1q94 Citations

Structures of HLA-A*1101 complexed with immunodominant nonamer and decamer HIV-1 epitopes clearly reveal the presence of a middle, secondary anchor residue.

J Immunol 172 6175-84 (2004)
Cited: 43 times
EuropePMC logo PMID: 15128805

Abstract

HLA-A*1101 is one of the most common human class I alleles worldwide. An increased frequency of HLA-A*1101 has been observed in cohorts of female sex workers from Northern Thailand who are highly exposed to HIV-1 and yet have remained persistently seronegative. In view of this apparent association of HLA-A*1101 with resistance to acquisition of HIV-1 infection, and given the importance of eliciting strong CTL responses to control and eliminate HIV-1, we have determined the crystal structure of HLA-A*1101 complexed with two immunodominant HIV-1 CTL epitopes: the nonamer reverse transcriptase(313-321) (AIFQSSMTK) and decamer Nef(73-82) (QVPLRPMTYK) peptides. The structures confirm the presence of primary anchor residues P2-Ile/-Val and P9-/P10-Lys, and also clearly reveal the presence of secondary anchor residues P6-Ser for reverse transcriptase and P7-Met for Nef. The overall backbone conformation of both peptides is defined as two bulges that are separated by a more buried middle residue. In this study, we discuss how this topology may offer functional advantages in the selection and presentation of HIV-1 CTL epitopes by HLA-A*1101. Overall, this structural analysis permits a more accurate definition of the peptide-binding motif of HLA-A*1101, the characterization of its antigenic surface, and the correlation of molecular determinants with resistance to HIV-1 infection. These studies are relevant for the rational design of HLA-A*1101-restricted CTL epitopes with improved binding and immunological properties for the development of HIV-1 vaccines.

Articles - 1q94 mentioned but not cited (14)

  1. Crystal structure of swine major histocompatibility complex class I SLA-1 0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides. Zhang N, Qi J, Feng S, Gao F, Liu J, Pan X, Chen R, Li Q, Chen Z, Li X, Xia C, Gao GF. J. Virol. 85 11709-11724 (2011)
  2. Prediction and identification of T cell epitopes in the H5N1 influenza virus nucleoprotein in chicken. Hou Y, Guo Y, Wu C, Shen N, Jiang Y, Wang J. PLoS One 7 e39344 (2012)
  3. Adenovirus E3-19K proteins of different serotypes and subgroups have similar, yet distinct, immunomodulatory functions toward major histocompatibility class I molecules. Fu J, Li L, Bouvier M. J. Biol. Chem. 286 17631-17639 (2011)
  4. Structure of HLA-A*0301 in complex with a peptide of proteolipid protein: insights into the role of HLA-A alleles in susceptibility to multiple sclerosis. McMahon RM, Friis L, Siebold C, Friese MA, Fugger L, Jones EY. Acta Crystallogr. D Biol. Crystallogr. 67 447-454 (2011)
  5. Influence of dominant HIV-1 epitopes on HLA-A3/peptide complex formation. Racape J, Connan F, Hoebeke J, Choppin J, Guillet JG. Proc. Natl. Acad. Sci. U.S.A. 103 18208-18213 (2006)
  6. The nature of peptides presented by an HLA class I low expression allele. Hinrichs J, Föll D, Bade-Döding C, Huyton T, Blasczyk R, Eiz-Vesper B. Haematologica 95 1373-1380 (2010)
  7. Evaluation of a DLA-79 allele associated with multiple immune-mediated diseases in dogs. Friedenberg SG, Buhrman G, Chdid L, Olby NJ, Olivry T, Guillaumin J, O'Toole T, Goggs R, Kennedy LJ, Rose RB, Meurs KM. Immunogenetics 68 205-217 (2016)
  8. An integrative docking and simulation-based approach towards the development of epitope-based vaccine against enterotoxigenic Escherichia coli. Khan F, Kumar A. Netw Model Anal Health Inform Bioinform 10 11 (2021)
  9. Computer-Based Immunoinformatic Analysis to Predict Candidate T-Cell Epitopes for SARS-CoV-2 Vaccine Design. Mei X, Gu P, Shen C, Lin X, Li J. Front Immunol 13 847617 (2022)
  10. Decoupling peptide binding from T cell receptor recognition with engineered chimeric MHC-I molecules. Papadaki GF, Ani O, Florio TJ, Young MC, Danon JN, Sun Y, Dersh D, Sgourakis NG. Front Immunol 14 1116906 (2023)
  11. Illumination of PRRSV Cytotoxic T Lymphocyte Epitopes by the Three-Dimensional Structure and Peptidome of Swine Lymphocyte Antigen Class I (SLA-I). Pan X, Zhang N, Wei X, Jiang Y, Chen R, Li Q, Liang R, Zhang L, Ma L, Xia C. Front Immunol 10 2995 (2019)
  12. Immunoinformatics-Aided Analysis of RSV Fusion and Attachment Glycoproteins to Design a Potent Multi-Epitope Vaccine. Dar HA, Almajhdi FN, Aziz S, Waheed Y. Vaccines (Basel) 10 1381 (2022)
  13. Natural Plasmodium falciparum Infection Stimulates Human Antibodies to MSP1 Epitopes Identified in Mice Infection Models upon Non-Natural Modified Peptidomimetic Vaccination. Rodríguez ZJ, Melo FL, Torres A, Agrawal N, Cortés-Vecino JA, Lozano JM. Molecules 28 2527 (2023)
  14. The Parallel Presentation of Two Functional CTL Epitopes Derived from the O and Asia 1 Serotypes of Foot-and-Mouth Disease Virus and Swine SLA-2*HB01: Implications for Universal Vaccine Development. Feng L, Gao YY, Sun M, Li ZB, Zhang Q, Yang J, Qiao C, Jin H, Feng HS, Xian YH, Qi J, Gao GF, Liu WJ, Gao FS. Cells 11 4017 (2022)


