1ro7 Citations

Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog.

Nat Struct Mol Biol 11 163-70 (2004)
Cited: 109 times
EuropePMC logo PMID: 14730352

Abstract

Sialic acid terminates oligosaccharide chains on mammalian and microbial cell surfaces, playing critical roles in recognition and adherence. The enzymes that transfer the sialic acid moiety from cytidine-5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal positions of these key glycoconjugates are known as sialyltransferases. Despite their important biological roles, little is understood about the mechanism or molecular structure of these membrane-associated enzymes. We report the first structure of a sialyltransferase, that of CstII from Campylobacter jejuni, a highly prevalent foodborne pathogen. Our structural, mutagenesis and kinetic data provide support for a novel mode of substrate binding and glycosyl transfer mechanism, including essential roles of a histidine (general base) and two tyrosine residues (coordination of the phosphate leaving group). This work provides a framework for understanding the activity of several sialyltransferases, from bacterial to human, and for the structure-based design of specific inhibitors.

Reviews - 1ro7 mentioned but not cited (3)

  1. Sparse labeling of proteins: structural characterization from long range constraints. Prestegard JH, Agard DA, Moremen KW, Lavery LA, Morris LC, Pederson K. J Magn Reson 241 32-40 (2014)
  2. Type III Secretion Effectors with Arginine N-Glycosyltransferase Activity. Araujo-Garrido JL, Bernal-Bayard J, Ramos-Morales F. Microorganisms 8 E357 (2020)
  3. Structural Insights in Mammalian Sialyltransferases and Fucosyltransferases: We Have Come a Long Way, but It Is Still a Long Way Down. Grewal RK, Shaikh AR, Gorle S, Kaur M, Videira PA, Cavallo L, Chawla M. Molecules 26 (2021)

Articles - 1ro7 mentioned but not cited (6)

  1. Enzymatic basis for N-glycan sialylation: structure of rat α2,6-sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation. Meng L, Forouhar F, Thieker D, Gao Z, Ramiah A, Moniz H, Xiang Y, Seetharaman J, Milaninia S, Su M, Bridger R, Veillon L, Azadi P, Kornhaber G, Wells L, Montelione GT, Woods RJ, Tong L, Moremen KW. J Biol Chem 288 34680-34698 (2013)
  2. Structural and kinetic analysis of substrate binding to the sialyltransferase Cst-II from Campylobacter jejuni. Lee HJ, Lairson LL, Rich JR, Lameignere E, Wakarchuk WW, Withers SG, Strynadka NCJ. J Biol Chem 286 35922-35932 (2011)
  3. Characterization of α2,3- and α2,6-sialyltransferases from Helicobacter acinonychis. Schur MJ, Lameignere E, Strynadka NC, Wakarchuk WW. Glycobiology 22 997-1006 (2012)
  4. Fold-recognition and comparative modeling of human alpha2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni. Sujatha MS, Balaji PV. BMC Struct Biol 6 9 (2006)
  5. Structural and functional role of disulphide bonds and substrate binding residues of the human beta-galactoside alpha-2,3-sialyltransferase 1 (hST3Gal1). Ortiz-Soto ME, Reising S, Schlosser A, Seibel J. Sci Rep 9 17993 (2019)
  6. Identification and analysis of novel functional sites in human GD3-synthase. Gu Y, Yu RK. Biochem Biophys Res Commun 370 67-71 (2008)


Reviews citing this publication (21)

  1. Glycosyltransferases: structures, functions, and mechanisms. Lairson LL, Henrissat B, Davies GJ, Withers SG. Annu Rev Biochem 77 521-555 (2008)
