1qk2 Citations

Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei.

Structure 7 1035-45 (1999)
Related entries: 1qjw, 1qk0, 3cbh

Cited: 88 times
EuropePMC logo PMID: 10508787

Abstract

Background

Cel6A is one of the two cellobiohydrolases produced by Trichoderma reesei. The catalytic core has a structure that is a variation of the classic TIM barrel. The active site is located inside a tunnel, the roof of which is formed mainly by a pair of loops.

Results

We describe three new ligand complexes. One is the structure of the wild-type enzyme in complex with a nonhydrolysable cello-oligosaccharide, methyl 4-S-beta-cellobiosyl-4-thio-beta-cellobioside (Glc)(2)-S-(Glc)(2), which differs from a cellotetraose in the nature of the central glycosidic linkage where a sulphur atom replaces an oxygen atom. The second structure is a mutant, Y169F, in complex with the same ligand, and the third is the wild-type enzyme in complex with m-iodobenzyl beta-D-glucopyranosyl-beta(1,4)-D-xylopyranoside (IBXG).

Conclusion

The (Glc)(2)-S-(Glc)(2) ligand binds in the -2 to +2 sites in both the wild-type and mutant enzymes. The glucosyl unit in the -1 site is distorted from the usual chair conformation in both structures. The IBXG ligand binds in the -2 to +1 sites, with the xylosyl unit in the -1 site where it adopts the energetically favourable chair conformation. The -1 site glucosyl of the (Glc)(2)-S-(Glc)(2) ligand is unable to take on this conformation because of steric clashes with the protein. The crystallographic results show that one of the tunnel-forming loops in Cel6A is sensitive to modifications at the active site, and is able to take on a number of different conformations. One of the conformational changes disrupts a set of interactions at the active site that we propose is an integral part of the reaction mechanism.

Reviews - 1qk2 mentioned but not cited (2)

  1. Genomics review of holocellulose deconstruction by aspergilli. Segato F, Damásio AR, de Lucas RC, Squina FM, Prade RA. Microbiol. Mol. Biol. Rev. 78 588-613 (2014)
  2. Structural and mechanistic fundamentals for designing of cellulases. Marana SR. Comput Struct Biotechnol J 2 e201209006 (2012)

Articles - 1qk2 mentioned but not cited (12)

  1. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. Schumacher MA, Pearson RF, Møller T, Valentin-Hansen P, Brennan RG. EMBO J. 21 3546-3556 (2002)
  2. Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. Payne CM, Bomble YJ, Taylor CB, McCabe C, Himmel ME, Crowley MF, Beckham GT. J. Biol. Chem. 286 41028-41035 (2011)
  3. Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. Sammond DW, Payne CM, Brunecky R, Himmel ME, Crowley MF, Beckham GT. PLoS ONE 7 e48615 (2012)
  4. Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Vuong TV, Wilson DB. Appl. Environ. Microbiol. 75 6655-6661 (2009)
  5. Computational investigation of the pH dependence of loop flexibility and catalytic function in glycoside hydrolases. Bu L, Crowley MF, Himmel ME, Beckham GT. J. Biol. Chem. 288 12175-12186 (2013)
  6. Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose. Nakamura A, Tasaki T, Ishiwata D, Yamamoto M, Okuni Y, Visootsat A, Maximilien M, Noji H, Uchiyama T, Samejima M, Igarashi K, Iino R. J. Biol. Chem. 291 22404-22413 (2016)
  7. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases. Mayes HB, Knott BC, Crowley MF, Broadbelt LJ, Ståhlberg J, Beckham GT. Chem Sci 7 5955-5968 (2016)
  8. Convergent evolution of processivity in bacterial and fungal cellulases. Uchiyama T, Uchihashi T, Nakamura A, Watanabe H, Kaneko S, Samejima M, Igarashi K. Proc Natl Acad Sci U S A 117 19896-19903 (2020)
  9. Physical constraints and functional plasticity of cellulases. Kari J, Molina GA, Schaller KS, Schiano-di-Cola C, Christensen SJ, Badino SF, Sørensen TH, Røjel NS, Keller MB, Sørensen NR, Kolaczkowski B, Olsen JP, Krogh KBRM, Jensen K, Cavaleiro AM, Peters GHJ, Spodsberg N, Borch K, Westh P. Nat Commun 12 3847 (2021)
  10. Advantages of a distant cellulase catalytic base. Burgin T, Ståhlberg J, Mayes HB. J. Biol. Chem. 293 4680-4687 (2018)
  11. Evolutionary coupling range varies widely among enzymes depending on selection pressure. Echave J. Biophys J 120 4320-4324 (2021)
  12. Local frustration around enzyme active sites. Freiberger MI, Guzovsky AB, Wolynes PG, Parra RG, Ferreiro DU. Proc. Natl. Acad. Sci. U.S.A. (2019)


