1qdl Citations

The crystal structure of anthranilate synthase from Sulfolobus solfataricus: functional implications.

Proc. Natl. Acad. Sci. U.S.A. 96 9479-84 (1999)
Cited: 56 times
EuropePMC logo PMID: 10449718


Anthranilate synthase catalyzes the synthesis of anthranilate from chorismate and glutamine and is feedback-inhibited by tryptophan. The enzyme of the hyperthermophile Sulfolobus solfataricus has been crystallized in the absence of physiological ligands, and its three-dimensional structure has been determined at 2.5-A resolution with x-ray crystallography. It is a heterotetramer of anthranilate synthase (TrpE) and glutamine amidotransferase (TrpG) subunits, in which two TrpG:TrpE protomers associate mainly via the TrpG subunits. The small TrpG subunit (195 residues) has the known "triad" glutamine amidotransferase fold. The large TrpE subunit (421 residues) has a novel fold. It displays a cleft between two domains, the tips of which contact the TrpG subunit across its active site. Clusters of catalytically essential residues are located inside the cleft, spatially separated from clustered residues involved in feedback inhibition. The structure suggests a model in which chorismate binding triggers a relative movement of the two domain tips of the TrpE subunit, activating the TrpG subunit and creating a channel for passage of ammonia toward the active site of the TrpE subunit. Tryptophan presumably blocks this rearrangement, thus stabilizing the inactive states of both subunits. The structure of the TrpE subunit is a likely prototype for the related enzymes 4-amino 4-deoxychorismate synthase and isochorismate synthase.

Articles - 1qdl mentioned but not cited (5)

  1. Pushing structural information into the yeast interactome by high-throughput protein docking experiments. Mosca R, Pons C, Fernández-Recio J, Aloy P. PLoS Comput. Biol. 5 e1000490 (2009)
  2. ResBoost: characterizing and predicting catalytic residues in enzymes. Alterovitz R, Arvey A, Sankararaman S, Dallett C, Freund Y, Sjölander K. BMC Bioinformatics 10 197 (2009)
  3. Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon. Feinauer C, Szurmant H, Weigt M, Pagnani A. PLoS ONE 11 e0149166 (2016)
  4. Identification of catalytic residues using a novel feature that integrates the microenvironment and geometrical location properties of residues. Han L, Zhang YJ, Song J, Liu MS, Zhang Z. PLoS ONE 7 e41370 (2012)
  5. Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis. Gueudré T, Baldassi C, Zamparo M, Weigt M, Pagnani A. Proc. Natl. Acad. Sci. U.S.A. 113 12186-12191 (2016)

Reviews citing this publication (8)

  1. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Guttenberger N, Blankenfeldt W, Breinbauer R. Bioorg. Med. Chem. 25 6149-6166 (2017)
  2. Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy. Lamb AL. Biochim. Biophys. Acta 1854 1054-1070 (2015)
  3. The shikimate pathway and aromatic amino Acid biosynthesis in plants. Maeda H, Dudareva N. Annu Rev Plant Biol 63 73-105 (2012)
  4. Pericyclic reactions catalyzed by chorismate-utilizing enzymes. Lamb AL. Biochemistry 50 7476-7483 (2011)
  5. Complexity and simplicity in the biosynthesis of enediyne natural products. Liang ZX. Nat Prod Rep 27 499-528 (2010)
  6. Conformational changes in ammonia-channeling glutamine amidotransferases. Mouilleron S, Golinelli-Pimpaneau B. Curr. Opin. Struct. Biol. 17 653-664 (2007)
  7. Haloarchaeal proteases and proteolytic systems. De Castro RE, Maupin-Furlow JA, Giménez MI, Herrera Seitz MK, Sánchez JJ. FEMS Microbiol. Rev. 30 17-35 (2006)
  8. Asparagine synthetase chemotherapy. Richards NG, Kilberg MS. Annu. Rev. Biochem. 75 629-654 (2006)

Articles citing this publication (43)

