Biophys Biomol Struct 26 567-596 (1997)
  7. Type II restriction endonucleases: structural, functional and evolutionary relationships. Kovall RA, Matthews BW. Curr Opin Chem Biol 3 578-583 (1999)
  8. Recognition and manipulation of branched DNA structure by junction-resolving enzymes. White MF, Giraud-Panis MJ, Pöhler JR, Lilley DM. J Mol Biol 269 647-664 (1997)
  9. Reaction-diffusion systems in intracellular molecular transport and control. Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski BA. Angew Chem Int Ed Engl 49 4170-4198 (2010)
  10. Making the bend: DNA tertiary structure and protein-DNA interactions. Harteis S, Schneider S. Int J Mol Sci 15 12335-12363 (2014)
  11. Homing endonucleases: from basics to therapeutic applications. Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Cell Mol Life Sci 67 727-748 (2010)
  12. One is enough: insights into the two-metal ion nuclease mechanism from global analysis and computational studies. Dupureur CM. Metallomics 2 609-620 (2010)
  13. Endonuclease V: an unusual enzyme for repair of DNA deamination. Cao W. Cell Mol Life Sci 70 3145-3156 (2013)
  14. Type II restriction endonucleases. Perona JJ. Methods 28 353-364 (2002)
  15. Divalent cations and the electrostatic potential around DNA: Monte Carlo and Poisson-Boltzmann calculations. Pack GR, Wong L, Lamm G. Biopolymers 49 575-590 (1999)
  16. Structure-based HIV-1 integrase inhibitor design: a future perspective. Neamati N. Expert Opin Investig Drugs 10 281-296 (2001)
  17. BglII and MunI: what a difference a base makes. Lukacs CM, Aggarwal AK. Curr Opin Struct Biol 11 14-18 (2001)
  18. Recombination. Pieces of the site-specific recombination puzzle. Oram M, Szczelkun MD, Halford SE. Curr Biol 5 1106-1109 (1995)
  19. Molecular Recognition and Self-Organization in Life Phenomena Studied by a Statistical Mechanics of Molecular Liquids, the RISM/3D-RISM Theory. Sugita M, Onishi I, Irisa M, Yoshida N, Hirata F. Molecules 26 E271 (2021)
  20. A tool written in Scala for preparation and analysis in MD simulation and 3D-RISM calculation of biomolecules. Onishi I, Tsuji H, Irisa M. Biophys Physicobiol 16 485-489 (2019)

Articles citing this publication (99)

  1. Protein-DNA interactions: A structural analysis. Jones S, van Heyningen P, Berman HM, Thornton JM. J Mol Biol 287 877-896 (1999)
  2. DNA bending: the prevalence of kinkiness and the virtues of normality. Dickerson RE. Nucleic Acids Res 26 1906-1926 (1998)
  3. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Goldgur Y, Dyda F, Hickman AB, Jenkins TM, Craigie R, Davies DR. Proc Natl Acad Sci U S A 95 9150-9154 (1998)
  4. A-form conformational motifs in ligand-bound DNA structures. Lu XJ, Shakked Z, Olson WK. J Mol Biol 300 819-840 (2000)
  5. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Duan X, Gimble FS, Quiocho FA. Cell 89 555-564 (1997)
  6. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? Pabo CO, Nekludova L. J Mol Biol 301 597-624 (2000)
  7. Structural basis for MutH activation in E.coli mismatch repair and relationship of MutH to restriction endonucleases. Ban C, Yang W. EMBO J 17 1526-1534 (1998)
  8. The crystal structure of phenylalanyl-tRNA synthetase from thermus thermophilus complexed with cognate tRNAPhe. Goldgur Y, Mosyak L, Reshetnikova L, Ankilova V, Lavrik O, Khodyreva S, Safro M. Structure 5 59-68 (1997)
  9. The generation of new protein functions by the combination of domains. Bashton M, Chothia C. Structure 15 85-99 (2007)