Reviews citing this publication (8)

  1. Glycosidase mechanisms. Vasella A, Davies GJ, Böhm M. Curr Opin Chem Biol 6 619-629 (2002)
  2. A structural basis for processivity. Breyer WA, Matthews BW. Protein Sci. 10 1699-1711 (2001)
  3. Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Schmoll M, Kubicek CP. Acta Microbiol Immunol Hung 50 125-145 (2003)
  4. Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases. Beckham GT, Ståhlberg J, Knott BC, Himmel ME, Crowley MF, Sandgren M, Sørlie M, Payne CM. Curr. Opin. Biotechnol. 27 96-106 (2014)
  5. A hydrophobic platform as a mechanistically relevant transition state stabilising factor appears to be present in the active centre of all glycoside hydrolases. Nerinckx W, Desmet T, Claeyssens M. FEBS Lett. 538 1-7 (2003)
  6. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Hrmova M, Fincher GB. Carbohydr. Res. 342 1613-1623 (2007)
  7. Sub-Angstrom resolution enzyme X-ray structures: is seeing believing? Vrielink A, Sampson N. Curr. Opin. Struct. Biol. 13 709-715 (2003)
  8. Fungal cellulases: protein engineering and post-translational modifications. Zhang R, Cao C, Bi J, Li Y. Appl Microbiol Biotechnol 106 1-24 (2022)

Articles citing this publication (66)

