1puf Citations

Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior.

Genes Dev 17 2060-72 (2003)
Cited: 153 times
EuropePMC logo PMID: 12923056

Abstract

The HOX/HOM superfamily of homeodomain proteins controls cell fate and segmental embryonic patterning by a mechanism that is conserved in all metazoans. The linear arrangement of the Hox genes on the chromosome correlates with the spatial distribution of HOX protein expression along the anterior-posterior axis of the embryo. Most HOX proteins bind DNA cooperatively with members of the PBC family of TALE-type homeodomain proteins, which includes human Pbx1. Cooperative DNA binding between HOX and PBC proteins requires a residue N-terminal to the HOX homeodomain termed the hexapeptide, which differs significantly in sequence between anterior- and posterior-regulating HOX proteins. We report here the 1.9-A-resolution structure of a posterior HOX protein, HoxA9, complexed with Pbx1 and DNA, which reveals that the posterior Hox hexapeptide adopts an altered conformation as compared with that seen in previously determined anterior HOX/PBC structures. The additional nonspecific interactions and altered DNA conformation in this structure account for the stronger DNA-binding affinity and altered specificity observed for posterior HOX proteins when compared with anterior HOX proteins. DNA-binding studies of wild-type and mutant HoxA9 and HoxB1 show residues in the N-terminal arm of the homeodomains are critical for proper DNA sequence recognition despite lack of direct contact by these residues to the DNA bases. These results help shed light on the mechanism of transcriptional regulation by HOX proteins and show how DNA-binding proteins may use indirect contacts to determine sequence specificity.

Reviews - 1puf mentioned but not cited (7)

  1. Hox specificity unique roles for cofactors and collaborators. Mann RS, Lelli KM, Joshi R. Curr Top Dev Biol 88 63-101 (2009)
  2. Homeodomain revisited: a lesson from disease-causing mutations. Chi YI. Hum Genet 116 433-444 (2005)
  3. Role of Homeodomain leucine zipper (HD-Zip) IV transcription factors in plant development and plant protection from deleterious environmental factors. Chew W, Hrmova M, Lopato S. Int J Mol Sci 14 8122-8147 (2013)
  4. Precision medicine by designer interference peptides: applications in oncology and molecular therapeutics. Sorolla A, Wang E, Golden E, Duffy C, Henriques ST, Redfern AD, Blancafort P. Oncogene 39 1167-1184 (2020)
  5. Detecting and interpreting DNA methylation marks. Ren R, Horton JR, Zhang X, Blumenthal RM, Cheng X. Curr Opin Struct Biol 53 88-99 (2018)
  6. Control of the eIF4E activity: structural insights and pharmacological implications. Romagnoli A, D'Agostino M, Ardiccioni C, Maracci C, Motta S, La Teana A, Di Marino D. Cell Mol Life Sci 78 6869-6885 (2021)
  7. Cell fate decisions, transcription factors and signaling during early retinal development. Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Prog Retin Eye Res 91 101093 (2022)

Articles - 1puf mentioned but not cited (33)

  1. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schübeler D, Vinson C, Taipale J. Science 356 eaaj2239 (2017)
  2. Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior. LaRonde-LeBlanc NA, Wolberger C. Genes Dev 17 2060-2072 (2003)
  3. DNA conformations and their sequence preferences. Svozil D, Kalina J, Omelka M, Schneider B. Nucleic Acids Res 36 3690-3706 (2008)
  4. Structural Features of Transcription Factors Associating with Nucleosome Binding. Fernandez Garcia M, Moore CD, Schulz KN, Alberto O, Donague G, Harrison MM, Zhu H, Zaret KS. Mol Cell 75 921-932.e6 (2019)
  5. Quantitative Analysis of the DNA Methylation Sensitivity of Transcription Factor Complexes. Kribelbauer JF, Laptenko O, Chen S, Martini GD, Freed-Pastor WA, Prives C, Mann RS, Bussemaker HJ. Cell Rep 19 2383-2395 (2017)
