1qgh Citations

The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site.

Nat Struct Biol 7 38-43 (2000)
Cited: 126 times
EuropePMC logo PMID: 10625425

Abstract

Ferritin is characterized by a highly conserved architecture that comprises 24 subunits assembled into a spherical cage with 432 symmetry. The only known exception is the dodecameric ferritin from Listeria innocua. The structure of Listeria ferritin has been determined to a resolution of 2.35 A by molecular replacement, using as a search model the structure of Dps from Escherichia coli. The Listeria 12-mer is endowed with 23 symmetry and displays the functionally relevant structural features of the ferritin 24-mer, namely the negatively charged channels along the three-fold symmetry axes that serve for iron entry into the cavity and a negatively charged internal cavity for iron deposition. The electron density map shows 12 iron ions on the inner surface of the hollow core, at the interface between monomers related by two-fold axes. Analysis of the nature and stereochemistry of the iron-binding ligands reveals strong similarities with known ferroxidase sites. The L. innocua ferritin site, however, is the first described so far that has ligands belonging to two different subunits and is not contained within a four-helix bundle.

Reviews - 1qgh mentioned but not cited (4)

  1. Protein cage assembly across multiple length scales. Aumiller WM, Uchida M, Douglas T. Chem Soc Rev 47 3433-3469 (2018)
  2. Bacterial iron detoxification at the molecular level. Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. J Biol Chem 295 17602-17623 (2020)
  3. Structures and metal-binding properties of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center. Yokoyama H, Fujii S. Biomolecules 4 600-615 (2014)
  4. Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications. João J, Prazeres DMF. Front Bioeng Biotechnol 11 1200729 (2023)

Articles - 1qgh mentioned but not cited (3)

  1. An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus. Wiedenheft B, Mosolf J, Willits D, Yeager M, Dryden KA, Young M, Douglas T. Proc Natl Acad Sci U S A 102 10551-10556 (2005)
  2. Time-Resolved Studies of Ytterbium Distribution at Interfacial Surfaces of Ferritin-like Dps Protein Demonstrate Metal Uptake and Storage Pathways. Zeth K, Pretre G, Okuda M. Biomedicines 9 914 (2021)
  3. A mechanism that ensures non-selective cytoplasm degradation by autophagy. Kotani T, Sakai Y, Kirisako H, Kakuta C, Kakuta S, Ohsumi Y, Nakatogawa H. Nat Commun 14 5815 (2023)


Reviews citing this publication (21)

  1. Bacterial iron homeostasis. Andrews SC, Robinson AK, Rodríguez-Quiñones F. FEMS Microbiol Rev 27 215-237 (2003)
  2. Ferritin, iron homeostasis, and oxidative damage. Arosio P, Levi S. Free Radic Biol Med 33 457-463 (2002)
  3. Ferritins, iron uptake and storage from the bacterioferritin viewpoint. Carrondo MA. EMBO J 22 1959-1968 (2003)
  4. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. Ann Bot 105 811-822 (2010)
  5. Plasticity of enzyme active sites. Todd AE, Orengo CA, Thornton JM. Trends Biochem Sci 27 419-426 (2002)
  6. Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. Calhoun LN, Kwon YM. J Appl Microbiol 110 375-386 (2011)
  7. The physiological role of ferritin-like compounds in bacteria. Smith JL. Crit Rev Microbiol 30 173-185 (2004)
  8. The ferritin superfamily: Supramolecular templates for materials synthesis. Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T. Biochim Biophys Acta 1800 834-845 (2010)
  9. Dps-like proteins: structural and functional insights into a versatile protein family. Haikarainen T, Papageorgiou AC. Cell Mol Life Sci 67 341-351 (2010)