  10. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Mueser TC, Nossal NG, Hyde CC. Cell 85 1101-1112 (1996)
  11. Three metal ions at the active site of the Tetrahymena group I ribozyme. Shan So, Yoshida A, Sun S, Piccirilli JA, Herschlag D. Proc Natl Acad Sci U S A 96 12299-12304 (1999)
  12. Crystal structure of restriction endonuclease BglI bound to its interrupted DNA recognition sequence. Newman M, Lunnen K, Wilson G, Greci J, Schildkraut I, Phillips SE. EMBO J 17 5466-5476 (1998)
  13. A role for CH...O interactions in protein-DNA recognition. Mandel-Gutfreund Y, Margalit H, Jernigan RL, Zhurkin VB. J Mol Biol 277 1129-1140 (1998)
  14. Helix bending as a factor in protein/DNA recognition. Dickerson RE, Chiu TK. Biopolymers 44 361-403 (1997)
  15. The role of metals in catalysis by the restriction endonuclease BamHI. Viadiu H, Aggarwal AK. Nat Struct Biol 5 910-916 (1998)
  16. Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F. Mol Cell 5 1025-1034 (2000)
  17. Letter Crystal structure of phytase from Aspergillus ficuum at 2.5 A resolution. Kostrewa D, Grüninger-Leitch F, D'Arcy A, Broger C, Mitchell D, van Loon AP. Nat Struct Biol 4 185-190 (1997)
  18. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains. Cheng AC, Chen WW, Fuhrmann CN, Frankel AD. J Mol Biol 327 781-796 (2003)
  19. Frustration in protein-DNA binding influences conformational switching and target search kinetics. Marcovitz A, Levy Y. Proc Natl Acad Sci U S A 108 17957-17962 (2011)
  20. Linear diffusion of the restriction endonuclease EcoRV on DNA is essential for the in vivo function of the enzyme. Jeltsch A, Wenz C, Stahl F, Pingoud A. EMBO J 15 5104-5111 (1996)
  21. Specific binding by EcoRV endonuclease to its DNA recognition site GATATC. Engler LE, Welch KK, Jen-Jacobson L. J Mol Biol 269 82-101 (1997)
  22. Metal ion-mediated substrate-assisted catalysis in type II restriction endonucleases. Horton NC, Newberry KJ, Perona JJ. Proc Natl Acad Sci U S A 95 13489-13494 (1998)
  23. The active site of Serratia endonuclease contains a conserved magnesium-water cluster. Miller MD, Cai J, Krause KL. J Mol Biol 288 975-987 (1999)
  24. Crystallographic and functional studies of very short patch repair endonuclease. Tsutakawa SE, Muto T, Kawate T, Jingami H, Kunishima N, Ariyoshi M, Kohda D, Nakagawa M, Morikawa K. Mol Cell 3 621-628 (1999)
  25. MutH complexed with hemi- and unmethylated DNAs: coupling base recognition and DNA cleavage. Lee JY, Chang J, Joseph N, Ghirlando R, Rao DN, Yang W. Mol Cell 20 155-166 (2005)
  26. Site-directed mutagenesis of the catalytic residues of bovine pancreatic deoxyribonuclease I. Jones SJ, Worrall AF, Connolly BA. J Mol Biol 264 1154-1163 (1996)
  27. Structural, functional, and evolutionary relationships between lambda-exonuclease and the type II restriction endonucleases. Kovall RA, Matthews BW. Proc Natl Acad Sci U S A 95 7893-7897 (1998)
  28. Crystal structure of the Bse634I restriction endonuclease: comparison of two enzymes recognizing the same DNA sequence. Grazulis S, Deibert M, Rimseliene R, Skirgaila R, Sasnauskas G, Lagunavicius A, Repin V, Urbanke C, Huber R, Siksnys V. Nucleic Acids Res 30 876-885 (2002)
  29. PvuII endonuclease contains two calcium ions in active sites. Horton JR, Cheng X. J Mol Biol 300 1049-1056 (2000)