  6. Novel role of Engrailed 1 as a prosurvival transcription factor in basal-like breast cancer and engineering of interference peptides block its oncogenic function. Beltran AS, Graves LM, Blancafort P. Oncogene 33 4767-4777 (2014)
  7. Quantitative evaluation of protein-DNA interactions using an optimized knowledge-based potential. Liu Z, Mao F, Guo JT, Yan B, Wang P, Qu Y, Xu Y. Nucleic Acids Res 33 546-558 (2005)
  8. Cryo-electron microscopy reveals a novel DNA-binding site on the MCM helicase. Costa A, van Duinen G, Medagli B, Chong J, Sakakibara N, Kelman Z, Nair SK, Patwardhan A, Onesti S. EMBO J 27 2250-2258 (2008)
  9. Assessment of the optimization of affinity and specificity at protein-DNA interfaces. Ashworth J, Baker D. Nucleic Acids Res 37 e73 (2009)
  10. De novo, deleterious sequence variants that alter the transcriptional activity of the homeoprotein PBX1 are associated with intellectual disability and pleiotropic developmental defects. Slavotinek A, Risolino M, Losa M, Cho MT, Monaghan KG, Schneidman-Duhovny D, Parisotto S, Herkert JC, Stegmann APA, Miller K, Shur N, Chui J, Muller E, DeBrosse S, Szot JO, Chapman G, Pachter NS, Winlaw DS, Mendelsohn BA, Dalton J, Sarafoglou K, Karachunski PI, Lewis JM, Pedro H, Dunwoodie SL, Selleri L, Shieh J. Hum Mol Genet 26 4849-4860 (2017)
  11. Structure-aided prediction of mammalian transcription factor complexes in conserved non-coding elements. Guturu H, Doxey AC, Wenger AM, Bejerano G. Philos Trans R Soc Lond B Biol Sci 368 20130029 (2013)
  12. Cooperative DNA-binding and sequence-recognition mechanism of aristaless and clawless. Miyazono K, Zhi Y, Takamura Y, Nagata K, Saigo K, Kojima T, Tanokura M. EMBO J 29 1613-1623 (2010)
  13. Systematic prediction of DNA shape changes due to CpG methylation explains epigenetic effects on protein-DNA binding. Rao S, Chiu TP, Kribelbauer JF, Mann RS, Bussemaker HJ, Rohs R. Epigenetics Chromatin 11 6 (2018)
  14. Intrinsic DNA Shape Accounts for Affinity Differences between Hox-Cofactor Binding Sites. Zeiske T, Baburajendran N, Kaczynska A, Brasch J, Palmer AG, Shapiro L, Honig B, Mann RS. Cell Rep 24 2221-2230 (2018)
  15. Protein-DNA docking with a coarse-grained force field. Setny P, Bahadur RP, Zacharias M. BMC Bioinformatics 13 228 (2012)
  16. Crystal Structure of the Double Homeodomain of DUX4 in Complex with DNA. Lee JK, Bosnakovski D, Toso EA, Dinh T, Banerjee S, Bohl TE, Shi K, Orellana K, Kyba M, Aihara H. Cell Rep 25 2955-2962.e3 (2018)
  17. HOXB9 induction of mesenchymal-to-epithelial transition in gastric carcinoma is negatively regulated by its hexapeptide motif. Chang Q, Zhang L, He C, Zhang B, Zhang J, Liu B, Zeng N, Zhu Z. Oncotarget 6 42838-42853 (2015)
  18. Two distinct DNA sequences recognized by transcription factors represent enthalpy and entropy optima. Morgunova E, Yin Y, Das PK, Jolma A, Zhu F, Popov A, Xu Y, Nilsson L, Taipale J. Elife 7 e32963 (2018)
  19. Structure-based prediction of transcription factor binding specificity using an integrative energy function. Farrel A, Murphy J, Guo JT. Bioinformatics 32 i306-i313 (2016)
  20. PiDNA: Predicting protein-DNA interactions with structural models. Lin CK, Chen CY. Nucleic Acids Res 41 W523-30 (2013)
  21. Widespread occurrence of covalent lysine-cysteine redox switches in proteins. Rabe von Pappenheim F, Wensien M, Ye J, Uranga J, Irisarri I, de Vries J, Funk LM, Mata RA, Tittmann K. Nat Chem Biol 18 368-375 (2022)
  22. Analysis of the impact of solvent on contacts prediction in proteins. Samsonov SA, Teyra J, Anders G, Pisabarro MT. BMC Struct Biol 9 22 (2009)
  23. Exploring DNA structure with Cn3D. Porter SG, Day J, McCarty RE, Shearn A, Shingles R, Fletcher L, Murphy S, Pearlman R. CBE Life Sci Educ 6 65-73 (2007)
  24. High performance transcription factor-DNA docking with GPU computing. Wu J, Hong B, Takeda T, Guo JT. Proteome Sci 10 Suppl 1 S17 (2012)