  10. Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Chan YC, Wiedmann M. Crit Rev Food Sci Nutr 49 237-253 (2009)
  11. Self-assembly in the ferritin nano-cage protein superfamily. Zhang Y, Orner BP. Int J Mol Sci 12 5406-5421 (2011)
  12. Formation of protein-coated iron minerals. Lewin A, Moore GR, Le Brun NE. Dalton Trans 3597-3610 (2005)
  13. Dps biomineralizing proteins: multifunctional architects of nature. Zeth K. Biochem J 445 297-311 (2012)
  14. Reactions inside nanoscale protein cages. Bode SA, Minten IJ, Nolte RJ, Cornelissen JJ. Nanoscale 3 2376-2389 (2011)
  15. Metal use in ribonucleotide reductase R2, di-iron, di-manganese and heterodinuclear--an intricate bioinorganic workaround to use different metals for the same reaction. Högbom M. Metallomics 3 110-120 (2011)
  16. Bioengineering Strategies for Protein-Based Nanoparticles. Diaz D, Care A, Sunna A. Genes (Basel) 9 E370 (2018)
  17. Metalloproteins in the Biology of Heterocysts. Pernil R, Schleiff E. Life (Basel) 9 E32 (2019)
  18. An Overview of Dps: Dual Acting Nanovehicles in Prokaryotes with DNA Binding and Ferroxidation Properties. Williams SM, Chatterji D. Subcell Biochem 96 177-216 (2021)
  19. Dps Is a Universally Conserved Dual-Action DNA-Binding and Ferritin Protein. Orban K, Finkel SE. J Bacteriol 204 e0003622 (2022)
  20. HP-NAP of Helicobacter pylori: The Power of the Immunomodulation. Codolo G, Coletta S, D'Elios MM, de Bernard M. Front Immunol 13 944139 (2022)
  21. Dps Functions as a Key Player in Bacterial Iron Homeostasis. Williams SM, Chatterji D. ACS Omega 8 34299-34309 (2023)

Articles citing this publication (98)

  1. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND. J Biol Chem 277 27689-27696 (2002)
  2. Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin. Musco G, Stier G, Kolmerer B, Adinolfi S, Martin S, Frenkiel T, Gibson T, Pastore A. Structure 8 695-707 (2000)
  3. DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Ceci P, Cellai S, Falvo E, Rivetti C, Rossi GL, Chiancone E. Nucleic Acids Res 32 5935-5944 (2004)
  4. Structure of the neutrophil-activating protein from Helicobacter pylori. Zanotti G, Papinutto E, Dundon W, Battistutta R, Seveso M, Giudice G, Rappuoli R, Montecucco C. J Mol Biol 323 125-130 (2002)
  5. Solution structure of the bacterial frataxin ortholog, CyaY: mapping the iron binding sites. Nair M, Adinolfi S, Pastore C, Kelly G, Temussi P, Pastore A. Structure 12 2037-2048 (2004)
  6. The iron-binding protein Dps confers hydrogen peroxide stress resistance to Campylobacter jejuni. Ishikawa T, Mizunoe Y, Kawabata S, Takade A, Harada M, Wai SN, Yoshida S. J Bacteriol 185 1010-1017 (2003)
  7. Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core. Ilari A, Ceci P, Ferrari D, Rossi GL, Chiancone E. J Biol Chem 277 37619-37623 (2002)
  8. An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. Yamamoto Y, Poole LB, Hantgan RR, Kamio Y. J Bacteriol 184 2931-2939 (2002)
  9. Role of the dpr product in oxygen tolerance in Streptococcus mutans. Yamamoto Y, Higuchi M, Poole LB, Kamio Y. J Bacteriol 182 3740-3747 (2000)
  10. The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans. Macedo S, Romão CV, Mitchell E, Matias PM, Liu MY, Xavier AV, LeGall J, Teixeira M, Lindley P, Carrondo MA. Nat Struct Biol 10 285-290 (2003)
  11. The multi-layered structure of Dps with a novel di-nuclear ferroxidase center. Ren B, Tibbelin G, Kajino T, Asami O, Ladenstein R. J Mol Biol 329 467-477 (2003)
  12. Unique iron binding and oxidation properties of human mitochondrial ferritin: a comparative analysis with Human H-chain ferritin. Bou-Abdallah F, Santambrogio P, Levi S, Arosio P, Chasteen ND. J Mol Biol 347 543-554 (2005)