  2. Advances in the biology and chemistry of sialic acids. Chen X, Varki A. ACS Chem Biol 5 163-176 (2010)
  3. Structures and mechanisms of glycosyltransferases. Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A. Glycobiology 16 29R-37R (2006)
  4. Unusual sugar biosynthesis and natural product glycodiversification. Thibodeaux CJ, Melançon CE, Liu HW. Nature 446 1008-1016 (2007)
  5. Recent structural insights into the expanding world of carbohydrate-active enzymes. Davies GJ, Gloster TM, Henrissat B. Curr Opin Struct Biol 15 637-645 (2005)
  6. Substrate-induced conformational changes in glycosyltransferases. Qasba PK, Ramakrishnan B, Boeggeman E. Trends Biochem Sci 30 53-62 (2005)
  7. Sialic acid metabolism and sialyltransferases: natural functions and applications. Li Y, Chen X. Appl Microbiol Biotechnol 94 887-905 (2012)
  8. Current trends in the structure-activity relationships of sialyltransferases. Audry M, Jeanneau C, Imberty A, Harduin-Lepers A, Delannoy P, Breton C. Glycobiology 21 716-726 (2011)
  9. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Bhide GP, Colley KJ. Histochem Cell Biol 147 149-174 (2017)
  10. Antiganglioside antibodies and their pathophysiological effects on Guillain-Barré syndrome and related disorders--a review. Kaida K, Ariga T, Yu RK. Glycobiology 19 676-692 (2009)
  11. Ganglioside molecular mimicry and its pathological roles in Guillain-Barré syndrome and related diseases. Yu RK, Usuki S, Ariga T. Infect Immun 74 6517-6527 (2006)
  12. Glycosyltransferases: mechanisms and applications in natural product development. Liang DM, Liu JH, Wu H, Wang BB, Zhu HJ, Qiao JJ. Chem Soc Rev 44 8350-8374 (2015)
  13. Structural insights into sialic acid enzymology. Buschiazzo A, Alzari PM. Curr Opin Chem Biol 12 565-572 (2008)
  14. Glycosyltransferases and their assays. Wagner GK, Pesnot T. Chembiochem 11 1939-1949 (2010)
  15. Exploring genomes for glycosyltransferases. Hansen SF, Bettler E, Rinnan A, Engelsen SB, Breton C. Mol Biosyst 6 1773-1781 (2010)
  16. Crossroads between Bacterial and Mammalian Glycosyltransferases. Brockhausen I. Front Immunol 5 492 (2014)
  17. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Szabo R, Skropeta D. Med Res Rev 37 219-270 (2017)
  18. Potato starch synthases: Functions and relationships. Nazarian-Firouzabadi F, Visser RGF. Biochem Biophys Rep 10 7-16 (2017)
  19. Glycosyltransferases and non-alcoholic fatty liver disease. Zhan YT, Su HY, An W. World J Gastroenterol 22 2483-2493 (2016)
  20. Cell-based high-throughput screening of polysaccharide biosynthesis hosts. Liu ZX, Huang SL, Hou J, Guo XP, Wang FS, Sheng JZ. Microb Cell Fact 20 62 (2021)
  21. Sialyltransferase Inhibitors for the Treatment of Cancer Metastasis: Current Challenges and Future Perspectives. Perez SJLP, Fu CW, Li WS. Molecules 26 (2021)

Articles citing this publication (79)

  1. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Rillahan CD, Antonopoulos A, Lefort CT, Sonon R, Azadi P, Ley K, Dell A, Haslam SM, Paulson JC. Nat Chem Biol 8 661-668 (2012)
  2. The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barre syndrome. Godschalk PC, Heikema AP, Gilbert M, Komagamine T, Ang CW, Glerum J, Brochu D, Li J, Yuki N, Jacobs BC, van Belkum A, Endtz HP. J Clin Invest 114 1659-1665 (2004)
