1ru4 Citations

The crystal structure of pectate lyase Pel9A from Erwinia chrysanthemi.

J Biol Chem 279 9139-45 (2004)
Cited: 47 times
EuropePMC logo PMID: 14670977

Abstract

The "family 9 polysaccharide lyase" pectate lyase L (Pel9A) from Erwinia chrysanthemi comprises a 10-coil parallel beta-helix domain with distinct structural features including an asparagine ladder and aromatic stack at novel positions within the superhelical structure. Pel9A has a single high affinity calcium-binding site strikingly similar to the "primary" calcium-binding site described previously for the family Pel1A pectate lyases, and there is strong evidence for a common second calcium ion that binds between enzyme and substrate in the "Michaelis" complex. Although the primary calcium ion binds substrate in subsite -1, it is the second calcium ion, whose binding site is formed by the coming together of enzyme and substrate, that facilitates abstraction of the C5 proton from the sacharride in subsite +1. The role of the second calcium is to withdraw electrons from the C6 carboxylate of the substrate, thereby acidifying the C5 proton facilitating its abstraction and resulting in an E1cb-like anti-beta-elimination mechanism. The active site geometries and mechanism of Pel1A and Pel9A are closely similar, but the catalytic base is a lysine in the Pel9A enzymes as opposed to an arginine in the Pel1A enzymes.

Articles - 1ru4 mentioned but not cited (7)

  1. Structural biology of pectin degradation by Enterobacteriaceae. Abbott DW, Boraston AB. Microbiol. Mol. Biol. Rev. 72 301-16, table of contents (2008)
  2. PelN is a new pectate lyase of Dickeya dadantii with unusual characteristics. Hassan S, Shevchik VE, Robert X, Hugouvieux-Cotte-Pattat N. J. Bacteriol. 195 2197-2206 (2013)
  3. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, Baslé A, Cartmell A, Terrapon N, Stott K, Lowe EC, McLean R, Shearer K, Schückel J, Venditto I, Ralet MC, Henrissat B, Martens EC, Mosimann SC, Abbott DW, Gilbert HJ. Nat Microbiol 3 210-219 (2018)
  4. Intrinsically disordered regions may lower the hydration free energy in proteins: a case study of nudix hydrolase in the bacterium Deinococcus radiodurans. Awile O, Krisko A, Sbalzarini IF, Zagrovic B. PLoS Comput. Biol. 6 e1000854 (2010)
  5. Klebsiella pneumoniae subsp. pneumoniae-bacteriophage combination from the caecal effluent of a healthy woman. Hoyles L, Murphy J, Neve H, Heller KJ, Turton JF, Mahony J, Sanderson JD, Hudspith B, Gibson GR, McCartney AL, van Sinderen D. PeerJ 3 e1061 (2015)
  6. Structure of the Streptococcus pneumoniae surface protein and adhesin PfbA. Suits MD, Boraston AB. PLoS ONE 8 e67190 (2013)
  7. A Novel PL9 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression, and Its Application in Pectin Degradation. Yuan Y, Zhang XY, Zhao Y, Zhang H, Zhou YF, Gao J. Int J Mol Sci 20 (2019)


Reviews citing this publication (6)

  1. A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Guillén Schlippe YV, Hedstrom L. Arch. Biochem. Biophys. 433 266-278 (2005)
  2. Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Garron ML, Cygler M. Glycobiology 20 1547-1573 (2010)
  3. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. Sénéchal F, Wattier C, Rustérucci C, Pelloux J. J. Exp. Bot. 65 5125-5160 (2014)
  4. Breakdown of oligosaccharides by the process of elimination. Yip VL, Withers SG. Curr Opin Chem Biol 10 147-155 (2006)
  5. Bacterial pectate lyases, structural and functional diversity. Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE. Environ Microbiol Rep 6 427-440 (2014)
  6. Diversity of Three-Dimensional Structures and Catalytic Mechanisms of Alginate Lyases. Xu F, Wang P, Zhang YZ, Chen XL. Appl. Environ. Microbiol. 84 (2018)

Articles citing this publication (34)