  13. The ArcA regulon and oxidative stress resistance in Haemophilus influenzae. Wong SM, Alugupalli KR, Ram S, Akerley BJ. Mol Microbiol 64 1375-1390 (2007)
  14. Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states. Zeth K, Offermann S, Essen LO, Oesterhelt D. Proc Natl Acad Sci U S A 101 13780-13785 (2004)
  15. Escherichia coli Dps interacts with DnaA protein to impede initiation: a model of adaptive mutation. Chodavarapu S, Gomez R, Vicente M, Kaguni JM. Mol Microbiol 67 1331-1346 (2008)
  16. The neutrophil-activating Dps protein of Helicobacter pylori, HP-NAP, adopts a mechanism different from Escherichia coli Dps to bind and condense DNA. Ceci P, Mangiarotti L, Rivetti C, Chiancone E. Nucleic Acids Res 35 2247-2256 (2007)
  17. Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Tatur J, Hagen WR, Matias PM. J Biol Inorg Chem 12 615-630 (2007)
  18. Crystal structure of a secreted insect ferritin reveals a symmetrical arrangement of heavy and light chains. Hamburger AE, West AP, Hamburger ZA, Hamburger P, Bjorkman PJ. J Mol Biol 349 558-569 (2005)
  19. Proteomics analysis of carbon-starved Mycobacterium smegmatis: induction of Dps-like protein. Gupta S, Pandit SB, Srinivasan N, Chatterji D. Protein Eng 15 503-512 (2002)
  20. The crystal structures of Lactococcus lactis MG1363 Dps proteins reveal the presence of an N-terminal helix that is required for DNA binding. Stillman TJ, Upadhyay M, Norte VA, Sedelnikova SE, Carradus M, Tzokov S, Bullough PA, Shearman CA, Gasson MJ, Williams CH, Artymiuk PJ, Green J. Mol Microbiol 57 1101-1112 (2005)
  21. mu-1,2-Peroxobridged di-iron(III) dimer formation in human H-chain ferritin. Bou-Abdallah F, Papaefthymiou GC, Scheswohl DM, Stanga SD, Arosio P, Chasteen ND. Biochem J 364 57-63 (2002)
  22. X-ray analysis of Mycobacterium smegmatis Dps and a comparative study involving other Dps and Dps-like molecules. Roy S, Gupta S, Das S, Sekar K, Chatterji D, Vijayan M. J Mol Biol 339 1103-1113 (2004)
  23. Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans. Grove A, Wilkinson SP. J Mol Biol 347 495-508 (2005)
  24. Overexpression and characterization of an iron storage and DNA-binding Dps protein from Trichodesmium erythraeum. Castruita M, Saito M, Schottel PC, Elmegreen LA, Myneni S, Stiefel EI, Morel FM. Appl Environ Microbiol 72 2918-2924 (2006)
  25. Structural studies on the second Mycobacterium smegmatis Dps: invariant and variable features of structure, assembly and function. Roy S, Saraswathi R, Chatterji D, Vijayan M. J Mol Biol 375 948-959 (2008)
  26. Structure of the DPS-like protein from Sulfolobus solfataricus reveals a bacterioferritin-like dimetal binding site within a DPS-like dodecameric assembly. Gauss GH, Benas P, Wiedenheft B, Young M, Douglas T, Lawrence CM. Biochemistry 45 10815-10827 (2006)
  27. Dps/Dpr ferritin-like protein: insights into the mechanism of iron incorporation and evidence for a central role in cellular iron homeostasis in Streptococcus suis. Pulliainen AT, Kauko A, Haataja S, Papageorgiou AC, Finne J. Mol Microbiol 57 1086-1100 (2005)
  28. Iron translocation into and out of Listeria innocua Dps and size distribution of the protein-enclosed nanomineral are modulated by the electrostatic gradient at the 3-fold "ferritin-like" pores. Bellapadrona G, Stefanini S, Zamparelli C, Theil EC, Chiancone E. J Biol Chem 284 19101-19109 (2009)
  29. Crystal structure of Streptococcus suis Dps-like peroxide resistance protein Dpr: implications for iron incorporation. Kauko A, Haataja S, Pulliainen AT, Finne J, Papageorgiou AC. J Mol Biol 338 547-558 (2004)