  1. Channeling of ammonia in glucosamine-6-phosphate synthase. Teplyakov A, Obmolova G, Badet B, Badet-Denisot MA. J. Mol. Biol. 313 1093-1102 (2001)
  2. The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: a member of the DJ-1/ThiJ/PfpI superfamily. Wilson MA, St Amour CV, Collins JL, Ringe D, Petsko GA. Proc. Natl. Acad. Sci. U.S.A. 101 1531-1536 (2004)
  3. The structures of anthranilate synthase of Serratia marcescens crystallized in the presence of (i) its substrates, chorismate and glutamine, and a product, glutamate, and (ii) its end-product inhibitor, L-tryptophan. Spraggon G, Kim C, Nguyen-Huu X, Yee MC, Yanofsky C, Mills SE. Proc. Natl. Acad. Sci. U.S.A. 98 6021-6026 (2001)
  4. Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Shin SJ, Wu CW, Steinberg H, Talaat AM. Infect. Immun. 74 3825-3833 (2006)
  5. Structural evidence for ammonia tunneling across the (beta alpha)(8) barrel of the imidazole glycerol phosphate synthase bienzyme complex. Douangamath A, Walker M, Beismann-Driemeyer S, Vega-Fernandez MC, Sterner R, Wilmanns M. Structure 10 185-193 (2002)
  6. Allosteric pathways in imidazole glycerol phosphate synthase. Rivalta I, Sultan MM, Lee NS, Manley GA, Loria JP, Batista VS. Proc. Natl. Acad. Sci. U.S.A. 109 E1428-36 (2012)
  7. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. Harrison AJ, Yu M, Gårdenborg T, Middleditch M, Ramsay RJ, Baker EN, Lott JS. J. Bacteriol. 188 6081-6091 (2006)
  8. Crystal structure of imidazole glycerol phosphate synthase: a tunnel through a (beta/alpha)8 barrel joins two active sites. Chaudhuri BN, Lange SC, Myers RS, Chittur SV, Davisson VJ, Smith JL. Structure 9 987-997 (2001)
  9. Crystal structures of CTP synthetase reveal ATP, UTP, and glutamine binding sites. Goto M, Omi R, Nakagawa N, Miyahara I, Hirotsu K. Structure 12 1413-1423 (2004)
  10. Crystal structures of Yersinia enterocolitica salicylate synthase and its complex with the reaction products salicylate and pyruvate. Kerbarh O, Chirgadze DY, Blundell TL, Abell C. J. Mol. Biol. 357 524-534 (2006)
  11. Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis. Porat I, Waters BW, Teng Q, Whitman WB. J. Bacteriol. 186 4940-4950 (2004)
  12. The crystal structure of chorismate lyase shows a new fold and a tightly retained product. Gallagher DT, Mayhew M, Holden MJ, Howard A, Kim KJ, Vilker VL. Proteins 44 304-311 (2001)
  13. Inhibition studies on salicylate synthase. Payne RJ, Kerbarh O, Miguel RN, Abell AD, Abell C. Org. Biomol. Chem. 3 1825-1827 (2005)
  14. Biosynthesis of the enediyne antitumor antibiotic C-1027 involves a new branching point in chorismate metabolism. Van Lanen SG, Lin S, Shen B. Proc. Natl. Acad. Sci. U.S.A. 105 494-499 (2008)
  15. A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Sazuka T, Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y, Koshiba T, Nagamura Y, Ashikari M, Kitano H, Matsuoka M. Plant J. 60 227-241 (2009)
  16. Crystal structure of Escherichia coli enterobactin-specific isochorismate synthase (EntC) bound to its reaction product isochorismate: implications for the enzyme mechanism and differential activity of chorismate-utilizing enzymes. Sridharan S, Howard N, Kerbarh O, Błaszczyk M, Abell C, Blundell TL. J. Mol. Biol. 397 290-300 (2010)
  17. The synthetase domains of cobalamin biosynthesis amidotransferases cobB and cobQ belong to a new family of ATP-dependent amidoligases, related to dethiobiotin synthetase. Galperin MY, Grishin NV. Proteins 41 238-247 (2000)
  18. Completing the puzzle of aurachin biosynthesis in Stigmatella aurantiaca Sg a15. Pistorius D, Li Y, Sandmann A, Müller R. Mol Biosyst 7 3308-3315 (2011)
  19. Inhibition studies of Mycobacterium tuberculosis salicylate synthase (MbtI). Manos-Turvey A, Bulloch EM, Rutledge PJ, Baker EN, Lott JS, Payne RJ. ChemMedChem 5 1067-1079 (2010)
  20. The crystal structure of anthranilate phosphoribosyltransferase from the enterobacterium Pectobacterium carotovorum. Kim C, Xuong NH, Edwards S, Madhusudan, Yee MC, Spraggon G, Mills SE. FEBS Lett. 523 239-246 (2002)
  21. The C-terminal domain of HPII catalase is a member of the type I glutamine amidotransferase superfamily. Horvath MM, Grishin NV. Proteins 42 230-236 (2001)
  22. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans. Esparza M, Cárdenas JP, Bowien B, Jedlicki E, Holmes DS. BMC Microbiol. 10 229 (2010)
  23. Efficient expression, purification, and characterization of C-terminally tagged, recombinant human asparagine synthetase. Ciustea M, Gutierrez JA, Abbatiello SE, Eyler JR, Richards NG. Arch. Biochem. Biophys. 440 18-27 (2005)
