1qls Citations

Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I.



S100C (S100A11) is a member of the S100 calcium-binding protein family, the function of which is not yet entirely clear, but may include cytoskeleton assembly and dynamics. S100 proteins consist of two EF-hand calcium-binding motifs, connected by a flexible loop. Like several other members of the family, S100C forms a homodimer. A number of S100 proteins form complexes with annexins, another family of calcium-binding proteins that also bind to phospholipids. Structural studies have been undertaken to understand the basis of these interactions.


We have solved the crystal structure of a complex of calcium-loaded S100C with a synthetic peptide that corresponds to the first 14 residues of the annexin I N terminus at 2.3 A resolution. We find a stoichiometry of one peptide per S100C monomer, the entire complex structure consisting of two peptides per S100C dimer. Each peptide, however, interacts with both monomers of the S100C dimer. The two S100C molecules of the dimer are linked by a disulphide bridge. The structure is surprisingly close to that of the p11-annexin II N-terminal peptide complex solved previously. We have performed competition experiments to try to understand the specificity of the S100-annexin interaction.


By solving the structure of a second annexin N terminus-S100 protein complex, we confirmed a novel mode of interaction of S100 proteins with their target peptides; there is a one-to-one stoichiometry, where the dimeric structure of the S100 protein is, nevertheless, essential for complex formation. Our structure can provide a model for a Ca(2+)-regulated annexin I-S100C heterotetramer, possibly involved in crosslinking membrane surfaces or organising membranes during certain fusion events.

Articles - 1qls mentioned but not cited (1)

  1. Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2. Ozorowski G, Milton S, Luecke H. Acta Crystallogr. D Biol. Crystallogr. 69 92-104 (2013)

Reviews citing this publication (17)

  1. Potential role of Anxa1 in cancer. Guo C, Liu S, Sun MZ. Future Oncol 9 1773-1793 (2013)
  2. S100 proteins in cartilage: role in arthritis. Yammani RR. Biochim. Biophys. Acta 1822 600-606 (2012)
  3. S100P: a novel therapeutic target for cancer. Arumugam T, Logsdon CD. Amino Acids 41 893-899 (2011)
  4. S100A11, a dual growth regulator of epidermal keratinocytes. Sakaguchi M, Huh NH. Amino Acids 41 797-807 (2011)
  5. The annexins: spatial and temporal coordination of signaling events during cellular stress. Monastyrskaya K, Babiychuk EB, Draeger A. Cell. Mol. Life Sci. 66 2623-2642 (2009)
  6. S100-annexin complexes--structural insights. Rintala-Dempsey AC, Rezvanpour A, Shaw GS. FEBS J. 275 4956-4966 (2008)
  7. S100-annexin complexes--biology of conditional association. Miwa N, Uebi T, Kawamura S. FEBS J. 275 4945-4955 (2008)
  8. Structural basis for diversity of the EF-hand calcium-binding proteins. Grabarek Z. J. Mol. Biol. 359 509-525 (2006)
  9. Transglutaminase function in epidermis. Eckert RL, Sturniolo MT, Broome AM, Ruse M, Rorke EA. J. Invest. Dermatol. 124 481-492 (2005)
  10. Annexins: linking Ca2+ signalling to membrane dynamics. Gerke V, Creutz CE, Moss SE. Nat. Rev. Mol. Cell Biol. 6 449-461 (2005)
  11. S100 proteins in the epidermis. Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D, Lee K. J. Invest. Dermatol. 123 23-33 (2004)
  12. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Marenholz I, Heizmann CW, Fritz G. Biochem. Biophys. Res. Commun. 322 1111-1122 (2004)
  13. Molecular mechanisms of S100-target protein interactions. Zimmer DB, Wright Sadosky P, Weber DJ. Microsc. Res. Tech. 60 552-559 (2003)
  14. Multiple structural states of S100A12: A key to its functional diversity. Moroz OV, Dodson GG, Wilson KS, Lukanidin E, Bronstein IB. Microsc. Res. Tech. 60 581-592 (2003)
  15. Molecular phenotype of Fragile X syndrome: FMRP, FXRPs, and protein targets. Kaufmann WE, Cohen S, Sun HT, Ho G. Microsc. Res. Tech. 57 135-144 (2002)
  16. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Donato R. Int. J. Biochem. Cell Biol. 33 637-668 (2001)
  17. EF-hand calcium-binding proteins. Lewit-Bentley A, Réty S. Curr. Opin. Struct. Biol. 10 637-643 (2000)

Articles citing this publication (54)