  30. The crystal structure of Deinococcus radiodurans Dps protein (DR2263) reveals the presence of a novel metal centre in the N terminus. Romão CV, Mitchell EP, McSweeney S. J Biol Inorg Chem 11 891-902 (2006)
  31. Differential role of ferritins in iron metabolism and virulence of the plant-pathogenic bacterium Erwinia chrysanthemi 3937. Boughammoura A, Matzanke BF, Böttger L, Reverchon S, Lesuisse E, Expert D, Franza T. J Bacteriol 190 1518-1530 (2008)
  32. Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans. Yamamoto Y, Fukui K, Koujin N, Ohya H, Kimura K, Kamio Y. J Bacteriol 186 5997-6002 (2004)
  33. Ferritin structure from Mycobacterium tuberculosis: comparative study with homologues identifies extended C-terminus involved in ferroxidase activity. Khare G, Gupta V, Nangpal P, Gupta RK, Sauter NK, Tyagi AK. PLoS One 6 e18570 (2011)
  34. The expression of the dodecameric ferritin in Listeria spp. is induced by iron limitation and stationary growth phase. Polidoro M, De Biase D, Montagnini B, Guarrera L, Cavallo S, Valenti P, Stefanini S, Chiancone E. Gene 296 121-128 (2002)
  35. Crystal structure of Dps-1, a functionally distinct Dps protein from Deinococcus radiodurans. Kim SG, Bhattacharyya G, Grove A, Lee YH. J Mol Biol 361 105-114 (2006)
  36. Iron oxidation and hydrolysis reactions of a novel ferritin from Listeria innocua. Yang X, Chiancone E, Stefanini S, Ilari A, Chasteen ND. Biochem J 349 Pt 3 783-786 (2000)
  37. The DNABII family of proteins is comprised of the only nucleoid associated proteins required for nontypeable Haemophilus influenzae biofilm structure. Devaraj A, Buzzo J, Rocco CJ, Bakaletz LO, Goodman SD. Microbiologyopen 7 e00563 (2018)
  38. The crystal structure of the Dps2 from Deinococcus radiodurans reveals an unusual pore profile with a non-specific metal binding site. Cuypers MG, Mitchell EP, Romão CV, McSweeney SM. J Mol Biol 371 787-799 (2007)
  39. Two distinct ferritin-like molecules in Pseudomonas aeruginosa: the product of the bfrA gene is a bacterial ferritin (FtnA) and not a bacterioferritin (Bfr). Yao H, Jepkorir G, Lovell S, Nama PV, Weeratunga S, Battaile KP, Rivera M. Biochemistry 50 5236-5248 (2011)
  40. Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. Ramsay B, Wiedenheft B, Allen M, Gauss GH, Lawrence CM, Young M, Douglas T. J Inorg Biochem 100 1061-1068 (2006)
  41. Antioxidant Dps protein from the thermophilic cyanobacterium Thermosynechococcus elongatus. Franceschini S, Ceci P, Alaleona F, Chiancone E, Ilari A. FEBS J 273 4913-4928 (2006)
  42. Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the tol (pWWO) plasmid. Dinkla IJ, Gabor EM, Janssen DB. Appl Environ Microbiol 67 3406-3412 (2001)
  43. Construction of a ball-and-spike protein supramolecule. Sugimoto K, Kanamaru S, Iwasaki K, Arisaka F, Yamashita I. Angew Chem Int Ed Engl 45 2725-2728 (2006)
  44. Long-Range Tunneling Processes across Ferritin-Based Junctions. Kumar KS, Pasula RR, Lim S, Nijhuis CA. Adv Mater 28 1824-1830 (2016)
  45. A histone-like protein of mycobacteria possesses ferritin superfamily protein-like activity and protects against DNA damage by Fenton reaction. Takatsuka M, Osada-Oka M, Satoh EF, Kitadokoro K, Nishiuchi Y, Niki M, Inoue M, Iwai K, Arakawa T, Shimoji Y, Ogura H, Kobayashi K, Rambukkana A, Matsumoto S. PLoS One 6 e20985 (2011)
  46. Campylobacter jejuni Dps protein binds DNA in the presence of iron or hydrogen peroxide. Huergo LF, Rahman H, Ibrahimovic A, Day CJ, Korolik V. J Bacteriol 195 1970-1978 (2013)
  47. Helicobacter pylori neutrophil-activating protein activates neutrophils by its C-terminal region even without dodecamer formation, which is a prerequisite for DNA protection--novel approaches against Helicobacter pylori inflammation. Kottakis F, Papadopoulos G, Pappa EV, Cordopatis P, Pentas S, Choli-Papadopoulou T. FEBS J 275 302-317 (2008)