  1. Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p. Chan JC, Oyler NA, Yau WM, Tycko R. Biochemistry 44 10669-10680 (2005)
  2. Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi. Fagard M, Dellagi A, Roux C, Périno C, Rigault M, Boucher V, Shevchik VE, Expert D. Mol. Plant Microbe Interact. 20 794-805 (2007)
  3. Crystal structure of exotype alginate lyase Atu3025 from Agrobacterium tumefaciens. Ochiai A, Yamasaki M, Mikami B, Hashimoto W, Murata K. J. Biol. Chem. 285 24519-24528 (2010)
  4. Standard conformations of beta-arches in beta-solenoid proteins. Hennetin J, Jullian B, Steven AC, Kajava AV. J. Mol. Biol. 358 1094-1105 (2006)
  5. Structural and mutational characterization of the catalytic A-module of the mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii. Rozeboom HJ, Bjerkan TM, Kalk KH, Ertesvåg H, Holtan S, Aachmann FL, Valla S, Dijkstra BW. J. Biol. Chem. 283 23819-23828 (2008)
  6. Crystal structure of Bacillus sp. GL1 xanthan lyase complexed with a substrate: insights into the enzyme reaction mechanism. Maruyama Y, Hashimoto W, Mikami B, Murata K. J. Mol. Biol. 350 974-986 (2005)
  7. A novel structural fold in polysaccharide lyases: Bacillus subtilis family 11 rhamnogalacturonan lyase YesW with an eight-bladed beta-propeller. Ochiai A, Itoh T, Maruyama Y, Kawamata A, Mikami B, Hashimoto W, Murata K. J Biol Chem 282 37134-37145 (2007)
  8. Crystal structure of polysaccharide lyase family 20 endo-beta-1,4-glucuronan lyase from the filamentous fungus Trichoderma reesei. Konno N, Ishida T, Igarashi K, Fushinobu S, Habu N, Samejima M, Isogai A. FEBS Lett. 583 1323-1326 (2009)
  9. Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Pineau C, Guschinskaya N, Robert X, Gouet P, Ballut L, Shevchik VE. Mol. Microbiol. 94 126-140 (2014)
  10. The active site of oligogalacturonate lyase provides unique insights into cytoplasmic oligogalacturonate beta-elimination. Abbott DW, Gilbert HJ, Boraston AB. J. Biol. Chem. 285 39029-39038 (2010)
  11. A mammalian homolog of the zebrafish transmembrane protein 2 (TMEM2) is the long-sought-after cell-surface hyaluronidase. Yamamoto H, Tobisawa Y, Inubushi T, Irie F, Ohyama C, Yamaguchi Y. J. Biol. Chem. 292 7304-7313 (2017)
  12. Biochemical properties of pectate lyases produced by three different Bacillus strains isolated from fermenting cocoa beans and characterization of their cloned genes. Ouattara HG, Reverchon S, Niamke SL, Nasser W. Appl. Environ. Microbiol. 76 5214-5220 (2010)
  13. Novel Molecular Insights into the Catalytic Mechanism of Marine Bacterial Alginate Lyase AlyGC from Polysaccharide Lyase Family 6. Xu F, Dong F, Wang P, Cao HY, Li CY, Li PY, Pang XH, Zhang YZ, Chen XL. J. Biol. Chem. 292 4457-4468 (2017)
  14. Cloning of the Trichoderma reesei cDNA encoding a glucuronan lyase belonging to a novel polysaccharide lyase family. Konno N, Igarashi K, Habu N, Samejima M, Isogai A. Appl. Environ. Microbiol. 75 101-107 (2009)
  15. PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris. Jiang J, Yao L, Yu Y, Lv M, Miao Y, Cao J. J Integr Plant Biol 56 1095-1105 (2014)
  16. Identification of recurring protein structure microenvironments and discovery of novel functional sites around CYS residues. Wu S, Liu T, Altman RB. BMC Struct. Biol. 10 4 (2010)
  17. Role of pectinolytic enzymes identified in Clostridium thermocellum cellulosome. Chakraborty S, Fernandes VO, Dias FM, Prates JA, Ferreira LM, Fontes CM, Goyal A, Centeno MS. PLoS ONE 10 e0116787 (2015)