  25. A DNA Structural Alphabet Distinguishes Structural Features of DNA Bound to Regulatory Proteins and in the Nucleosome Core Particle. Schneider B, Božíková P, Čech P, Svozil D, Černý J. Genes (Basel) 8 E278 (2017)
  26. Atomistic molecular dynamics simulations of bioactive engrailed 1 interference peptides (EN1-iPeps). Gandhi NS, Blancafort P, Mancera RL. Oncotarget 9 22383-22397 (2018)
  27. DNA-binding residues and binding mode prediction with binding-mechanism concerned models. Huang YF, Huang CC, Liu YC, Oyang YJ, Huang CK. BMC Genomics 10 Suppl 3 S23 (2009)
  28. Three enhancements to the inference of statistical protein-DNA potentials. AlQuraishi M, McAdams HH. Proteins 81 426-442 (2013)
  29. A Computer-Based Methodology to Design Non-Standard Peptides Potentially Able to Prevent HOX-PBX1-Associated Cancer Diseases. Gulotta MR, De Simone G, John J, Perricone U, Brancale A. Int J Mol Sci 22 5670 (2021)
  30. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system. AlQuraishi M, Tang S, Xia X. BMC Bioinformatics 16 390 (2015)
  31. Development of small molecule inhibitors targeting PBX1 transcription signaling as a novel cancer therapeutic strategy. Shen YA, Jung J, Shimberg GD, Hsu FC, Rahmanto YS, Gaillard SL, Hong J, Bosch J, Shih IM, Chuang CM, Wang TL. iScience 24 103297 (2021)
  32. Evolutionary conservation of DNA-contact residues in DNA-binding domains. Chang YL, Tsai HK, Kao CY, Chen YC, Hu YJ, Yang JM. BMC Bioinformatics 9 Suppl 6 S3 (2008)
  33. Identification of host genomic biomarkers from multiple transcriptomics datasets for diagnosis and therapies of SARS-CoV-2 infections. Sarker B, Rahaman MM, Islam MA, Alamin MH, Husain MM, Ferdousi F, Ahsan MA, Mollah MNH. PLoS One 18 e0281981 (2023)


Reviews citing this publication (25)

  1. Hox cofactors in vertebrate development. Moens CB, Selleri L. Dev Biol 291 193-206 (2006)
  2. The origin of protein interactions and allostery in colocalization. Kuriyan J, Eisenberg D. Nature 450 983-990 (2007)
  3. Hox transcription factors and their elusive mammalian gene targets. Svingen T, Tonissen KF. Heredity (Edinb) 97 88-96 (2006)
  4. Structural perspective of cooperative transcription factor binding. Morgunova E, Taipale J. Curr Opin Struct Biol 47 1-8 (2017)
  5. Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Longobardi E, Penkov D, Mateos D, De Florian G, Torres M, Blasi F. Dev Dyn 243 59-75 (2014)
  6. Oct transcription factors in development and stem cells: insights and mechanisms. Tantin D. Development 140 2857-2866 (2013)
  7. Targeting HOX/PBX dimers in cancer. Morgan R, El-Tanani M, Hunter KD, Harrington KJ, Pandha HS. Oncotarget 8 32322-32331 (2017)
  8. Classification of sequence signatures: a guide to Hox protein function. Merabet S, Hudry B, Saadaoui M, Graba Y. Bioessays 31 500-511 (2009)
  9. Pbx homeodomain proteins: TALEnted regulators of limb patterning and outgrowth. Capellini TD, Zappavigna V, Selleri L. Dev Dyn 240 1063-1086 (2011)
  10. Controlling Hox gene expression and activity to build the vertebrate axial skeleton. Casaca A, Santos AC, Mallo M. Dev Dyn 243 24-36 (2014)
  11. A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. Blasi F, Bruckmann C, Penkov D, Dardaei L. Bioessays 39 (2017)
  12. Expanding the specificity of DNA targeting by harnessing cooperative assembly. Moretti R, Ansari AZ. Biochimie 90 1015-1025 (2008)
  13. The animal in the genome: comparative genomics and evolution. Copley RR. Philos Trans R Soc Lond B Biol Sci 363 1453-1461 (2008)
  14. The role of HOX genes in head and neck squamous cell carcinoma. Platais C, Hakami F, Darda L, Lambert DW, Morgan R, Hunter KD. J Oral Pathol Med 45 239-247 (2016)
  15. Direct and Indirect Targeting of HOXA9 Transcription Factor in Acute Myeloid Leukemia. Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Cancers (Basel) 11 E837 (2019)