  3. High-throughput screening methodology for the directed evolution of glycosyltransferases. Aharoni A, Thieme K, Chiu CP, Buchini S, Lairson LL, Chen H, Strynadka NC, Wakarchuk WW, Withers SG. Nat Methods 3 609-614 (2006)
  4. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Louwen R, Horst-Kreft D, de Boer AG, van der Graaf L, de Knegt G, Hamersma M, Heikema AP, Timms AR, Jacobs BC, Wagenaar JA, Endtz HP, van der Oost J, Wells JM, Nieuwenhuis EE, van Vliet AH, Willemsen PT, van Baarlen P, van Belkum A. Eur J Clin Microbiol Infect Dis 32 207-226 (2013)
  5. A sialyltransferase mutant with decreased donor hydrolysis and reduced sialidase activities for directly sialylating LewisX. Sugiarto G, Lau K, Qu J, Li Y, Lim S, Mu S, Ames JB, Fisher AJ, Chen X. ACS Chem Biol 7 1232-1240 (2012)
  6. The sialylated lipooligosaccharide outer core in Campylobacter jejuni is an important determinant for epithelial cell invasion. Louwen R, Heikema A, van Belkum A, Ott A, Gilbert M, Ang W, Endtz HP, Bergman MP, Nieuwenhuis EE. Infect Immun 76 4431-4438 (2008)
  7. Biochemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases. Freiberger F, Claus H, Günzel A, Oltmann-Norden I, Vionnet J, Mühlenhoff M, Vogel U, Vann WF, Gerardy-Schahn R, Stummeyer K. Mol Microbiol 65 1258-1275 (2007)
  8. Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8. Ihara H, Ikeda Y, Toma S, Wang X, Suzuki T, Gu J, Miyoshi E, Tsukihara T, Honke K, Matsumoto A, Nakagawa A, Taniguchi N. Glycobiology 17 455-466 (2007)
  9. Structural insight into mammalian sialyltransferases. Rao FV, Rich JR, Rakić B, Buddai S, Schwartz MF, Johnson K, Bowe C, Wakarchuk WW, Defrees S, Withers SG, Strynadka NC. Nat Struct Mol Biol 16 1186-1188 (2009)
  10. Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases. Cao PJ, Bartley LE, Jung KH, Ronald PC. Mol Plant 1 858-877 (2008)
  11. Site-specific enzymatic polysialylation of therapeutic proteins using bacterial enzymes. Lindhout T, Iqbal U, Willis LM, Reid AN, Li J, Liu X, Moreno M, Wakarchuk WW. Proc Natl Acad Sci U S A 108 7397-7402 (2011)
  12. Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Cheng J, Yu H, Lau K, Huang S, Chokhawala HA, Li Y, Tiwari VK, Chen X. Glycobiology 18 686-697 (2008)
  13. Structural dissection and high-throughput screening of mannosylglycerate synthase. Flint J, Taylor E, Yang M, Bolam DN, Tailford LE, Martinez-Fleites C, Dodson EJ, Davis BG, Gilbert HJ, Davies GJ. Nat Struct Mol Biol 12 608-614 (2005)
  14. Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Blixt O, Vasiliu D, Allin K, Jacobsen N, Warnock D, Razi N, Paulson JC, Bernatchez S, Gilbert M, Wakarchuk W. Carbohydr Res 340 1963-1972 (2005)
  15. Structure of A197 from Sulfolobus turreted icosahedral virus: a crenarchaeal viral glycosyltransferase exhibiting the GT-A fold. Larson ET, Reiter D, Young M, Lawrence CM. J Virol 80 7636-7644 (2006)
  16. Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation. Volkers G, Worrall LJ, Kwan DH, Yu CC, Baumann L, Lameignere E, Wasney GA, Scott NE, Wakarchuk W, Foster LJ, Withers SG, Strynadka NC. Nat Struct Mol Biol 22 627-635 (2015)
  17. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Zhang H, Zhu F, Yang T, Ding L, Zhou M, Li J, Haslam SM, Dell A, Erlandsen H, Wu H. Nat Commun 5 4339 (2014)
  18. Letter Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis. Lairson LL, Watts AG, Wakarchuk WW, Withers SG. Nat Chem Biol 2 724-728 (2006)