  18. The X-ray structure of the plant like 5-aminolaevulinic acid dehydratase from Chlorobium vibrioforme complexed with the inhibitor laevulinic acid at 2.6 A resolution. Coates L, Beaven G, Erskine PT, Beale SI, Avissar YJ, Gill R, Mohammed F, Wood SP, Shoolingin-Jordan P, Cooper JB. J. Mol. Biol. 342 563-570 (2004)
  19. The in situ observation of the temperature and pressure stability of recombinant Aspergillus aculeatus pectin methylesterase with Fourier transform IR spectroscopy reveals an unusual pressure stability of beta-helices. Dirix C, Duvetter T, Loey AV, Hendrickx M, Heremans K. Biochem. J. 392 565-571 (2005)
  20. An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. Munoz-Munoz J, Cartmell A, Terrapon N, Baslé A, Henrissat B, Gilbert HJ. J. Biol. Chem. 292 13271-13283 (2017)
  21. Super-channel in bacteria: structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules. Hashimoto W, Yamasaki M, Itoh T, Momma K, Mikami B, Murata K. J. Biosci. Bioeng. 98 399-413 (2004)
  22. In silico characterization of pectate lyase protein sequences from different source organisms. Dubey AK, Yadav S, Kumar M, Singh VK, Sarangi BK, Yadav D. Enzyme Res 2010 950230 (2010)
  23. Biochemical characteristics of an alkaline pectate lyase PelA from Volvariella volvacea: roles of the highly conserved N-glycosylation site in its secretion and activity. Shi A, Hu H, Zheng F, Long L, Ding S. Appl. Microbiol. Biotechnol. 99 3447-3458 (2015)
  24. Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role. Miklós I, Zádori Z. PLoS Comput. Biol. 8 e1002356 (2012)
  25. Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe-host interactions. Sequeira S, Kavanaugh D, MacKenzie DA, Šuligoj T, Walpole S, Leclaire C, Gunning AP, Latousakis D, Willats WGT, Angulo J, Dong C, Juge N. Proc. Natl. Acad. Sci. U.S.A. 115 E2706-E2715 (2018)
  26. Structural insights into the loss of catalytic competence in pectate lyase activity at low pH. Ali S, Søndergaard CR, Teixeira S, Pickersgill RW. FEBS Lett. 589 3242-3246 (2015)
  27. Structure-based engineering of a pectate lyase with improved specific activity for ramie degumming. Zhou Z, Liu Y, Chang Z, Wang H, Leier A, Marquez-Lago TT, Ma Y, Li J, Song J. Appl. Microbiol. Biotechnol. 101 2919-2929 (2017)
  28. Biochemical Characterization of a Pectate Lyase AnPL9 from Aspergillus nidulans. Suzuki H, Morishima T, Handa A, Tsukagoshi H, Kato M, Shimizu M. Appl Biochem Biotechnol 194 5627-5643 (2022)
  29. Crystal structure of the catalytic unit of GH 87-type α-1,3-glucanase Agl-KA from Bacillus circulans. Yano S, Suyotha W, Oguro N, Matsui T, Shiga S, Itoh T, Hibi T, Tanaka Y, Wakayama M, Makabe K. Sci Rep 9 15295 (2019)
  30. Functional identification of alginate lyase from the brown alga Saccharina japonica. Inoue A, Ojima T. Sci Rep 9 4937 (2019)
  31. Improvement of optimum pH and specific activity of pectate lyase from Bacillus RN.1 using loop replacement. Li P, Wei X, Wang Y, Liu H, Xu Y, Zhang Z, Li J, Wang J, Guo C, Sui S, Wang J, Wang R. Front Bioeng Biotechnol 11 1242123 (2023)
  32. Process optimization for bioscouring of cotton and lycra cotton weft knits by Box and Behnken design. Shanthi R, Krishnabai G. Carbohydr Polym 96 291-295 (2013)
  33. QM/MM studies on the calcium-assisted β-elimination mechanism of pectate lyase from bacillus subtilis. Ma G, Zhu W, Liu Y. Proteins 84 1606-1615 (2016)
  34. Structural and biochemical characterisation of a novel alginate lyase from Paenibacillus sp. str. FPU-7. Itoh T, Nakagawa E, Yoda M, Nakaichi A, Hibi T, Kimoto H. Sci Rep 9 14870 (2019)