  24. Subunit interactions and glutamine utilization by Escherichia coli imidazole glycerol phosphate synthase. Klem TJ, Chen Y, Davisson VJ. J. Bacteriol. 183 989-996 (2001)
  25. Structural analysis of two enzymes catalysing reverse metabolic reactions implies common ancestry. Mayans O, Ivens A, Nissen LJ, Kirschner K, Wilmanns M. EMBO J. 21 3245-3254 (2002)
  26. Design and synthesis of aromatic inhibitors of anthranilate synthase. Payne RJ, Toscano MD, Bulloch EM, Abell AD, Abell C. Org. Biomol. Chem. 3 2271-2281 (2005)
  27. Anthranilate synthase without an LLES motif from a hyperthermophilic archaeon is inhibited by tryptophan. Tang XF, Ezaki S, Atomi H, Imanaka T. Biochem. Biophys. Res. Commun. 281 858-865 (2001)
  28. Purification, characterization and crystallization of thermostable anthranilate phosphoribosyltransferase from Sulfolobus solfataricus. Ivens A, Mayans O, Szadkowski H, Wilmanns M, Kirschner K. Eur. J. Biochem. 268 2246-2252 (2001)
  29. Detection of covalent intermediates formed in the reaction of 4-amino-4-deoxychorismate synthase. Bulloch EM, Abell C. Chembiochem 6 832-834 (2005)
  30. Inhibition of chorismate-utilising enzymes by 2-amino-4-carboxypyridine and 4-carboxypyridone and 5-carboxypyridone analogues. Payne RJ, Bulloch EM, Kerbarh O, Abell C. Org. Biomol. Chem. 8 3534-3542 (2010)
  31. Temperature-dependent function of the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel and coupling with glycinamide ribonucleotide synthetase in a hyperthermophile. Bera AK, Chen S, Smith JL, Zalkin H. J. Bacteriol. 182 3734-3739 (2000)
  32. Conformational changes involving ammonia tunnel formation and allosteric control in GMP synthetase. Oliver JC, Gudihal R, Burgner JW, Pedley AM, Zwierko AT, Davisson VJ, Linger RS. Arch. Biochem. Biophys. 545 22-32 (2014)
  33. Mutation analysis of carbamoyl phosphate synthetase: does the structurally conserved glutamine amidotransferase triad act as a functional dyad? Hart EJ, Powers-Lee SG. Protein Sci. 17 1120-1128 (2008)
  34. The fused anthranilate synthase from Streptomyces venezuelae functions as a monomer. Ashenafi M, Reddy PT, Parsons JF, Byrnes WM. Mol. Cell. Biochem. 400 9-15 (2015)
  35. Purification and characterization of anthranilate synthase component I (TrpE) from Mycobacterium tuberculosis H37Rv. Lin X, Xu S, Yang Y, Wu J, Wang H, Shen H, Wang H. Protein Expr. Purif. 64 8-15 (2009)
  36. Crystal structure of a putative glutamine amido transferase (TM1158) from Thermotoga maritima at 1.7 A resolution. Schwarzenbacher R, Deacon AM, Jaroszewski L, Brinen LS, Canaves JM, Dai X, Elsliger MA, Floyd R, Godzik A, Grittini C, Grzechnik SK, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Lesley SA, McMullan D, McPhillips TM, Miller MD, Morse A, Moy K, Nelson MS, Ouyang J, Page R, Robb A, Quijano K, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, von Delft F, Wang X, West B, Wolf G, Hodgson KO, Wooley J, Wilson IA. Proteins 54 801-805 (2004)
  37. Expression and characterization of PhzE from P. aeruginosa PAO1: aminodeoxyisochorismate synthase involved in pyocyanin and phenazine-1-carboxylate production. Culbertson JE, Toney MD. Biochim. Biophys. Acta 1834 240-246 (2013)
  38. The fused TrpEG from Streptomyces venezuelae is an anthranilate synthase, not a 2-amino-2-deoxyisochorismate [corrected] (ADIC) synthase. Ashenafi M, Carrington R, Collins AC, Byrnes WM. Ethn Dis 18 S2-9-13 (2008)
  39. Extrinsic factors potassium chloride and glycerol induce thermostability in recombinant anthranilate synthase from Archaeoglobus fulgidus. Byrnes WM, Vilker VL. Extremophiles 8 455-462 (2004)
  40. Structure of aminodeoxychorismate synthase from Stenotrophomonas maltophilia. Bera AK, Atanasova V, Dhanda A, Ladner JE, Parsons JF. Biochemistry 51 10208-10217 (2012)
  41. Why do Sequence Signatures Predict Enzyme Mechanism? Homology versus Chemistry. Beattie KE, De Ferrari L, Mitchell JB. Evol. Bioinform. Online 11 267-274 (2015)
  42. Multisubstrate analogue inhibitors of glucosamine-6-phosphate synthase from Candida albicans. Chittur S, Griffith R. Bioorg. Med. Chem. Lett. 12 2639-2642 (2002)
  43. Structure and inhibition of subunit I of the anthranilate synthase complex of Mycobacterium tuberculosis and expression of the active complex. Bashiri G, Johnston JM, Evans GL, Bulloch EM, Goldstone DC, Jirgis EN, Kleinboelting S, Castell A, Ramsay RJ, Manos-Turvey A, Payne RJ, Lott JS, Baker EN. Acta Crystallogr. D Biol. Crystallogr. 71 2297-2308 (2015)

Related citations provided by authors (1)