  30. Structural recognition and distortion by the DNA junction-resolving enzyme RusA. Giraud-Panis MJ, Lilley DM. J Mol Biol 278 117-133 (1998)
  31. The structure of Bacillus subtilis RecU Holliday junction resolvase and its role in substrate selection and sequence-specific cleavage. McGregor N, Ayora S, Sedelnikova S, Carrasco B, Alonso JC, Thaw P, Rafferty J. Structure 13 1341-1351 (2005)
  32. A "moving metal mechanism" for substrate cleavage by the DNA repair endonuclease APE-1. Oezguen N, Schein CH, Peddi SR, Power TD, Izumi T, Braun W. Proteins 68 313-323 (2007)
  33. Factors responsible for target site selection in Tn10 transposition: a role for the DDE motif in target DNA capture. Junop MS, Haniford DB. EMBO J 16 2646-2655 (1997)
  34. Protein and drug interactions in the minor groove of DNA. Morávek Z, Neidle S, Schneider B. Nucleic Acids Res 30 1182-1191 (2002)
  35. Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. Voziyanov Y, Konieczka JH, Stewart AF, Jayaram M. J Mol Biol 326 65-76 (2003)
  36. Conformational transitions and structural deformability of EcoRV endonuclease revealed by crystallographic analysis. Perona JJ, Martin AM. J Mol Biol 273 207-225 (1997)
  37. DNA cleavage by the EcoRV restriction endonuclease: roles of divalent metal ions in specificity and catalysis. Baldwin GS, Sessions RB, Erskine SG, Halford SE. J Mol Biol 288 87-103 (1999)
  38. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers. Ploetz E, Lerner E, Husada F, Roelfs M, Chung S, Hohlbein J, Weiss S, Cordes T. Sci Rep 6 33257 (2016)
  39. Catalytic and DNA binding properties of PvuII restriction endonuclease mutants. Nastri HG, Evans PD, Walker IH, Riggs PD. J Biol Chem 272 25761-25767 (1997)
  40. Intragenic suppression of an active site mutation in the human apurinic/apyrimidinic endonuclease. Izumi T, Malecki J, Chaudhry MA, Weinfeld M, Hill JH, Lee JC, Mitra S. J Mol Biol 287 47-57 (1999)
  41. Metal ions bound at the active site of the junction-resolving enzyme T7 endonuclease I. Hadden JM, Déclais AC, Phillips SE, Lilley DM. EMBO J 21 3505-3515 (2002)
  42. On the divalent metal ion dependence of DNA cleavage by restriction endonucleases of the EcoRI family. Pingoud V, Wende W, Friedhoff P, Reuter M, Alves J, Jeltsch A, Mones L, Fuxreiter M, Pingoud A. J Mol Biol 393 140-160 (2009)
  43. Introduction of asymmetry in the naturally symmetric restriction endonuclease EcoRV to investigate intersubunit communication in the homodimeric protein. Stahl F, Wende W, Jeltsch A, Pingoud A. Proc Natl Acad Sci U S A 93 6175-6180 (1996)
  44. Restriction enzyme BsoBI-DNA complex: a tunnel for recognition of degenerate DNA sequences and potential histidine catalysis. van der Woerd MJ, Pelletier JJ, Xu S, Friedman AM. Structure 9 133-144 (2001)
  45. Reactions of the eco RV restriction endonuclease with fluorescent oligodeoxynucleotides: identical equilibrium constants for binding to specific and non-specific DNA. Erskine SG, Halford SE. J Mol Biol 275 759-772 (1998)
  46. Structure-based redesign of the catalytic/metal binding site of Cfr10I restriction endonuclease reveals importance of spatial rather than sequence conservation of active centre residues. Skirgaila R, Grazulis S, Bozic D, Huber R, Siksnys V. J Mol Biol 279 473-481 (1998)
  47. Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje. Middleton CL, Parker JL, Richard DJ, White MF, Bond CS. Nucleic Acids Res 32 5442-5451 (2004)