  19. X-ray crystal structures of rabbit N-acetylglucosaminyltransferase I (GnT I) in complex with donor substrate analogues. Gordon RD, Sivarajah P, Satkunarajah M, Ma D, Tarling CA, Vizitiu D, Withers SG, Rini JM. J Mol Biol 360 67-79 (2006)
  20. STD-NMR studies suggest that two acceptor substrates for GlfT2, a bifunctional galactofuranosyltransferase required for the biosynthesis of Mycobacterium tuberculosis arabinogalactan, compete for the same binding site. Szczepina MG, Zheng RB, Completo GC, Lowary TL, Pinto BM. Chembiochem 10 2052-2059 (2009)
  21. A processive carbohydrate polymerase that mediates bifunctional catalysis using a single active site. May JF, Levengood MR, Splain RA, Brown CD, Kiessling LL. Biochemistry 51 1148-1159 (2012)
  22. Structure and mechanism of the lipooligosaccharide sialyltransferase from Neisseria meningitidis. Lin LY, Rakic B, Chiu CP, Lameignere E, Wakarchuk WW, Withers SG, Strynadka NC. J Biol Chem 286 37237-37248 (2011)
  23. Variants of the beta 1,3-galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Bernatchez S, Gilbert M, Blanchard MC, Karwaski MF, Li J, Defrees S, Wakarchuk WW. Glycobiology 17 1333-1343 (2007)
  24. Campylobacter jejuni translocation across intestinal epithelial cells is facilitated by ganglioside-like lipooligosaccharide structures. Louwen R, Nieuwenhuis EE, van Marrewijk L, Horst-Kreft D, de Ruiter L, Heikema AP, van Wamel WJ, Wagenaar JA, Endtz HP, Samsom J, van Baarlen P, Akhmanova A, van Belkum A. Infect Immun 80 3307-3318 (2012)
  25. The WaaL O-antigen lipopolysaccharide ligase has features in common with metal ion-independent inverting glycosyltransferases. Ruan X, Loyola DE, Marolda CL, Perez-Donoso JM, Valvano MA. Glycobiology 22 288-299 (2012)
  26. Successive glycosyltransfer of sialic acid by Escherichia coli K92 polysialyltransferase in elongation of oligosialic acceptors. Vionnet J, Vann WF. Glycobiology 17 735-743 (2007)
  27. Evolutionary information hidden in a single protein structure. Shih CH, Chang CM, Lin YS, Lo WC, Hwang JK. Proteins 80 1647-1657 (2012)
  28. Solution structure of Alg13: the sugar donor subunit of a yeast N-acetylglucosamine transferase. Wang X, Weldeghiorghis T, Zhang G, Imperiali B, Prestegard JH. Structure 16 965-975 (2008)
  29. A new sialidase mechanism: bacteriophage K1F endo-sialidase is an inverting glycosidase. Morley TJ, Willis LM, Whitfield C, Wakarchuk WW, Withers SG. J Biol Chem 284 17404-17410 (2009)
  30. Chemoenzymatic synthesis of immunogenic meningococcal group C polysialic acid-tetanus Hc fragment glycoconjugates. McCarthy PC, Saksena R, Peterson DC, Lee CH, An Y, Cipollo JF, Vann WF. Glycoconj J 30 857-870 (2013)
  31. Identification of a putative glycosyltransferase responsible for the transfer of pseudaminic acid onto the polar flagellin of Aeromonas caviae Sch3N. Parker JL, Day-Williams MJ, Tomas JM, Stafford GP, Shaw JG. Microbiologyopen 1 149-160 (2012)
  32. Sequences prior to conserved catalytic motifs of polysialyltransferase ST8Sia IV are required for substrate recognition. Zapater JL, Colley KJ. J Biol Chem 287 6441-6453 (2012)
  33. Biochemical and biophysical characterization of the sialyl-/hexosyltransferase synthesizing the meningococcal serogroup W135 heteropolysaccharide capsule. Romanow A, Haselhorst T, Stummeyer K, Claus H, Bethe A, Mühlenhoff M, Vogel U, von Itzstein M, Gerardy-Schahn R. J Biol Chem 288 11718-11730 (2013)