  1. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Ikura M, Ames JB. Proc. Natl. Acad. Sci. U.S.A. 103 1159-1164 (2006)
  2. X-ray structure of full-length annexin 1 and implications for membrane aggregation. Rosengarth A, Gerke V, Luecke H. J. Mol. Biol. 306 489-498 (2001)
  3. S100C/A11 is a key mediator of Ca(2+)-induced growth inhibition of human epidermal keratinocytes. Sakaguchi M, Miyazaki M, Takaishi M, Sakaguchi Y, Makino E, Kataoka N, Yamada H, Namba M, Huh NH. J. Cell Biol. 163 825-835 (2003)
  4. The three-dimensional solution structure of Ca(2+)-bound S100A1 as determined by NMR spectroscopy. Wright NT, Varney KM, Ellis KC, Markowitz J, Gitti RK, Zimmer DB, Weber DJ. J. Mol. Biol. 353 410-426 (2005)
  5. Solution NMR structure of S100B bound to the high-affinity target peptide TRTK-12. Inman KG, Yang R, Rustandi RR, Miller KE, Baldisseri DM, Weber DJ. J. Mol. Biol. 324 1003-1014 (2002)
  6. Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis. Tian T, Hao J, Xu A, Hao J, Luo C, Liu C, Huang L, Xiao X, He D. Cancer Sci. 98 1265-1274 (2007)
  7. The crystal structure of human MRP14 (S100A9), a Ca(2+)-dependent regulator protein in inflammatory process. Itou H, Yao M, Fujita I, Watanabe N, Suzuki M, Nishihira J, Tanaka I. J. Mol. Biol. 316 265-276 (2002)
  8. The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation. Moroz OV, Blagova EV, Wilkinson AJ, Wilson KS, Bronstein IB. J. Mol. Biol. 391 536-551 (2009)
  9. Annexin V, annexin VI, S100A1 and S100B in developing and adult avian skeletal muscles. Arcuri C, Giambanco I, Bianchi R, Donato R. Neuroscience 109 371-388 (2002)
  10. Ca2+-dependent binding and activation of dormant ezrin by dimeric S100P. Koltzscher M, Neumann C, König S, Gerke V. Mol. Biol. Cell 14 2372-2384 (2003)
  11. Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models. Warren GL, Summan M, Gao X, Chapman R, Hulderman T, Simeonova PP. J. Physiol. (Lond.) 582 825-841 (2007)
  12. Structure of Ca2+-bound S100A4 and its interaction with peptides derived from nonmuscle myosin-IIA. Malashkevich VN, Varney KM, Garrett SC, Wilder PT, Knight D, Charpentier TH, Ramagopal UA, Almo SC, Weber DJ, Bresnick AR. Biochemistry 47 5111-5126 (2008)
  13. S100A11, an dual mediator for growth regulation of human keratinocytes. Sakaguchi M, Sonegawa H, Murata H, Kitazoe M, Futami J, Kataoka K, Yamada H, Huh NH. Mol. Biol. Cell 19 78-85 (2008)
  14. Structure of the S100A6 complex with a fragment from the C-terminal domain of Siah-1 interacting protein: a novel mode for S100 protein target recognition. Lee YT, Dimitrova YN, Schneider G, Ridenour WB, Bhattacharya S, Soss SE, Caprioli RM, Filipek A, Chazin WJ. Biochemistry 47 10921-10932 (2008)
  15. Characterization of the Ca2+ -regulated ezrin-S100P interaction and its role in tumor cell migration. Austermann J, Nazmi AR, Müller-Tidow C, Gerke V. J. Biol. Chem. 283 29331-29340 (2008)
  16. Unmasking the annexin I interaction from the structure of Apo-S100A11. Dempsey AC, Walsh MP, Shaw GS. Structure 11 887-897 (2003)
  17. The crystal structure at 2A resolution of the Ca2+ -binding protein S100P. Zhang H, Wang G, Ding Y, Wang Z, Barraclough R, Rudland PS, Fernig DG, Rao Z. J. Mol. Biol. 325 785-794 (2003)
  18. Annexin I and annexin II N-terminal peptides binding to S100 protein family members: specificity and thermodynamic characterization. Streicher WW, Lopez MM, Makhatadze GI. Biochemistry 48 2788-2798 (2009)
  19. Crystal structure of the S100A4-nonmuscle myosin IIA tail fragment complex reveals an asymmetric target binding mechanism. Kiss B, Duelli A, Radnai L, Kékesi KA, Katona G, Nyitray L. Proc. Natl. Acad. Sci. U.S.A. 109 6048-6053 (2012)