  16. PBX1: a key character of the hallmarks of cancer. Veiga RN, de Oliveira JC, Gradia DF. J Mol Med (Berl) 99 1667-1680 (2021)
  17. On the border of the homeotic function: re-evaluating the controversial role of cofactor-recruiting motifs: the role of cofactor-recruiting motifs in conferring Hox evolutionary flexibility may critically depend on the protein environment. Merabet S, Hudry B. Bioessays 33 499-507 (2011)
  18. The Hox protein conundrum: The "specifics" of DNA binding for Hox proteins and their partners. De Kumar B, Darland DC. Dev Biol 477 284-292 (2021)
  19. Mechanisms Underlying Hox-Mediated Transcriptional Outcomes. Cain B, Gebelein B. Front Cell Dev Biol 9 787339 (2021)
  20. Reading cytosine modifications within chromatin. Mahé EA, Madigou T, Salbert G. Transcription 9 240-247 (2018)
  21. Diversification and Functional Evolution of HOX Proteins. Singh NP, Krumlauf R. Front Cell Dev Biol 10 798812 (2022)
  22. Hox functional diversity: Novel insights from flexible motif folding and plastic protein interaction. Ortiz-Lombardia M, Foos N, Maurel-Zaffran C, Saurin AJ, Graba Y. Bioessays 39 (2017)
  23. Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse. Reichlmeir M, Elias L, Schulte D. Front Cell Dev Biol 9 648765 (2021)
  24. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Tang L, Peng L, Tan C, Liu H, Chen P, Wang H. Cancer Cell Int 22 349 (2022)
  25. The advances of E2A-PBX1 fusion in B-cell acute lymphoblastic Leukaemia. Yang M, Tang Y, Zhu P, Lu H, Wan X, Guo Q, Xiao L, Liu C, Guo L, Liu W, Yang Y. Ann Hematol (2023)

Articles citing this publication (88)

  1. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I, Zhou T, Rohs R, Honig B, Bussemaker HJ, Mann RS. Cell 147 1270-1282 (2011)
  2. Functional specificity of a Hox protein mediated by the recognition of minor groove structure. Joshi R, Passner JM, Rohs R, Jain R, Sosinsky A, Crickmore MA, Jacob V, Aggarwal AK, Honig B, Mann RS. Cell 131 530-543 (2007)
  3. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. PLoS Biol 10 e1001314 (2012)
  4. Defining the sequence-recognition profile of DNA-binding molecules. Warren CL, Kratochvil NC, Hauschild KE, Foister S, Brezinski ML, Dervan PB, Phillips GN, Ansari AZ. Proc Natl Acad Sci U S A 103 867-872 (2006)
  5. Phase separation drives aberrant chromatin looping and cancer development. Ahn JH, Davis ES, Daugird TA, Zhao S, Quiroga IY, Uryu H, Li J, Storey AJ, Tsai YH, Keeley DP, Mackintosh SG, Edmondson RD, Byrum SD, Cai L, Tackett AJ, Zheng D, Legant WR, Phanstiel DH, Wang GG. Nature 595 591-595 (2021)
  6. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors. Izhar L, Adamson B, Ciccia A, Lewis J, Pontano-Vaites L, Leng Y, Liang AC, Westbrook TF, Harper JW, Elledge SJ. Cell Rep 11 1486-1500 (2015)
  7. Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Laganà AS, Vitale SG, Salmeri FM, Triolo O, Ban Frangež H, Vrtačnik-Bokal E, Stojanovska L, Apostolopoulos V, Granese R, Sofo V. Med Hypotheses 103 10-20 (2017)
  8. Analysis of the DNA-binding profile and function of TALE homeoproteins reveals their specialization and specific interactions with Hox genes/proteins. Penkov D, Mateos San Martín D, Fernandez-Díaz LC, Rosselló CA, Torroja C, Sánchez-Cabo F, Warnatz HJ, Sultan M, Yaspo ML, Gabrieli A, Tkachuk V, Brendolan A, Blasi F, Torres M. Cell Rep 3 1321-1333 (2013)
  9. Clustering of gene hypermethylation associated with clinical risk groups in neuroblastoma. Alaminos M, Davalos V, Cheung NK, Gerald WL, Esteller M. J Natl Cancer Inst 96 1208-1219 (2004)
  10. Distinct functions of homeodomain-containing and homeodomain-less isoforms encoded by homothorax. Noro B, Culi J, McKay DJ, Zhang W, Mann RS. Genes Dev 20 1636-1650 (2006)
  11. The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. Linares AJ, Lin CH, Damianov A, Adams KL, Novitch BG, Black DL. Elife 4 e09268 (2015)