  1. Structural insights into the catalytic mechanism of a family 18 exo-chitinase. van Aalten DM, Komander D, Synstad B, Gåseidnes S, Peter MG, Eijsink VG. Proc. Natl. Acad. Sci. U.S.A. 98 8979-8984 (2001)
  2. Crystal structure of hyaluronidase, a major allergen of bee venom. Marković-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, Schirmer T. Structure 8 1025-1035 (2000)
  3. Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Boisset C, Fraschini C, Schülein M, Henrissat B, Chanzy H. Appl. Environ. Microbiol. 66 1444-1452 (2000)
  4. The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B, Kloareg B, Dideberg O. Structure 9 513-525 (2001)
  5. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. von Ossowski I, Ståhlberg J, Koivula A, Piens K, Becker D, Boer H, Harle R, Harris M, Divne C, Mahdi S, Zhao Y, Driguez H, Claeyssens M, Sinnott ML, Teeri TT. J. Mol. Biol. 333 817-829 (2003)
  6. Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Yang B, Willies DM, Wyman CE. Biotechnol. Bioeng. 94 1122-1128 (2006)
  7. Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. Guérin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Béguin P, Alzari PM. J. Mol. Biol. 316 1061-1069 (2002)
  8. Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Payne CM, Resch MG, Chen L, Crowley MF, Himmel ME, Taylor LE, Sandgren M, Ståhlberg J, Stals I, Tan Z, Beckham GT. Proc. Natl. Acad. Sci. U.S.A. 110 14646-14651 (2013)
  9. Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Varrot A, Frandsen TP, von Ossowski I, Boyer V, Cottaz S, Driguez H, Schülein M, Davies GJ. Structure 11 855-864 (2003)
  10. Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases. Isorna P, Polaina J, Latorre-García L, Cañada FJ, González B, Sanz-Aparicio J. J. Mol. Biol. 371 1204-1218 (2007)
  11. Structural basis for broad substrate specificity in higher plant beta-D-glucan glucohydrolases. Hrmova M, De Gori R, Smith BJ, Fairweather JK, Driguez H, Varghese JN, Fincher GB. Plant Cell 14 1033-1052 (2002)
  12. The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum Cellulosome. Guimarães BG, Souchon H, Lytle BL, David Wu JH, Alzari PM. J. Mol. Biol. 320 587-596 (2002)
  13. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates. Kipper K, Väljamäe P, Johansson G. Biochem. J. 385 527-535 (2005)
  14. Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B. Zhang S, Irwin DC, Wilson DB. Eur. J. Biochem. 267 3101-3115 (2000)
  15. Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Boisset C, Pétrequin C, Chanzy H, Henrissat B, Schülein M. Biotechnol. Bioeng. 72 339-345 (2001)
  16. Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger. van Pouderoyen G, Snijder HJ, Benen JA, Dijkstra BW. FEBS Lett. 554 462-466 (2003)
  17. Hypocrea jecorina CEL6A protein engineering. Lantz SE, Goedegebuur F, Hommes R, Kaper T, Kelemen BR, Mitchinson C, Wallace L, Ståhlberg J, Larenas EA. Biotechnol Biofuels 3 20 (2010)
  18. Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, Fincher GB. Structure 9 1005-1016 (2001)
  19. Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. Tan TC, Mijts BN, Swaminathan K, Patel BK, Divne C. J. Mol. Biol. 378 852-870 (2008)
  20. Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 A resolution. Davies GJ, Brzozowski AM, Dauter M, Varrot A, Schülein M. Biochem. J. 348 Pt 1 201-207 (2000)
  21. Dextranase from Penicillium minioluteum: reaction course, crystal structure, and product complex. Larsson AM, Andersson R, Ståhlberg J, Kenne L, Jones TA. Structure 11 1111-1121 (2003)
  22. Molecular cloning, transcriptional, and expression analysis of the first cellulase gene (cbh2), encoding cellobiohydrolase II, from the moderately thermophilic fungus Talaromyces emersonii and structure prediction of the gene product. Murray PG, Collins CM, Grassick A, Tuohy MG. Biochem. Biophys. Res. Commun. 301 280-286 (2003)
  23. Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Igarashi K, Uchihashi T, Uchiyama T, Sugimoto H, Wada M, Suzuki K, Sakuda S, Ando T, Watanabe T, Samejima M. Nat Commun 5 3975 (2014)
  24. The structural bases of the processive degradation of iota-carrageenan, a main cell wall polysaccharide of red algae. Michel G, Helbert W, Kahn R, Dideberg O, Kloareg B. J. Mol. Biol. 334 421-433 (2003)