  20. S100A1 and S100B interactions with annexins. Garbuglia M, Verzini M, Hofmann A, Huber R, Donato R. Biochim. Biophys. Acta 1498 192-206 (2000)
  21. High expression of S100A11 in pancreatic adenocarcinoma is an unfavorable prognostic marker. Xiao MB, Jiang F, Ni WK, Chen BY, Lu CH, Li XY, Ni RZ. Med. Oncol. 29 1886-1891 (2012)
  22. Structural and functional diversification in the teleost S100 family of calcium-binding proteins. Kraemer AM, Saraiva LR, Korsching SI. BMC Evol. Biol. 8 48 (2008)
  23. Conformational and thermodynamic properties of peptide binding to the human S100P protein. Gribenko AV, Guzmán-Casado M, Lopez MM, Makhatadze GI. Protein Sci. 11 1367-1375 (2002)
  24. Phosphorylation of annexin A1 by TRPM7 kinase: a switch regulating the induction of an α-helix. Dorovkov MV, Kostyukova AS, Ryazanov AG. Biochemistry 50 2187-2193 (2011)
  25. Crystal structure of Ca2+ -free S100A2 at 1.6-A resolution. Koch M, Diez J, Fritz G. J. Mol. Biol. 378 933-942 (2008)
  26. Down-regulation of S100A11, a calcium-binding protein, in human endometrium may cause reproductive failure. Liu XM, Ding GL, Jiang Y, Pan HJ, Zhang D, Wang TT, Zhang RJ, Shu J, Sheng JZ, Huang HF. J. Clin. Endocrinol. Metab. 97 3672-3683 (2012)
  27. The S100A10-annexin A2 complex provides a novel asymmetric platform for membrane repair. Rezvanpour A, Santamaria-Kisiel L, Shaw GS. J. Biol. Chem. 286 40174-40183 (2011)
  28. S100 protein-annexin interactions: a model of the (Anx2-p11)(2) heterotetramer complex. Sopkova-de Oliveira Santos J, Oling FK, Réty S, Brisson A, Smith JC, Lewit-Bentley A. Biochim. Biophys. Acta 1498 181-191 (2000)
  29. Membrane-induced folding and structure of membrane-bound annexin A1 N-terminal peptides: implications for annexin-induced membrane aggregation. Hu NJ, Bradshaw J, Lauter H, Buckingham J, Solito E, Hofmann A. Biophys. J. 94 1773-1781 (2008)
  30. Comprehensive interaction of dicalcin with annexins in frog olfactory and respiratory cilia. Uebi T, Miwa N, Kawamura S. FEBS J. 274 4863-4876 (2007)
  31. Chromosomal mapping, differential origin and evolution of the S100 gene family. Shang X, Cheng H, Zhou R. Genet. Sel. Evol. 40 449-464 (2008)
  32. Subcellular localization of S100A11 (S100C) in LLC-PK1 renal cells: Calcium- and protein kinase c-dependent association of S100A11 with S100B and vimentin intermediate filaments. Bianchi R, Giambanco I, Arcuri C, Donato R. Microsc. Res. Tech. 60 639-651 (2003)
  33. Annexin A1 Tethers Membrane Contact Sites that Mediate ER to Endosome Cholesterol Transport. Eden ER, Sanchez-Heras E, Tsapara A, Sobota A, Levine TP, Futter CE. Dev. Cell 37 473-483 (2016)
  34. The Calcium-Dependent Interaction of S100B with Its Protein Targets. Zimmer DB, Weber DJ. Cardiovasc Psychiatry Neurol 2010 (2010)
  35. Analysis of the structure of human apo-S100B at low temperature indicates a unimodal conformational distribution is adopted by calcium-free S100 proteins. Malik S, Revington M, Smith SP, Shaw GS. Proteins 73 28-42 (2008)
  36. Insight into the location and dynamics of the annexin A2 N-terminal domain during Ca(2+)-induced membrane bridging. Ayala-Sanmartin J, Zibouche M, Illien F, Vincent M, Gallay J. Biochim. Biophys. Acta 1778 472-482 (2008)
  37. Partial truncation of the NH2-terminus affects physical characteristics and membrane binding, aggregation, and fusion properties of annexin A7. Naidu DG, Raha A, Chen XL, Spitzer AR, Chander A. Biochim. Biophys. Acta 1734 152-168 (2005)