  48. Siderophore-controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery. Expert D, Boughammoura A, Franza T. J Biol Chem 283 36564-36572 (2008)
  49. Mammalian iron metabolism. Valerio LG. Toxicol Mech Methods 17 497-517 (2007)
  50. Role of N and C-terminal tails in DNA binding and assembly in Dps: structural studies of Mycobacterium smegmatis Dps deletion mutants. Roy S, Saraswathi R, Gupta S, Sekar K, Chatterji D, Vijayan M. J Mol Biol 370 752-767 (2007)
  51. Structural and thermodynamic characterization of metal ion binding in Streptococcus suis Dpr. Haikarainen T, Thanassoulas A, Stavros P, Nounesis G, Haataja S, Papageorgiou AC. J Mol Biol 405 448-460 (2011)
  52. The nucleoid protein Dps binds genomic DNA of Escherichia coli in a non-random manner. Antipov SS, Tutukina MN, Preobrazhenskaya EV, Kondrashov FA, Patrushev MV, Toshchakov SV, Dominova I, Shvyreva US, Vrublevskaya VV, Morenkov OS, Sukharicheva NA, Panyukov VV, Ozoline ON. PLoS One 12 e0182800 (2017)
  53. Two forms of ribosomal protein L2 of Escherichia coli that inhibit DnaA in DNA replication. Chodavarapu S, Felczak MM, Kaguni JM. Nucleic Acids Res 39 4180-4191 (2011)
  54. Helicobacter hepaticus Dps protein plays an important role in protecting DNA from oxidative damage. Hong Y, Wang G, Maier RJ. Free Radic Res 40 597-605 (2006)
  55. Iron incorporation in Streptococcus suis Dps-like peroxide resistance protein Dpr requires mobility in the ferroxidase center and leads to the formation of a ferrihydrite-like core. Kauko A, Pulliainen AT, Haataja S, Meyer-Klaucke W, Finne J, Papageorgiou AC. J Mol Biol 364 97-109 (2006)
  56. Targeted delivery of a photosensitizer to Aggregatibacter actinomycetemcomitans biofilm. Suci P, Kang S, Gmür R, Douglas T, Young M. Antimicrob Agents Chemother 54 2489-2496 (2010)
  57. Bacterioferritin from Mycobacterium smegmatis contains zinc in its di-nuclear site. Janowski R, Auerbach-Nevo T, Weiss MS. Protein Sci 17 1138-1150 (2008)
  58. Crystal structure of antigen TpF1 from Treponema pallidum. Thumiger A, Polenghi A, Papinutto E, Battistutta R, Montecucco C, Zanotti G. Proteins 62 827-830 (2006)
  59. Bio-templated CdSe nanoparticle synthesis in a cage shaped protein, Listeria-Dps, and their two dimensional ordered array self-assembly. Okuda M, Suzumoto Y, Iwahori K, Kang S, Uchida M, Douglas T, Yamashita I. Chem Commun (Camb) 46 8797-8799 (2010)
  60. Structural biology of mycobacterial proteins: the Bangalore effort. Vijayan M. Tuberculosis (Edinb) 85 357-366 (2005)
  61. Higher order assembly of virus-like particles (VLPs) mediated by multi-valent protein linkers. Uchida M, LaFrance B, Broomell CC, Prevelige PE, Douglas T. Small 11 1562-1570 (2015)
  62. Synthesis of iron oxide nanoparticles in Listeria innocua Dps (DNA-binding protein from starved cells): a study with the wild-type protein and a catalytic centre mutant. Ceci P, Chiancone E, Kasyutich O, Bellapadrona G, Castelli L, Fittipaldi M, Gatteschi D, Innocenti C, Sangregorio C. Chemistry 16 709-717 (2010)
  63. The crystal structure of the E. coli stress protein YciF. Hindupur A, Liu D, Zhao Y, Bellamy HD, White MA, Fox RO. Protein Sci 15 2605-2611 (2006)
  64. Thermosynechococcus elongatus DpsA binds Zn(II) at a unique three histidine-containing ferroxidase center and utilizes O2 as iron oxidant with very high efficiency, unlike the typical Dps proteins. Alaleona F, Franceschini S, Ceci P, Ilari A, Chiancone E. FEBS J 277 903-917 (2010)