Reviews citing this publication (2)

  1. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development. Liu J, Zhang S, Tan S, Zheng B, Gao GF. Exp. Biol. Med. (Maywood) 236 253-267 (2011)
  2. MHC-bound antigens and proteomics for novel target discovery. Shoshan SH, Admon A. Pharmacogenomics 5 845-859 (2004)

Articles citing this publication (27)

  1. T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal? Mongkolsapaya J, Duangchinda T, Dejnirattisai W, Vasanawathana S, Avirutnan P, Jairungsri A, Khemnu N, Tangthawornchaikul N, Chotiyarnwong P, Sae-Jang K, Koch M, Jones Y, McMichael A, Xu X, Malasit P, Screaton G. J Immunol 176 3821-3829 (2006)
  2. De novo generation of escape variant-specific CD8+ T-cell responses following cytotoxic T-lymphocyte escape in chronic human immunodeficiency virus type 1 infection. Allen TM, Yu XG, Kalife ET, Reyor LL, Lichterfeld M, John M, Cheng M, Allgaier RL, Mui S, Frahm N, Alter G, Brown NV, Johnston MN, Rosenberg ES, Mallal SA, Brander C, Walker BD, Altfeld M. J. Virol. 79 12952-12960 (2005)
  3. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Bakker AH, Hoppes R, Linnemann C, Toebes M, Rodenko B, Berkers CR, Hadrup SR, van Esch WJ, Heemskerk MH, Ovaa H, Schumacher TN. Proc. Natl. Acad. Sci. U.S.A. 105 3825-3830 (2008)
  4. Memory CD8+ T cells from naturally acquired primary dengue virus infection are highly cross-reactive. Friberg H, Burns L, Woda M, Kalayanarooj S, Endy TP, Stephens HA, Green S, Rothman AL, Mathew A. Immunol. Cell Biol. 89 122-129 (2011)
  5. Differential restoration of myeloid and plasmacytoid dendritic cells in HIV-1-infected children after treatment with highly active antiretroviral therapy. Zhang Z, Fu J, Zhao Q, He Y, Jin L, Zhang H, Yao J, Zhang L, Wang FS. J Immunol 176 5644-5651 (2006)
  6. Letter Association of human leukocyte antigen-A11 with resistance and B40 and DR2 with susceptibility to HIV-1 infection in south India. Selvaraj P, Swaminathan S, Alagarasu K, Raghavan S, Narendran G, Narayanan P. J. Acquir. Immune Defic. Syndr. 43 497-499 (2006)
  7. Crystal structure of HLA-A*2402 complexed with a telomerase peptide. Cole DK, Rizkallah PJ, Gao F, Watson NI, Boulter JM, Bell JI, Sami M, Gao GF, Jakobsen BK. Eur. J. Immunol. 36 170-179 (2006)
  8. Translation of HLA-HIV associations to the cellular level: HIV adapts to inflate CD8 T cell responses against Nef and HLA-adapted variant epitopes. Almeida CA, Bronke C, Roberts SG, McKinnon E, Keane NM, Chopra A, Kadie C, Carlson J, Haas DW, Riddler SA, Haubrich R, Heckerman D, Mallal S, John M. J. Immunol. 187 2502-2513 (2011)
  9. Amino acid 95 causes strong alteration of peptide position Pomega in HLA-B*41 variants. Bade-Doeding C, DeLuca DS, Seltsam A, Blasczyk R, Eiz-Vesper B. Immunogenetics 59 253-259 (2007)
  10. Cross-allele cytotoxic T lymphocyte responses against 2009 pandemic H1N1 influenza A virus among HLA-A24 and HLA-A3 supertype-positive individuals. Liu J, Zhang S, Tan S, Yi Y, Wu B, Cao B, Zhu F, Wang C, Wang H, Qi J, Gao GF. J. Virol. 86 13281-13294 (2012)
  11. T cell receptor cross-recognition of an HIV-1 CD8+ T cell epitope presented by closely related alleles from the HLA-A3 superfamily. Lichterfeld M, Williams KL, Mui SK, Shah SS, Mothe BR, Sette A, Kim A, Johnston MN, Burgett N, Frahm N, Cohen D, Brander C, Rosenberg ES, Walker BD, Altfeld M, Yu XG. Int. Immunol. 18 1179-1188 (2006)
  12. The endoplasmic reticulum lumenal domain of the adenovirus type 2 E3-19K protein binds to peptide-filled and peptide-deficient HLA-A*1101 molecules. Liu H, Stafford WF, Bouvier M. J. Virol. 79 13317-13325 (2005)