  12. Reversal of Hox1 gene subfunctionalization in the mouse. Tvrdik P, Capecchi MR. Dev Cell 11 239-250 (2006)
  13. A unique Extradenticle recruitment mode in the Drosophila Hox protein Ultrabithorax. Merabet S, Saadaoui M, Sambrani N, Hudry B, Pradel J, Affolter M, Graba Y. Proc Natl Acad Sci U S A 104 16946-16951 (2007)
  14. Hox and senseless antagonism functions as a molecular switch to regulate EGF secretion in the Drosophila PNS. Li-Kroeger D, Witt LM, Grimes HL, Cook TA, Gebelein B. Dev Cell 15 298-308 (2008)
  15. HOXA9 activates transcription of the gene encoding gp91Phox during myeloid differentiation. Bei L, Lu Y, Eklund EA. J Biol Chem 280 12359-12370 (2005)
  16. Identification of Pbx1, a potential oncogene, as a Notch3 target gene in ovarian cancer. Park JT, Shih IeM, Wang TL. Cancer Res 68 8852-8860 (2008)
  17. Pbx1 represses osteoblastogenesis by blocking Hoxa10-mediated recruitment of chromatin remodeling factors. Gordon JA, Hassan MQ, Saini S, Montecino M, van Wijnen AJ, Stein GS, Stein JL, Lian JB. Mol Cell Biol 30 3531-3541 (2010)
  18. Dissecting the functional specificities of two Hox proteins. Joshi R, Sun L, Mann R. Genes Dev 24 1533-1545 (2010)
  19. The Hox cofactors Meis1 and Pbx act upstream of gata1 to regulate primitive hematopoiesis. Pillay LM, Forrester AM, Erickson T, Berman JN, Waskiewicz AJ. Dev Biol 340 306-317 (2010)
  20. Variable motif utilization in homeotic selector (Hox)-cofactor complex formation controls specificity. Lelli KM, Noro B, Mann RS. Proc Natl Acad Sci U S A 108 21122-21127 (2011)
  21. Candidate downstream regulated genes of HOX group 13 transcription factors with and without monomeric DNA binding capability. Williams TM, Williams ME, Kuick R, Misek D, McDonagh K, Hanash S, Innis JW. Dev Biol 279 462-480 (2005)
  22. HOX proteins and leukemia. Sitwala KV, Dandekar MN, Hess JL. Int J Clin Exp Pathol 1 461-474 (2008)
  23. Epigenetic regulation of early osteogenesis and mineralized tissue formation by a HOXA10-PBX1-associated complex. Gordon JA, Hassan MQ, Koss M, Montecino M, Selleri L, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Cells Tissues Organs 194 146-150 (2011)
  24. Hox proteins display a common and ancestral ability to diversify their interaction mode with the PBC class cofactors. Hudry B, Remacle S, Delfini MC, Rezsohazy R, Graba Y, Merabet S. PLoS Biol 10 e1001351 (2012)
  25. Selection of distinct Hox-Extradenticle interaction modes fine-tunes Hox protein activity. Saadaoui M, Merabet S, Litim-Mecheri I, Arbeille E, Sambrani N, Damen W, Brena C, Pradel J, Graba Y. Proc Natl Acad Sci U S A 108 2276-2281 (2011)
  26. Identification of PBX1 target genes in cancer cells by global mapping of PBX1 binding sites. Thiaville MM, Stoeck A, Chen L, Wu RC, Magnani L, Oidtman J, Shih IeM, Lupien M, Wang TL. PLoS One 7 e36054 (2012)
  27. Phase Separation Mediates NUP98 Fusion Oncoprotein Leukemic Transformation. Chandra B, Michmerhuizen NL, Shirnekhi HK, Tripathi S, Pioso BJ, Baggett DW, Mitrea DM, Iacobucci I, White MR, Chen J, Park CG, Wu H, Pounds S, Medyukhina A, Khairy K, Gao Q, Qu C, Abdelhamed S, Gorman SD, Bawa S, Maslanka C, Kinger S, Dogra P, Ferrolino MC, Di Giacomo D, Mecucci C, Klco JM, Mullighan CG, Kriwacki RW. Cancer Discov 12 1152-1169 (2022)
  28. Targeted chemical wedges reveal the role of allosteric DNA modulation in protein-DNA assembly. Moretti R, Donato LJ, Brezinski ML, Stafford RL, Hoff H, Thorson JS, Dervan PB, Ansari AZ. ACS Chem Biol 3 220-229 (2008)
  29. Covariation between homeodomain transcription factors and the shape of their DNA binding sites. Dror I, Zhou T, Mandel-Gutfreund Y, Rohs R. Nucleic Acids Res 42 430-441 (2014)
  30. HoxA9 regulated Bcl-2 expression mediates survival of myeloid progenitors and the severity of HoxA9-dependent leukemia. Brumatti G, Salmanidis M, Kok CH, Bilardi RA, Sandow JJ, Silke N, Mason K, Visser J, Jabbour AM, Glaser SP, Okamoto T, Bouillet P, D'Andrea RJ, Ekert PG. Oncotarget 4 1933-1947 (2013)