  34. Conserved amino acid sequences in the bacterial sialyltransferases belonging to Glycosyltransferase family 80. Yamamoto T, Ichikawa M, Takakura Y. Biochem Biophys Res Commun 365 340-343 (2008)
  35. Crystal structure of alpha/beta-galactoside alpha2,3-sialyltransferase from a luminous marine bacterium, Photobacterium phosphoreum. Iwatani T, Okino N, Sakakura M, Kajiwara H, Takakura Y, Kimura M, Ito M, Yamamoto T, Kakuta Y. FEBS Lett 583 2083-2087 (2009)
  36. Stereoselective glycal fluorophosphorylation: synthesis of ADP-2-fluoroheptose, an inhibitor of the LPS biosynthesis. Dohi H, Périon R, Durka M, Bosco M, Roué Y, Moreau F, Grizot S, Ducruix A, Escaich S, Vincent SP. Chemistry 14 9530-9539 (2008)
  37. Characterization of a multifunctional α2,3-sialyltransferase from Pasteurella dagmatis. Schmölzer K, Ribitsch D, Czabany T, Luley-Goedl C, Kokot D, Lyskowski A, Zitzenbacher S, Schwab H, Nidetzky B. Glycobiology 23 1293-1304 (2013)
  38. Alternative donor substrates for inverting and retaining glycosyltransferases. Lairson LL, Wakarchuk WW, Withers SG. Chem Commun (Camb) 365-367 (2007)
  39. Second-generation dimeric inhibitors of chitin synthase. Yeager AR, Finney NS. Bioorg Med Chem 12 6451-6460 (2004)
  40. Mechanistic insights into the retaining glucosyl-3-phosphoglycerate synthase from mycobacteria. Urresti S, Albesa-Jové D, Schaeffer F, Pham HT, Kaur D, Gest P, van der Woerd MJ, Carreras-González A, López-Fernández S, Alzari PM, Brennan PJ, Jackson M, Guerin ME. J Biol Chem 287 24649-24661 (2012)
  41. article-commentary Glycan terminator. Paulson JC, Rademacher C. Nat Struct Mol Biol 16 1121-1122 (2009)
  42. The Hd0053 gene of Haemophilus ducreyi encodes an alpha2,3-sialyltransferase. Li Y, Sun M, Huang S, Yu H, Chokhawala HA, Thon V, Chen X. Biochem Biophys Res Commun 361 555-560 (2007)
  43. Comparative genomics guided discovery of two missing archaeal enzyme families involved in the biosynthesis of the pterin moiety of tetrahydromethanopterin and tetrahydrofolate. de Crécy-Lagard V, Phillips G, Grochowski LL, El Yacoubi B, Jenney F, Adams MW, Murzin AG, White RH. ACS Chem Biol 7 1807-1816 (2012)
  44. Galactinol synthase across evolutionary diverse taxa: functional preference for higher plants? Sengupta S, Mukherjee S, Parween S, Majumder AL. FEBS Lett 586 1488-1496 (2012)
  45. Nuclear magnetic resonance structural characterization of substrates bound to the alpha-2,6-sialyltransferase, ST6Gal-I. Liu S, Meng L, Moremen KW, Prestegard JH. Biochemistry 48 11211-11219 (2009)
  46. PmST3 from Pasteurella multocida encoded by Pm1174 gene is a monofunctional α2-3-sialyltransferase. Thon V, Li Y, Yu H, Lau K, Chen X. Appl Microbiol Biotechnol 94 977-985 (2012)
  47. Crystal structures of sialyltransferase from Photobacterium damselae. Huynh N, Li Y, Yu H, Huang S, Lau K, Chen X, Fisher AJ. FEBS Lett 588 4720-4729 (2014)
  48. Identification of active site residues of the inverting glycosyltransferase Cgs required for the synthesis of cyclic beta-1,2-glucan, a Brucella abortus virulence factor. Ciocchini AE, Roset MS, Briones G, Iñón de Iannino N, Ugalde RA. Glycobiology 16 679-691 (2006)
  49. Mechanisms of the sialidase and trans-sialidase activities of bacterial sialyltransferases from glycosyltransferase family 80. Mehr K, Withers SG. Glycobiology 26 353-359 (2016)
  50. Spin-labeled analogs of CMP-NeuAc as NMR probes of the alpha-2,6-sialyltransferase ST6Gal I. Liu S, Venot A, Meng L, Tian F, Moremen KW, Boons GJ, Prestegard JH. Chem Biol 14 409-418 (2007)