  38. News Calcium-driven changes in S100A11 structure revealed. Bhattacharya S, Chazin WJ. Structure 11 738-740 (2003)
  39. Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Thangaratnarajah C, Ruprecht JJ, Kunji ER. Nat Commun 5 5491 (2014)
  40. Disruption of the annexin A1/S100A11 complex increases the migration and clonogenic growth by dysregulating epithelial growth factor (EGF) signaling. Poeter M, Radke S, Koese M, Hessner F, Hegemann A, Musiol A, Gerke V, Grewal T, Rescher U. Biochim. Biophys. Acta 1833 1700-1711 (2013)
  41. Proteomic profiling of cellular responses to Carvedilol enantiomers in vascular smooth muscle cells by iTRAQ-coupled 2-D LC-MS/MS. Wang M, Wang X, Ching CB, Chen WN. J Proteomics 73 1601-1611 (2010)
  42. The crystal structure of annexin A8 is similar to that of annexin A3. Réty S, Sopková-de Oliveira Santos J, Dreyfuss L, Blondeau K, Hofbauerová K, Raguénès-Nicol C, Kerboeuf D, Renouard M, Russo-Marie F, Lewit-Bentley A. J. Mol. Biol. 345 1131-1139 (2005)
  43. Structure of the S100A4/myosin-IIA complex. Ramagopal UA, Dulyaninova NG, Varney KM, Wilder PT, Nallamsetty S, Brenowitz M, Weber DJ, Almo SC, Bresnick AR. BMC Struct. Biol. 13 31 (2013)
  44. Thermodynamic and kinetic analysis of peptides derived from CapZ, NDR, p53, HDM2, and HDM4 binding to human S100B. Wafer LN, Streicher WW, McCallum SA, Makhatadze GI. Biochemistry 51 7189-7201 (2012)
  45. Crystal structure study on human S100A13 at 2.0 A resolution. Li M, Zhang PF, Pan XW, Chang WR. Biochem. Biophys. Res. Commun. 356 616-621 (2007)
  46. The structure of S100A11 fragment explains a local structural change induced by phosphorylation. Kouno T, Mizuguchi M, Sakaguchi M, Makino E, Mori Y, Shinoda H, Aizawa T, Demura M, Huh NH, Kawano K. J. Pept. Sci. 14 1129-1138 (2008)
  47. Identification of regions responsible for the open conformation of S100A10 using chimaeric S100A11-S100A10 proteins. Santamaria-Kisiel L, Shaw GS. Biochem. J. 434 37-48 (2011)
  48. Tudor staphylococcal nuclease drives chemoresistance of non-small cell lung carcinoma cells by regulating S100A11. Zagryazhskaya A, Surova O, Akbar NS, Allavena G, Gyuraszova K, Zborovskaya IB, Tchevkina EM, Zhivotovsky B. Oncotarget 6 12156-12173 (2015)
  49. NMR structure note: the structure of human calcium-bound S100A11. Hung KW, Chang YM, Yu C. J. Biomol. NMR 54 211-215 (2012)
  50. Purification, crystallization and preliminary X-ray diffraction of human S100A15. Boeshans KM, Wolf R, Voscopoulos C, Gillette W, Esposito D, Mueser TC, Yuspa SH, Ahvazi B. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 467-470 (2006)
  51. Conformational preference of ChaK1 binding peptides: a molecular dynamics study. Zhang J, King CA, Dalby K, Ren P. PMC Biophys 3 2 (2010)
  52. Active Secretion of Dimerized S100A11 Induced by the Peroxisome in Mesothelioma Cells. Saho S, Satoh H, Kondo E, Inoue Y, Yamauchi A, Murata H, Kinoshita R, Yamamoto KI, Futami J, Putranto EW, Ruma IM, Sumardika IW, Youyi C, Suzawa K, Yamamoto H, Soh J, Tomida S, Sakaguchi Y, Saito K, Iioka H, Huh NH, Toyooka S, Sakaguchi M. Cancer Microenviron 9 93-105 (2016)
  53. S100A11 plays a role in homologous recombination and genome maintenance by influencing the persistence of RAD51 in DNA repair foci. Foertsch F, Szambowska A, Weise A, Zielinski A, Schlott B, Kraft F, Mrasek K, Borgmann K, Pospiech H, Grosse F, Melle C. Cell Cycle 15 2766-2779 (2016)
  54. Solving the crystal structure of human calcium-free S100Z: the siege and conquer of one of the last S100 family strongholds. Calderone V, Fragai M, Gallo G, Luchinat C. J. Biol. Inorg. Chem. 22 519-526 (2017)