  31. Loss of function but no gain of function caused by amino acid substitutions in the hexapeptide of Hoxa1 in vivo. Remacle S, Abbas L, De Backer O, Pacico N, Gavalas A, Gofflot F, Picard JJ, Rezsöhazy R. Mol Cell Biol 24 8567-8575 (2004)
  32. Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries. Erickson T, Scholpp S, Brand M, Moens CB, Waskiewicz AJ. Dev Biol 301 504-517 (2007)
  33. Subtle changes in motif positioning cause tissue-specific effects on robustness of an enhancer's activity. Erceg J, Saunders TE, Girardot C, Devos DP, Hufnagel L, Furlong EE. PLoS Genet 10 e1004060 (2014)
  34. HOXA9 participates in the transcriptional activation of E-selectin in endothelial cells. Bandyopadhyay S, Ashraf MZ, Daher P, Howe PH, DiCorleto PE. Mol Cell Biol 27 4207-4216 (2007)
  35. Comparing anterior and posterior Hox complex formation reveals guidelines for predicting cis-regulatory elements. Uhl JD, Cook TA, Gebelein B. Dev Biol 343 154-166 (2010)
  36. Protein kinase C-mediated phosphorylation of the leukemia-associated HOXA9 protein impairs its DNA binding ability and induces myeloid differentiation. Vijapurkar U, Fischbach N, Shen W, Brandts C, Stokoe D, Lawrence HJ, Largman C. Mol Cell Biol 24 3827-3837 (2004)
  37. Inhibition of cancer cell proliferation by designed peptide amphiphiles. Aulisa L, Forraz N, McGuckin C, Hartgerink JD. Acta Biomater 5 842-853 (2009)
  38. Comparative transcriptomics enlarges the toolkit of known developmental genes in mollusks. De Oliveira AL, Wollesen T, Kristof A, Scherholz M, Redl E, Todt C, Bleidorn C, Wanninger A. BMC Genomics 17 905 (2016)
  39. Large-scale reprogramming of cranial neural crest gene expression by retinoic acid exposure. Williams SS, Mear JP, Liang HC, Potter SS, Aronow BJ, Colbert MC. Physiol Genomics 19 184-197 (2004)
  40. Poly(ADP-ribose)-dependent chromatin unfolding facilitates the association of DNA-binding proteins with DNA at sites of damage. Smith R, Lebeaupin T, Juhász S, Chapuis C, D'Augustin O, Dutertre S, Burkovics P, Biertümpfel C, Timinszky G, Huet S. Nucleic Acids Res 47 11250-11267 (2019)
  41. Improved ex vivo expansion of adult hematopoietic stem cells by overcoming CUL4-mediated degradation of HOXB4. Lee J, Shieh JH, Zhang J, Liu L, Zhang Y, Eom JY, Morrone G, Moore MA, Zhou P. Blood 121 4082-4089 (2013)
  42. The homeodomain region controls the phenotype of HOX-induced murine leukemia. Breitinger C, Maethner E, Garcia-Cuellar MP, Slany RK. Blood 120 4018-4027 (2012)
  43. Antagonism versus cooperativity with TALE cofactors at the base of the functional diversification of Hox protein function. Rivas ML, Espinosa-Vázquez JM, Sambrani N, Greig S, Merabet S, Graba Y, Hombría JC. PLoS Genet 9 e1003252 (2013)
  44. MLL is essential for NUP98-HOXA9-induced leukemia. Shima Y, Yumoto M, Katsumoto T, Kitabayashi I. Leukemia 31 2200-2210 (2017)
  45. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers. Finnerty JR, Mazza ME, Jezewski PA. BMC Evol Biol 9 18 (2009)
  46. Structural basis for homeodomain recognition by the cell-cycle regulator Geminin. Zhou B, Liu C, Xu Z, Zhu G. Proc Natl Acad Sci U S A 109 8931-8936 (2012)
  47. Structural basis for sequence specific DNA binding and protein dimerization of HOXA13. Zhang Y, Larsen CA, Stadler HS, Ames JB. PLoS One 6 e23069 (2011)
  48. BRPF1 is essential for development of fetal hematopoietic stem cells. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, Wang E, Yang XJ. J Clin Invest 126 3247-3262 (2016)
  49. Minimization of a protein-DNA dimerizer. Stafford RL, Arndt HD, Brezinski ML, Ansari AZ, Dervan PB. J Am Chem Soc 129 2660-2668 (2007)
  50. A flexible extension of the Drosophila ultrabithorax homeodomain defines a novel Hox/PBC interaction mode. Foos N, Maurel-Zaffran C, Maté MJ, Vincentelli R, Hainaut M, Berenger H, Pradel J, Saurin AJ, Ortiz-Lombardía M, Graba Y. Structure 23 270-279 (2015)