  48. All three residues of the Tn 10 transposase DDE catalytic triad function in divalent metal ion binding. Allingham JS, Pribil PA, Haniford DB. J Mol Biol 289 1195-1206 (1999)
  49. Crystallographic snapshots along a protein-induced DNA-bending pathway. Horton NC, Perona JJ. Proc Natl Acad Sci U S A 97 5729-5734 (2000)
  50. Role of protein-induced bending in the specificity of DNA recognition: crystal structure of EcoRV endonuclease complexed with d(AAAGAT) + d(ATCTT). Horton NC, Perona JJ. J Mol Biol 277 779-787 (1998)
  51. On the possibilities and limitations of rational protein design to expand the specificity of restriction enzymes: a case study employing EcoRV as the target. Lanio T, Jeltsch A, Pingoud A. Protein Eng 13 275-281 (2000)
  52. DNA cleavage by the EcoRV restriction endonuclease: pH dependence and proton transfers in catalysis. Stanford NP, Halford SE, Baldwin GS. J Mol Biol 288 105-116 (1999)
  53. Identification of single Mn(2+) binding sites required for activation of the mutant proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray crystallography. Tsunaka Y, Takano K, Matsumura H, Yamagata Y, Kanaya S. J Mol Biol 345 1171-1183 (2005)
  54. Analyzing the functional organization of a novel restriction modification system, the BcgI system. Kong H. J Mol Biol 279 823-832 (1998)
  55. Mapping metal ions at the catalytic centres of two intron-encoded endonucleases. Lykke-Andersen J, Garrett RA, Kjems J. EMBO J 16 3272-3281 (1997)
  56. Substrate recognition and induced DNA deformation by transposase at the target-capture stage of Tn10 transposition. Pribil PA, Haniford DB. J Mol Biol 303 145-159 (2000)
  57. Dynamic evidence for metal ion catalysis in the reaction mediated by a flap endonuclease. Tock MR, Frary E, Sayers JR, Grasby JA. EMBO J 22 995-1004 (2003)
  58. Mechanistic Studies Reveal Similar Catalytic Strategies for Phosphodiester Bond Hydrolysis by Protein-only and RNA-dependent Ribonuclease P. Howard MJ, Klemm BP, Fierke CA. J Biol Chem 290 13454-13464 (2015)
  59. Multiple roles for divalent metal ions in DNA transposition: distinct stages of Tn10 transposition have different Mg2+ requirements. Junop MS, Haniford DB. EMBO J 15 2547-2555 (1996)
  60. Unusual role of a cysteine residue in substrate binding and activity of human AP-endonuclease 1. Mantha AK, Oezguen N, Bhakat KK, Izumi T, Braun W, Mitra S. J Mol Biol 379 28-37 (2008)
  61. Catalytic and binding mutants of the junction-resolving enzyme endonuclease I of bacteriophage t7: role of acidic residues. Parkinson MJ, Pöhler JR, Lilley DM. Nucleic Acids Res 27 682-689 (1999)
  62. Towards the design of rare cutting restriction endonucleases: using directed evolution to generate variants of EcoRV differing in their substrate specificity by two orders of magnitude. Lanio T, Jeltsch A, Pingoud A. J Mol Biol 283 59-69 (1998)
  63. Asp34 of PvuII endonuclease is directly involved in DNA minor groove recognition and indirectly involved in catalysis. Horton JR, Nastri HG, Riggs PD, Cheng X. J Mol Biol 284 1491-1504 (1998)
  64. Sequence specific interaction of Mycobacterium smegmatis topoisomerase I with duplex DNA. Bhaduri T, Sikder D, Nagaraja V. Nucleic Acids Res 26 1668-1674 (1998)
  65. Normal mode analysis based on an elastic network model for biomolecules in the Protein Data Bank, which uses dihedral angles as independent variables. Wako H, Endo S. Comput Biol Chem 44 22-30 (2013)