  65. Comparison of the kinetics of iron release from a marine (Trichodesmium erythraeum) Dps protein and mammalian ferritin in the presence and absence of ligands. Castruita M, Elmegreen LA, Shaked Y, Stiefel EI, Morel FM. J Inorg Biochem 101 1686-1691 (2007)
  66. Iron content of Streptococcus suis and evidence for a dpr homologue. Niven DF, Ekins A. Can J Microbiol 47 412-416 (2001)
  67. Monitoring biomimetic platinum nanocluster formation using mass spectrometry and cluster-dependent H2 production. Kang S, Lucon J, Varpness ZB, Liepold L, Uchida M, Willits D, Young M, Douglas T. Angew Chem Int Ed Engl 47 7845-7848 (2008)
  68. The unusual dodecameric ferritin from Listeria innocua dissociates below pH 2.0. Chiaraluce R, Consalvi V, Cavallo S, Ilari A, Stefanini S, Chiancone E. Eur J Biochem 267 5733-5741 (2000)
  69. Effect of the charge distribution along the "ferritin-like" pores of the proteins from the Dps family on the iron incorporation process. Ceci P, Di Cecca G, Falconi M, Oteri F, Zamparelli C, Chiancone E. J Biol Inorg Chem 16 869-880 (2011)
  70. Mycobacterial stress regulation: The Dps "twin sister" defense mechanism and structure-function relationship. Chowdhury RP, Saraswathi R, Chatterji D. IUBMB Life 62 67-77 (2010)
  71. The dps gene of symbiotic "Candidatus Legionella jeonii" in Amoeba proteus responds to hydrogen peroxide and phagocytosis. Park M, Yun ST, Hwang SY, Chun CI, Ahn TI. J Bacteriol 188 7572-7580 (2006)
  72. A comparative Mössbauer study of the mineral cores of human H-chain ferritin employing dioxygen and hydrogen peroxide as iron oxidants. Bou-Abdallah F, Carney E, Chasteen ND, Arosio P, Viescas AJ, Papaefthymiou GC. Biophys Chem 130 114-121 (2007)
  73. Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein. Kilic MA, Spiro S, Moore GR. Protein Sci 12 1663-1674 (2003)
  74. Structural basis of the zinc- and terbium-mediated inhibition of ferroxidase activity in Dps ferritin-like proteins. Havukainen H, Haataja S, Kauko A, Pulliainen AT, Salminen A, Haikarainen T, Finne J, Papageorgiou AC. Protein Sci 17 1513-1521 (2008)
  75. The ferritin-like protein Frm is a target for the humoral immune response to Listeria monocytogenes and is required for efficient bacterial survival. Mohamed W, Darji A, Domann E, Chiancone E, Chakraborty T. Mol Genet Genomics 275 344-353 (2006)
  76. The mutations Lys 114 --> Gln and Asp 126 --> Asn disrupt an intersubunit salt bridge and convert Listeria innocua Dps into its natural mutant Listeria monocytogenes Dps. Effects on protein stability at Low pH. Bellapadrona G, Chiaraluce R, Consalvi V, Ilari A, Stefanini S, Chiancone E. Proteins 66 975-983 (2007)
  77. Correct charge state assignment of native electrospray spectra of protein complexes. Liepold L, Oltrogge LM, Suci PA, Young MJ, Douglas T. J Am Soc Mass Spectrom 20 435-442 (2009)
  78. The Legionella pneumophila Dps homolog is regulated by iron and involved in multiple stress tolerance. Yu MJ, Ren J, Zeng YL, Zhou SN, Lu YJ. J Basic Microbiol 49 Suppl 1 S79-86 (2009)
  79. Crystal structures of Streptococcus pyogenes Dpr reveal a dodecameric iron-binding protein with a ferroxidase site. Haikarainen T, Tsou CC, Wu JJ, Papageorgiou AC. J Biol Inorg Chem 15 183-194 (2010)
  80. The extension peptide of plant ferritin from sea lettuce contributes to shell stability and surface hydrophobicity. Masuda T, Morimoto S, Mikami B, Toyohara H. Protein Sci 21 786-796 (2012)
  81. Optical and EPR spectroscopic studies of demetallation of hemin by L-chain apoferritins. Carette N, Hagen W, Bertrand L, de Val N, Vertommen D, Roland F, Hue L, Crichton RR. J Inorg Biochem 100 1426-1435 (2006)