  51. Structure-based mutagenic analysis of mechanism and substrate specificity in mammalian glycosyltransferases: porcine ST3Gal-I. Rakic B, Rao FV, Freimann K, Wakarchuk W, Strynadka NC, Withers SG. Glycobiology 23 536-545 (2013)
  52. The ADP-glucose binding site of the Escherichia coli glycogen synthase. Yep A, Ballicora MA, Preiss J. Arch Biochem Biophys 453 188-196 (2006)
  53. Identification and characterization of a lipopolysaccharide α,2,3-sialyltransferase from the human pathogen Helicobacter bizzozeronii. Kondadi PK, Rossi M, Twelkmeyer B, Schur MJ, Li J, Schott T, Paulin L, Auvinen P, Hänninen ML, Schweda EK, Wakarchuk W. J Bacteriol 194 2540-2550 (2012)
  54. Mechanistic study of CMP-Neu5Ac hydrolysis by α2,3-sialyltransferase from Pasteurella dagmatis. Schmölzer K, Luley-Goedl C, Czabany T, Ribitsch D, Schwab H, Weber H, Nidetzky B. FEBS Lett 588 2978-2984 (2014)
  55. Large Sequence Diversity within the Biosynthesis Locus and Common Biochemical Features of Campylobacter coli Lipooligosaccharides. Culebro A, Revez J, Pascoe B, Friedmann Y, Hitchings MD, Stupak J, Sheppard SK, Li J, Rossi M. J Bacteriol 198 2829-2840 (2016)
  56. Synthesis of CMP-9''-modified-sialic acids as donor substrate analogues for mammalian and bacterial sialyltransferases. Kajihara Y, Kamitani T, Sato R, Kamei N, Miyazaki T, Okamoto R, Sakakibara T, Tsuji T, Yamamoto T. Carbohydr Res 342 1680-1688 (2007)
  57. A high-throughput screen for polysialyltransferase activity. Keys TG, Berger M, Gerardy-Schahn R. Anal Biochem 427 60-68 (2012)
  58. Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to α-l-fucosidases from GH29. Vickers C, Liu F, Abe K, Salama-Alber O, Jenkins M, Springate CMK, Burke JE, Withers SG, Boraston AB. J Biol Chem 293 18296-18308 (2018)
  59. Glycosylate and move! The glycosyltransferase Maf is involved in bacterial flagella formation. Sulzenbacher G, Roig-Zamboni V, Lebrun R, Guérardel Y, Murat D, Mansuelle P, Yamakawa N, Qian XX, Vincentelli R, Bourne Y, Wu LF, Alberto F. Environ Microbiol 20 228-240 (2018)
  60. Monomerization alters the dynamics of the lid region in Campylobacter jejuni CstII: an MD simulation study. Prabhakar PK, Srivastava A, Rao KK, Balaji PV. J Biomol Struct Dyn 34 778-791 (2016)
  61. Sialyltransferases of marine bacteria efficiently utilize glycosphingolipid substrates. Kushi Y, Kamimiya H, Hiratsuka H, Nozaki H, Fukui H, Yanagida M, Hashimoto M, Nakamura K, Watarai S, Kasama T, Kajiwara H, Yamamoto T. Glycobiology 20 187-198 (2010)
  62. A pseudaminic acid or a legionaminic acid derivative transferase is strain-specifically implicated in the general protein O-glycosylation system of the periodontal pathogen Tannerella forsythia. Tomek MB, Janesch B, Maresch D, Windwarder M, Altmann F, Messner P, Schäffer C. Glycobiology 27 555-567 (2017)
  63. The Helicobacter pylori J99 jhp0106 Gene, under the Control of the CsrA/RpoN Regulatory System, Modulates Flagella Formation and Motility. Kao CY, Chen JW, Wang S, Sheu BS, Wu JJ. Front Microbiol 8 483 (2017)
  64. Synthesis of a fluorescently tagged sialic acid analogue useful for live-cell imaging. Suzuki K, Ohtake A, Ito Y, Kanie O. Chem Commun (Camb) 48 9744-9746 (2012)
  65. The Legionella effector LtpM is a new type of phosphoinositide-activated glucosyltransferase. Levanova N, Mattheis C, Carson D, To KN, Jank T, Frankel G, Aktories K, Schroeder GN. J Biol Chem 294 2862-2879 (2019)