  51. Temperature-sensitive protein-DNA dimerizers. Hauschild KE, Metzler RE, Arndt HD, Moretti R, Raffaelle M, Dervan PB, Ansari AZ. Proc Natl Acad Sci U S A 102 5008-5013 (2005)
  52. The orphan GPCR, Gpr161, regulates the retinoic acid and canonical Wnt pathways during neurulation. Li BI, Matteson PG, Ababon MF, Nato AQ, Lin Y, Nanda V, Matise TC, Millonig JH. Dev Biol 402 17-31 (2015)
  53. A genomic approach to the identification and characterization of HOXA13 functional binding elements. McCabe CD, Innis JW. Nucleic Acids Res 33 6782-6794 (2005)
  54. Distinct molecular strategies for Hox-mediated limb suppression in Drosophila: from cooperativity to dispensability/antagonism in TALE partnership. Sambrani N, Hudry B, Maurel-Zaffran C, Zouaz A, Mishra R, Merabet S, Graba Y. PLoS Genet 9 e1003307 (2013)
  55. Heterocyclic Diamidine DNA Ligands as HOXA9 Transcription Factor Inhibitors: Design, Molecular Evaluation, and Cellular Consequences in a HOXA9-Dependant Leukemia Cell Model. Depauw S, Lambert M, Jambon S, Paul A, Peixoto P, Nhili R, Marongiu L, Figeac M, Dassi C, Paul-Constant C, Billoré B, Kumar A, Farahat AA, Ismail MA, Mineva E, Sweat DP, Stephens CE, Boykin DW, Wilson WD, David-Cordonnier MH. J Med Chem 62 1306-1329 (2019)
  56. Identification of a new type of PBX1 partner that contains zinc finger motifs and inhibits the binding of HOXA9-PBX1 to DNA. Laurent A, Bihan R, Deschamps S, Guerrier D, Dupé V, Omilli F, Burel A, Pellerin I. Mech Dev 124 364-376 (2007)
  57. Interaction of the BELL-like protein ATH1 with DNA: role of homeodomain residue 54 in specifying the different binding properties of BELL and KNOX proteins. Viola IL, Gonzalez DH. Biol Chem 387 31-40 (2006)
  58. A hydrophobic residue in the TALE homeodomain of PBX1 promotes epithelial-to-mesenchymal transition of gastric carcinoma. He C, Wang Z, Zhang L, Yang L, Li J, Chen X, Zhang J, Chang Q, Yu Y, Liu B, Zhu Z. Oncotarget 8 46818-46833 (2017)
  59. Electrostatic repulsion causes anticooperative DNA binding between tumor suppressor ETS transcription factors and JUN-FOS at composite DNA sites. Madison BJ, Clark KA, Bhachech N, Hollenhorst PC, Graves BJ, Currie SL. J Biol Chem 293 18624-18635 (2018)
  60. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum. Smith FW, Jockusch EL. Dev Biol 395 182-197 (2014)
  61. The human HOXA9 protein uses paralog-specific residues of the homeodomain to interact with TALE-class cofactors. Dard A, Jia Y, Reboulet J, Bleicher F, Lavau C, Merabet S. Sci Rep 9 5664 (2019)
  62. Site-directed mutagenesis and footprinting analysis of the interaction of the sunflower KNOX protein HAKN1 with DNA. Tioni MF, Viola IL, Chan RL, Gonzalez DH. FEBS J 272 190-202 (2005)
  63. The TALE face of Hox proteins in animal evolution. Merabet S, Galliot B. Front Genet 6 267 (2015)
  64. Binding polymorphism in the DNA bound state of the Pdx1 homeodomain. Babin V, Wang D, Rose RB, Sagui C. PLoS Comput Biol 9 e1003160 (2013)
  65. Energetic differences at the subunit interfaces of normal human hemoglobins correlate with their developmental profile. Manning LR, Russell JE, Popowicz AM, Manning RS, Padovan JC, Manning JM. Biochemistry 48 7568-7574 (2009)
  66. Japanese medaka Hox paralog group 2: insights into the evolution of Hox PG2 gene composition and expression in the Osteichthyes. Davis A, Scemama JL, Stellwag EJ. J Exp Zool B Mol Dev Evol 310 623-641 (2008)
  67. PBX1 is dispensable for neural commitment of RA-treated murine ES cells. Jürgens AS, Kolanczyk M, Moebest DC, Zemojtel T, Lichtenauer U, Duchniewicz M, Gantert MP, Hecht J, Hattenhorst U, Burdach S, Dorn A, Kamps MP, Beuschlein F, Räpple D, Scheele JS. In Vitro Cell Dev Biol Anim 45 252-263 (2009)
  68. The reach of linear protein-DNA dimerizers. Stafford RL, Dervan PB. J Am Chem Soc 129 14026-14033 (2007)