  66. Crystal structures of I-SceI complexed to nicked DNA substrates: snapshots of intermediates along the DNA cleavage reaction pathway. Moure CM, Gimble FS, Quiocho FA. Nucleic Acids Res 36 3287-3296 (2008)
  67. Non-cognate enzyme-DNA complex: structural and kinetic analysis of EcoRV endonuclease bound to the EcoRI recognition site GAATTC. Hiller DA, Rodriguez AM, Perona JJ. J Mol Biol 354 121-136 (2005)
  68. Two crystal forms of the restriction enzyme MspI-DNA complex show the same novel structure. Xu QS, Roberts RJ, Guo HC. Protein Sci 14 2590-2600 (2005)
  69. Effects of divalent metal ions on the activity and conformation of native and 3-fluorotyrosine-PvuII endonucleases. Dupureur CM, Hallman LM. Eur J Biochem 261 261-268 (1999)
  70. Mutational analysis on structure-function relationship of a holliday junction specific endonuclease RuvC. Ichiyanagi K, Iwasaki H, Hishida T, Shinagawa H. Genes Cells 3 575-586 (1998)
  71. Genomic structure of the human DNA methyltransferase gene. Ramchandani S, Bigey P, Szyf M. Biol Chem 379 535-540 (1998)
  72. The EcoRV modification methylase causes considerable bending of DNA upon binding to its recognition sequence GATATC. Cal S, Connolly BA. J Biol Chem 271 1008-1015 (1996)
  73. Catalytic efficiency and sequence selectivity of a restriction endonuclease modulated by a distal manganese ion binding site. Sam MD, Horton NC, Nissan TA, Perona JJ. J Mol Biol 306 851-861 (2001)
  74. Mechanism of DNA recognition by the restriction enzyme EcoRV. Zahran M, Daidone I, Smith JC, Imhof P. J Mol Biol 401 415-432 (2010)
  75. Structural analysis of a mutational hot-spot in the EcoRV restriction endonuclease: a catalytic role for a main chain carbonyl group. Thomas MP, Brady RL, Halford SE, Sessions RB, Baldwin GS. Nucleic Acids Res 27 3438-3445 (1999)
  76. Automatic workflow for the classification of local DNA conformations. Čech P, Kukal J, Černý J, Schneider B, Svozil D. BMC Bioinformatics 14 205 (2013)
  77. DNA recognition by the EcoRV restriction endonuclease probed using base analogues. Parry D, Moon SA, Liu HH, Heslop P, Connolly BA. J Mol Biol 331 1005-1016 (2003)
  78. How is modification of the DNA substrate recognized by the PvuII restriction endonuclease? Horton JR, Bonventre J, Cheng X. Biol Chem 379 451-458 (1998)
  79. Mechanistic insights from the structures of HincII bound to cognate DNA cleaved from addition of Mg2+ and Mn2+. Etzkorn C, Horton NC. J Mol Biol 343 833-849 (2004)
  80. Crosslinking the EcoRV restriction endonuclease across the DNA-binding site reveals transient intermediates and conformational changes of the enzyme during DNA binding and catalytic turnover. Schulze C, Jeltsch A, Franke I, Urbanke C, Pingoud A. EMBO J 17 6757-6766 (1998)
  81. DNA intercalation without flipping in the specific ThaI-DNA complex. Firczuk M, Wojciechowski M, Czapinska H, Bochtler M. Nucleic Acids Res 39 744-754 (2011)
  82. Kinetic analysis of product release and metal ions in a metallonuclease. Xie F, Dupureur CM. Arch Biochem Biophys 483 1-9 (2009)
  83. Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis. Yang W, Chen WY, Wang H, Ho JW, Huang JD, Woo PC, Lau SK, Yuen KY, Zhang Q, Zhou W, Bartlam M, Watt RM, Rao Z. Nucleic Acids Res 39 9803-9819 (2011)
  84. The mechanism of DNA cleavage by the type II restriction enzyme EcoRV: Asp36 is not directly involved in DNA cleavage but serves to couple indirect readout to catalysis. Stahl F, Wende W, Jeltsch A, Pingoud A. Biol Chem 379 467-473 (1998)