  25. Insights into ligand-induced conformational change in Cel5A from Bacillus agaradhaerens revealed by a catalytically active crystal form. Varrot A, Schülein M, Davies GJ. J. Mol. Biol. 297 819-828 (2000)
  26. Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, Henrissat B, Record E, Heiss-Blanquet S. Appl. Environ. Microbiol. 79 4220-4229 (2013)
  27. Modelling of beta-D-glucopyranose ring distortion in different force fields: a metadynamics study. Spiwok V, Králová B, Tvaroska I. Carbohydr. Res. 345 530-537 (2010)
  28. Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose. Murphy L, Cruys-Bagger N, Damgaard HD, Baumann MJ, Olsen SN, Borch K, Lassen SF, Sweeney M, Tatsumi H, Westh P. J. Biol. Chem. 287 1252-1260 (2012)
  29. Binding and reversibility of Thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose. Jung H, Wilson DB, Walker LP. Biotechnol. Bioeng. 84 151-159 (2003)
  30. The absence of an identifiable single catalytic base residue in Thermobifida fusca exocellulase Cel6B. Vuong TV, Wilson DB. FEBS J. 276 3837-3845 (2009)
  31. Design of cellulose dissolving ionic liquids inspired by nature. Ohira K, Abe Y, Kawatsura M, Suzuki K, Mizuno M, Amano Y, Itoh T. ChemSusChem 5 388-391 (2012)
  32. Computational and experimental studies of the catalytic mechanism of Thermobifida fusca cellulase Cel6A (E2). André G, Kanchanawong P, Palma R, Cho H, Deng X, Irwin D, Himmel ME, Wilson DB, Brady JW. Protein Eng. 16 125-134 (2003)
  33. The structure of a bacterial cellobiohydrolase: the catalytic core of the Thermobifida fusca family GH6 cellobiohydrolase Cel6B. Sandgren M, Wu M, Karkehabadi S, Mitchinson C, Kelemen BR, Larenas EA, Ståhlberg J, Hansson H. J. Mol. Biol. 425 622-635 (2013)
  34. Automated docking to explore subsite binding by glycoside hydrolase family 6 cellobiohydrolases and endoglucanases. Mertz B, Hill AD, Mulakala C, Reilly PJ. Biopolymers 87 249-260 (2007)
  35. Crystal structure of a glycoside hydrolase family 6 enzyme, CcCel6C, a cellulase constitutively produced by Coprinopsis cinerea. Liu Y, Yoshida M, Kurakata Y, Miyazaki T, Igarashi K, Samejima M, Fukuda K, Nishikawa A, Tonozuka T. FEBS J. 277 1532-1542 (2010)
  36. Loop motions important to product expulsion in the Thermobifida fusca glycoside hydrolase family 6 cellobiohydrolase from structural and computational studies. Wu M, Bu L, Vuong TV, Wilson DB, Crowley MF, Sandgren M, Ståhlberg J, Beckham GT, Hansson H. J. Biol. Chem. 288 33107-33117 (2013)
  37. Determination of thioxylo-oligosaccharide binding to family 11 xylanases using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and X-ray crystallography. Jänis J, Hakanpää J, Hakulinen N, Ibatullin FM, Hoxha A, Derrick PJ, Rouvinen J, Vainiotalo P. FEBS J. 272 2317-2333 (2005)
  38. Mixed-linkage cellooligosaccharides: a new class of glycoside hydrolase inhibitors. Fort S, Varrot A, Schülein M, Cottaz S, Driguez H, Davies GJ. Chembiochem 2 319-325 (2001)
  39. Phylogenetic analysis of family 6 glycoside hydrolases. Mertz B, Kuczenski RS, Larsen RT, Hill AD, Reilly PJ. Biopolymers 79 197-206 (2005)
  40. A fluorescence-quenched chitopentaose for the study of endo-chitinases and chitobiosidases. Cottaz S, Brasme B, Driguez H. Eur. J. Biochem. 267 5593-5600 (2000)
  41. Comparison of the structural changes in two cellobiohydrolases, CcCel6A and CcCel6C, from Coprinopsis cinerea--a tweezer-like motion in the structure of CcCel6C. Tamura M, Miyazaki T, Tanaka Y, Yoshida M, Nishikawa A, Tonozuka T. FEBS J. 279 1871-1882 (2012)
  42. Processive pectin methylesterases: the role of electrostatic potential, breathing motions and bond cleavage in the rectification of Brownian motions. Mercadante D, Melton LD, Jameson GB, Williams MA. PLoS ONE 9 e87581 (2014)
  43. Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases. Wu M, Nerinckx W, Piens K, Ishida T, Hansson H, Sandgren M, Ståhlberg J. FEBS J. 280 184-198 (2013)
  44. Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber. Segato F, Damasio AR, Gonçalves TA, Murakami MT, Squina FM, Polizeli M, Mort AJ, Prade RA. Biotechnol Biofuels 5 21 (2012)
  45. A salt-bridge controlled by ligand binding modulates the hydrolysis reaction in a GH5 endoglucanase. Badieyan S, Bevan DR, Zhang C. Protein Eng. Des. Sel. 25 223-233 (2012)
  46. Hydrolyses of alpha- and beta-cellobiosyl fluorides by Cel6A (cellobiohydrolase II) of Trichoderma reesei and Humicola insolens. Becker D, Johnson KS, Koivula A, Schülein M, Sinnott ML. Biochem. J. 345 Pt 2 315-319 (2000)