  82. From metal binding to nanoparticle formation: monitoring biomimetic iron oxide synthesis within protein cages using mass spectrometry. Kang S, Jolley CC, Liepold LO, Young M, Douglas T. Angew Chem Int Ed Engl 48 4772-4776 (2009)
  83. The Dps4 from Nostoc punctiforme ATCC 29133 is a member of His-type FOC containing Dps protein class that can be broadly found among cyanobacteria. Howe C, Moparthi VK, Ho FM, Persson K, Stensjö K. PLoS One 14 e0218300 (2019)
  84. Dps-DNA interaction in Marinobacter hydrocarbonoclasticus protein: effect of a single-charge alteration. Jacinto JP, Penas D, Guerra JPL, Almeida AV, Jones NC, Hoffmann SV, Tavares P, Pereira AS. Eur Biophys J 50 513-521 (2021)
  85. Nuclear ferritin: a ferritoid-ferritin complex in corneal epithelial cells. Nurminskaya MV, Talbot CJ, Nurminsky DI, Beazley KE, Linsenmayer TF. Invest Ophthalmol Vis Sci 50 3655-3661 (2009)
  86. Role of water molecules and ion pairs in Dps and related ferritin-like structures. Ranjani CV, Rangarajan S, Michael D, Roy S, Sekar K. Int J Biol Macromol 43 333-338 (2008)
  87. A histidine aspartate ionic lock gates the iron passage in miniferritins from Mycobacterium smegmatis. Williams SM, Chandran AV, Vijayabaskar MS, Roy S, Balaram H, Vishveshwara S, Vijayan M, Chatterji D. J Biol Chem 289 11042-11058 (2014)
  88. The crystal structure of ferritin from Chlorobium tepidum reveals a new conformation of the 4-fold channel for this protein family. Arenas-Salinas M, Townsend PD, Brito C, Marquez V, Marabolli V, Gonzalez-Nilo F, Matias C, Watt RK, López-Castro JD, Domínguez-Vera J, Pohl E, Yévenes A. Biochimie 106 39-47 (2014)
  89. Crystal structure of bacterioferritin from Rhodobacter sphaeroides. Nam KH, Xu Y, Piao S, Priyadarshi A, Lee EH, Kim HY, Jeon YH, Ha NC, Hwang KY. Biochem Biophys Res Commun 391 990-994 (2010)
  90. Identification of FtpA, a Dps-Like Protein Involved in Anti-Oxidative Stress and Virulence in Actinobacillus pleuropneumoniae. Tang H, Zhang Q, Han W, Wang Z, Pang S, Zhu H, Tan K, Liu X, Langford PR, Huang Q, Zhou R, Li L. J Bacteriol 204 e0032621 (2022)
  91. Intracellular growth of Brucella is mediated by Dps-dependent activation of ferritinophagy. Hop HT, Huy TXN, Lee HJ, Kim S. EMBO Rep 24 e55376 (2023)
  92. Conserved histidine residues at the ferroxidase centre of the Campylobacter jejuni Dps protein are not strictly required for metal binding and oxidation. Sanchuki HBS, Valdameri G, Moure VR, Rodriguez JA, Pedrosa FO, Souza EM, Korolik V, Ribeiro RR, Huergo LF. Microbiology (Reading) 162 156-163 (2016)
  93. Construction of ferritin hydrogels utilizing subunit-subunit interactions. Yamanaka M, Mashima T, Ogihara M, Okamoto M, Uchihashi T, Hirota S. PLoS One 16 e0259052 (2021)
  94. Pseudomonas aeruginosa Dps (PA0962) Functions in H2O2 Mediated Oxidative Stress Defense and Exhibits In Vitro DNA Cleaving Activity. Rajapaksha N, Soldano A, Yao H, Donnarumma F, Kashipathy MM, Seibold S, Battaile KP, Lovell S, Rivera M. Int J Mol Sci 24 4669 (2023)
  95. Coevolution of aah: a dps-like gene with the host bacterium revealed by comparative genomic analysis. Ping L, Platzer M, Wen G, Delaroque N. ScientificWorldJournal 2012 504905 (2012)
  96. Identification and visualization of cage-shaped proteins. Hu M, Wang J, Peng Q. Bioinformatics 23 3400-3402 (2007)
  97. Influence of Cupric (Cu2+) Ions on the Iron Oxidation Mechanism by DNA-Binding Protein from Starved Cells (Dps) from Marinobacter nauticus. Guerra JPL, Penas D, Tavares P, Pereira AS. Int J Mol Sci 24 10256 (2023)
  98. Structural insights into the metal binding properties of hypothetical protein MJ0754 from Methanococcus jannaschii. Lee EH, Kim HS, Kim HY, Jeon YH, Hwang KY. Proteins 79 2358-2363 (2011)