  13. Diverse peptide presentation of rhesus macaque major histocompatibility complex class I Mamu-A 02 revealed by two peptide complex structures and insights into immune escape of simian immunodeficiency virus. Liu J, Dai L, Qi J, Gao F, Feng Y, Liu W, Yan J, Gao GF. J. Virol. 85 7372-7383 (2011)
  14. Short communication: association of HLA-A*1101 with resistance and B*4006 with susceptibility to HIV and HIV-TB: an in silico analysis of promiscuous T cell epitopes. Raghavan S, Selvaraj P, Swaminathan S, Narendran G. AIDS Res. Hum. Retroviruses 25 1023-1028 (2009)
  15. Structural basis of cross-allele presentation by HLA-A*0301 and HLA-A*1101 revealed by two HIV-derived peptide complexes. Zhang S, Liu J, Cheng H, Tan S, Qi J, Yan J, Gao GF. Mol. Immunol. 49 395-401 (2011)
  16. Biochemical and structural impact of natural polymorphism in the HLA-A3 superfamily. Li L, Bouvier M. Mol. Immunol. 42 1331-1344 (2005)
  17. A biochemical and structural analysis of genetic diversity within the HLA-A*11 subtype. Li L, Chen W, Bouvier M. Immunogenetics 57 315-325 (2005)
  18. Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides. Liang R, Sun Y, Liu Y, Wang J, Wu Y, Li Z, Ma L, Zhang N, Zhang L, Wei X, Qu Z, Zhang N, Xia C. J. Virol. 92 (2018)
  19. Nα-terminal acetylation for T cell recognition: molecular basis of MHC class I-restricted nα-acetylpeptide presentation. Sun M, Liu J, Qi J, Tefsen B, Shi Y, Yan J, Gao GF. J Immunol 192 5509-5519 (2014)
  20. Structural basis for the differential classification of HLA-A*6802 and HLA-A*6801 into the A2 and A3 supertypes. Niu L, Cheng H, Zhang S, Tan S, Zhang Y, Qi J, Liu J, Gao GF. Mol. Immunol. 55 381-392 (2013)
  21. Novel HLA-A*11 allele, A*1120, identified by sequence-based typing. Kwon OJ, Hwang SH, Heo YS, Hur SS, Lee MN, Oh HB. Tissue Antigens 66 141-144 (2005)
  22. Resistance-associated epitopes of HIV-1C-highly probable candidates for a multi-epitope vaccine. Sundaramurthi JC, Swaminathan S, Hanna LE. Immunogenetics 64 767-772 (2012)
  23. Generation of a Novel HLA Class I Transgenic Mouse Model Carrying a Knock-in Mutation at the β2-Microglobulin Locus. Harada N, Fukaya S, Wada H, Goto R, Osada T, Gomori A, Ikizawa K, Sakuragi M, Oda N. J. Immunol. 198 516-527 (2017)
  24. α3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. Zhang XH, Lian XD, Dai ZX, Zheng HY, Chen X, Zheng YT. J. Immunol. 199 2030-2042 (2017)
  25. Charge-based interactions through peptide position 4 drive diversity of antigen presentation by human leukocyte antigen class I molecules. Jackson KR, Antunes DA, Talukder AH, Maleki AR, Amagai K, Salmon A, Katailiha AS, Chiu Y, Fasoulis R, Rigo MM, Abella JR, Melendez BD, Li F, Sun Y, Sonnemann HM, Belousov V, Frenkel F, Justesen S, Makaju A, Liu Y, Horn D, Lopez-Ferrer D, Huhmer AF, Hwu P, Roszik J, Hawke D, Kavraki LE, Lizée G. PNAS Nexus 1 pgac124 (2022)
  26. Designing a next generation multi-epitope based peptide vaccine candidate against SARS-CoV-2 using computational approaches. Saha R, Ghosh P, Burra VLSP. 3 Biotech 11 47 (2021)
  27. HLA variants have different preferences to present proteins with specific molecular functions which are complemented in frequent haplotypes. Karnaukhov V, Paes W, Woodhouse IB, Partridge T, Nicastri A, Brackenridge S, Shcherbinin D, Chudakov DM, Zvyagin IV, Ternette N, Koohy H, Borrow P, Shugay M. Front Immunol 13 1067463 (2022)