  47. Novel tools for the study of class I alpha-mannosidases: a chromogenic substrate and a substrate-analog inhibitor. Desmet T, Nerinckx W, Stals I, Callewaert N, Contreras R, Claeyssens M. Anal. Biochem. 307 361-367 (2002)
  48. Substrate binding in protein-tyrosine phosphatase-like inositol polyphosphatases. Gruninger RJ, Dobing S, Smith AD, Bruder LM, Selinger LB, Wieden HJ, Mosimann SC. J. Biol. Chem. 287 9722-9730 (2012)
  49. The impact of active site protonation on substrate ring conformation in Melanocarpus albomyces cellobiohydrolase Cel7B. Schutt TC, Bharadwaj VS, Granum DM, Maupin CM. Phys Chem Chem Phys 17 16947-16958 (2015)
  50. Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Zheng F, Tu T, Wang X, Wang Y, Ma R, Su X, Xie X, Yao B, Luo H. Biotechnol Biofuels 11 76 (2018)
  51. Functional modulation of a protein folding landscape via side-chain distortion. Kelch BA, Salimi NL, Agard DA. Proc. Natl. Acad. Sci. U.S.A. 109 9414-9419 (2012)
  52. Modulation of activity by Arg407: structure of a fungal alpha-1,2-mannosidase in complex with a substrate analogue. Lobsanov YD, Yoshida T, Desmet T, Nerinckx W, Yip P, Claeyssens M, Herscovics A, Howell PL. Acta Crystallogr. D Biol. Crystallogr. 64 227-236 (2008)
  53. QM/MM Simulations of Enzymatic Hydrolysis of Cellulose: Probing the Viability of an Endocyclic Mechanism for an Inverting Cellulase. Pereira CS, Silveira RL, Skaf MS. J Chem Inf Model 61 1902-1912 (2021)
  54. A potential fortuitous binding of inhibitors of an inverting family GH9 β-glycosidase derived from isofagomine. Moréra S, Vigouroux A, Stubbs KA. Org. Biomol. Chem. 9 5945-5947 (2011)
  55. Design and characterizations of two novel cellulases through single-gene shuffling of Cel12A (EG3) gene from Trichoderma reseei. Yenenler A, Sezerman OU. Protein Eng. Des. Sel. 29 219-229 (2016)
  56. Identification of a Pivotal Residue for Determining the Block Structure-Forming Properties of Alginate C-5 Epimerases. Stanisci A, Tøndervik A, Gaardløs M, Lervik A, Skjåk-Bræk G, Sletta H, Aachmann FL. ACS Omega 5 4352-4361 (2020)
  57. MonteCarbo: A software to generate and dock multifunctionalized ring molecules. Alonso-Gil S. J Comput Chem 42 1526-1534 (2021)
  58. Rate-limiting step and substrate accessibility of cellobiohydrolase Cel6A from Trichoderma reesei. Christensen SJ, Kari J, Badino SF, Borch K, Westh P. FEBS J. 285 4482-4493 (2018)
  59. Role of the FnIII domain associated with a cell wall-degrading enzyme cellobiosidase of Xanthomonas oryzae pv. oryzae. Nathawat R, Maku RV, Patel HK, Sankaranarayanan R, Sonti RV. Mol Plant Pathol 23 1011-1021 (2022)
  60. Simulation studies of substrate recognition by the exocellulase CelF from Clostridium cellulolyticum. Chen M, Himmel ME, Wilson DB, Brady JW. Biotechnol. Bioeng. 113 1433-1440 (2016)
  61. Unlocking the Hydrolytic Mechanism of GH92 α-1,2-Mannosidases: Computation Inspires the use of C-Glycosides as Michaelis Complex Mimics. Alonso-Gil S, Parkan K, Kaminský J, Pohl R, Miyazaki T. Chemistry 28 e202200148 (2022)
  62. A mutation in an exoglucanase of Xanthomonas oryzae pv. oryzae, which confers an endo mode of activity, affects bacterial virulence, but not the induction of immune responses, in rice. Tayi L, Kumar S, Nathawat R, Haque AS, Maku RV, Patel HK, Sankaranarayanan R, Sonti RV. Mol. Plant Pathol. 19 1364-1376 (2018)
  63. Can thioglycosides imitate the oxonium intermediate in glycosyl hydrolases? Smith BJ. J. Mol. Graph. Model. 22 151-159 (2003)
  64. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes. Badino SF, Christensen SJ, Kari J, Windahl MS, Hvidt S, Borch K, Westh P. Biotechnol. Bioeng. 114 1639-1647 (2017)
  65. Glycosyl rotation and distortion by key residues in Endocellulase Cel6A from Theromobifida fusca. Lu T, Zhang Z, Zhang C. Glycobiology 24 247-251 (2014)
  66. Insight into the process of product expulsion in cellobiohydrolase Cel6A from Trichoderma reesei by computational modeling. Huang H, Han F, Guan S, Qian M, Wan Y, Shan Y, Zhang H, Wang S. J. Biomol. Struct. Dyn. 37 1360-1374 (2019)


Related citations provided by authors (1)

  1. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei.. Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA Science 249 380-6 (1990)