  66. Loss-of-function mutation in bi-functional marine bacterial sialyltransferase. Kajiwara H, Katayama S, Kakuta Y, Okino N, Ito M, Mine T, Yamamoto T. Biosci Biotechnol Biochem 76 1639-1644 (2012)
  67. Probing a sialyltransferase's recognition domain to prepare alpha(2,8)-linked oligosialosides and analogs. Zhang P, Zuccolo AJ, Li W, Zheng RB, Ling CC. Chem Commun (Camb) 4233-4235 (2009)
  68. Purification, crystallization and preliminary crystallographic characterization of the alpha 2,6-sialyltransferase from Photobacterium sp. JT-ISH-224. Okino N, Kakuta Y, Kajiwara H, Ichikawa M, Takakura Y, Ito M, Yamamoto T. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 662-664 (2007)
  69. A Bacteriophage-Acquired O-Antigen Polymerase (Wzyβ) from P. aeruginosa Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzyα. Taylor VL, Hoage JF, Thrane SW, Huszczynski SM, Jelsbak L, Lam JS. Front Microbiol 7 393 (2016)
  70. CST-II's recognition domain for acceptor substrates in α-(2→8)-sialylations. Li W, Zhang P, Zuccolo AJ, Zheng RB, Ling CC. Carbohydr Res 346 1692-1704 (2011)
  71. Crystallization and preliminary X-ray crystallographic analysis of the alpha-2,6-sialyltransferase PM0188 from Pasteurella multosida. Kim DU, Yoo JH, Ryu K, Cho HS. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 142-144 (2006)
  72. Differential expression of two galactinol synthase isoforms LcGolS1 and LcGolS2 in developing lentil (Lens culinaris Medik. cv CDC Redberry) seeds. Kannan U, Sharma R, Khedikar Y, Gangola MP, Ganeshan S, Båga M, Chibbar RN. Plant Physiol Biochem 108 422-433 (2016)
  73. Genetics behind the Biosynthesis of Nonulosonic Acid-Containing Lipooligosaccharides in Campylobacter coli. Kolehmainen A, Rossi M, Stupak J, Li J, Gilbert M, Wakarchuk W. J Bacteriol 201 (2019)
  74. 7-Fluorosialyl Glycosides Are Hydrolysis Resistant but Readily Assembled by Sialyltransferases Providing Easy Access to More Metabolically Stable Glycoproteins. Geissner A, Baumann L, Morley TJ, Wong AKO, Sim L, Rich JR, So PPL, Dullaghan EM, Lessard E, Iqbal U, Moreno M, Wakarchuk WW, Withers SG. ACS Cent Sci 7 345-354 (2021)
  75. The sps Genes Encode an Original Legionaminic Acid Pathway Required for Crust Assembly in Bacillus subtilis. Dubois T, Krzewinski F, Yamakawa N, Lemy C, Hamiot A, Brunet L, Lacoste AS, Knirel Y, Guerardel Y, Faille C. mBio 11 (2020)
  76. The Cys78-Asn88 loop region of the Campylobacter jejuni CstII is essential for α2,3-sialyltransferase activity: analysis of the His85 mutants. Prabhakar PK, Rao KK, Balaji PV. J Biochem 156 229-238 (2014)
  77. Enzymatic glycoengineering-based spin labelling of cell surface sialoglycans to enable their analysis by electron paramagnetic resonance (EPR) spectroscopy. Jaiswal M, Tran TT, Guo J, Zhou M, Garcia Diaz J, Fanucci GE, Guo Z. Analyst 147 784-788 (2022)
  78. Mapping the glycosyltransferase fold landscape using interpretable deep learning. Taujale R, Zhou Z, Yeung W, Moremen KW, Li S, Kannan N. Nat Commun 12 5656 (2021)
  79. The retaining β-Kdo glycosyltransferase WbbB uses a double-displacement mechanism with an intermediate adduct rearrangement step. Forrester TJB, Ovchinnikova OG, Li Z, Kitova EN, Nothof JT, Koizumi A, Klassen JS, Lowary TL, Whitfield C, Kimber MS. Nat Commun 13 6277 (2022)