  85. Enhancement and rescue of target capture in Tn10 transposition by site-specific modifications in target DNA. Pribil PA, Wardle SJ, Haniford DB. Mol Microbiol 52 1173-1186 (2004)
  86. Asp-59 is not important for the catalytic activity of the restriction endonuclease EcoRI. Grabowski G, Maass G, Alves J. FEBS Lett 381 106-110 (1996)
  87. Endonuclease domain of non-LTR retrotransposons: loss-of-function mutants and modeling of the R2Bm endonuclease. Govindaraju A, Cortez JD, Reveal B, Christensen SM. Nucleic Acids Res 44 3276-3287 (2016)
  88. Efficient methodology for the cyclization of linear peptide libraries via intramolecular S-alkylation using Multipin solid phase peptide synthesis. Roberts KD, Lambert JN, Ede NJ, Bray AM. J Pept Sci 12 525-532 (2006)
  89. Overexpression of BsoBI restriction endonuclease in E. coli, purification of the recombinant BsoBI, and identification of catalytic residues of BsoBI by random mutagenesis. Ruan H, Lunnen KD, Pelletier JJ, Xu S. Gene 188 35-39 (1997)
  90. Using X-ray crystallography of the Asp55Asn mutant of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus to support the mechanistic role of Asp55 as the general base. Antikainen NM, Monzingo AF, Franklin CL, Robertus JD, Martin SF. Arch Biochem Biophys 417 81-86 (2003)
  91. Influence of divalent cations on inner-arm mutants of restriction endonuclease EcoRI. Windolph S, Alves J. Eur J Biochem 244 134-139 (1997)
  92. Positively charged C-terminal subdomains of EcoRV endonuclease: contributions to DNA binding, bending, and cleavage. Hiller DA, Perona JJ. Biochemistry 45 11453-11463 (2006)
  93. Theoretical model of restriction endonuclease HpaI in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis. Skowronek KJ, Kosinski J, Bujnicki JM. Proteins 63 1059-1068 (2006)
  94. Thermodynamic and structural basis for relaxation of specificity in protein-DNA recognition. Sapienza PJ, Niu T, Kurpiewski MR, Grigorescu A, Jen-Jacobson L. J Mol Biol 426 84-104 (2014)
  95. DNA duplexes containing altered sugar residues as probes of EcoRII and MvaI endonuclease interactions with sugar-phosphate backbone. Petrauskene OV, Yakovleva JN, Alekseev YI, Subach FV, Babkina OV, Gromova ES. J Biomol Struct Dyn 17 857-870 (2000)
  96. Exploring the catalytic center of TaqI endonuclease: rescuing catalytic activity by double mutations and Mn2+. Cao W, Lu J. Biochim Biophys Acta 1546 253-260 (2001)
  97. The phage T4 MotA transcription factor contains a novel DNA binding motif that specifically recognizes modified DNA. Cuypers MG, Robertson RM, Knipling L, Waddell MB, Moon K, Hinton DM, White SW. Nucleic Acids Res 46 5308-5318 (2018)
  98. Synthesis and structures of soluble magnesium and zinc carboxylates containing intramolecular NH···O hydrogen bonds in nonpolar solvents. Okamura TA, Furuya R, Onitsuka K. Dalton Trans 44 7512-7523 (2015)
  99. Using single-turnover kinetics with osmotic stress to characterize the EcoRV cleavage reaction. Ferrandino R, Sidorova N, Rau D. Biochemistry 53 235-246 (2014)


Related citations provided by authors (2)

  1. The Crystal Structure of EcoRV Endonuclease and of its Complexes with Cognate and Noncognate DNA Fragments. Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS EMBO J. 12 1781- (1993)
  2. Structure and Function of Restriction Endonucleases. Winkler FK Curr. Opin. Struct. Biol. 2 93- (1992)