  69. Modular discovery of monomeric and dimeric transcription factor binding motifs for large data sets. Toivonen J, Kivioja T, Jolma A, Yin Y, Taipale J, Ukkonen E. Nucleic Acids Res 46 e44 (2018)
  70. New Insights into Cooperative Binding of Homeodomain Transcription Factors PREP1 and PBX1 to DNA. Zucchelli C, Ferrari E, Blasi F, Musco G, Bruckmann C. Sci Rep 7 40665 (2017)
  71. Repressor domain and nuclear localization signal of the murine Hoxa-11 protein are located in the homeodomain: no evidence for role of poly alanine stretches in transcriptional repression. Roth JJ, Breitenbach M, Wagner GP. J Exp Zool B Mol Dev Evol 304 468-475 (2005)
  72. Two models of Smad4 and Hoxa9 complex are proposed: structural and interactional perspective. Roy S, Thakur AR. J Biomol Struct Dyn 28 729-742 (2011)
  73. Arm-domain interactions can provide high binding cooperativity. Schleif R, Wolberger C. Protein Sci 13 2829-2831 (2004)
  74. Hox transcription factors influence motoneuron identity through the integrated actions of both homeodomain and non-homeodomain regions. Misra M, Sours E, Lance-Jones C. Dev Dyn 241 718-731 (2012)
  75. Letter The O-GlcNAc transferase OGT interacts with and post-translationally modifies the transcription factor HOXA1. Draime A, Bridoux L, Belpaire M, Pringels T, Degand H, Morsomme P, Rezsohazy R. FEBS Lett 592 1185-1201 (2018)
  76. HoxA9 binds and represses the Cebpa +8 kb enhancer. Peng L, Guo H, Ma P, Sun Y, Dennison L, Aplan PD, Hess JL, Friedman AD. PLoS One 14 e0217604 (2019)
  77. Wheat wounding-responsive HD-Zip IV transcription factor GL7 is predominantly expressed in grain and activates genes encoding defensins. Kovalchuk N, Wu W, Bazanova N, Reid N, Singh R, Shirley N, Eini O, Johnson AAT, Langridge P, Hrmova M, Lopato S. Plant Mol Biol 101 41-61 (2019)
  78. A Synthetic CPP33-Conjugated HOXA9 Active Domain Peptide Inhibits Invasion Ability of Non-Small Lung Cancer Cells. Yu SL, Koo H, Lee SI, Kang J, Han YH, Yeom YI, Lee DC. Biomolecules 10 E1589 (2020)
  79. Pentapeptide insertion mutagenesis of the Hoxa1 protein: mapping of transcription activation and DNA-binding regulatory domains. Lambert B, Vandeputte J, Desmet PM, Hallet B, Remacle S, Rezsohazy R. J Cell Biochem 110 484-496 (2010)
  80. Identification of a Modified HOXB9 mRNA in Breast Cancer. Nakashoji A, Hayashida T, Kawai Y, Kikuchi M, Watanuki R, Yokoe T, Seki T, Takahashi M, Miyao K, Yamaguchi S, Kitagawa Y. J Oncol 2020 6065736 (2020)
  81. MODER2: first-order Markov modeling and discovery of monomeric and dimeric binding motifs. Toivonen J, Das PK, Taipale J, Ukkonen E. Bioinformatics 36 2690-2696 (2020)
  82. Role of DNA conformation & energetic insights in Msx-1-DNA recognition as revealed by molecular dynamics studies on specific and nonspecific complexes. Kachhap S, Singh B. J Biomol Struct Dyn 33 2069-2082 (2015)
  83. A Live Cell Protein Complementation Assay for ORFeome-Wide Probing of Human HOX Interactomes. Jia Y, Reboulet J, Gillet B, Hughes S, Forcet C, Tribollet V, Hajj Sleiman N, Kundlacz C, Vanacker JM, Bleicher F, Merabet S. Cells 12 200 (2023)
  84. Distinct genetic requirements for BX-C-mediated specification of abdominal denticles. Sambrani N, Pradel J, Graba Y. Dev Dyn 243 192-200 (2014)
  85. Hox genes in development and beyond. Hubert KA, Wellik DM. Development 150 dev192476 (2023)
  86. Molecular Mechanisms of Lupus Susceptibility Allele PBX1D. Park YP, Roach T, Soh S, Zeumer-Spataro L, Choi SC, Ostrov DA, Yang Y, Morel L. J Immunol 211 727-734 (2023)
  87. Molecular dynamics simulations show altered secondary structure of clawless in binary complex with DNA providing insights into aristaless-clawless-DNA ternary complex formation. Kachhap S, Priyadarshini P, Singh B. J Biomol Struct Dyn 35 1153-1167 (2017)
  88. Structure of the unique tetrameric STENOFOLIA homeodomain bound with target promoter DNA. Pathak PK, Zhang F, Peng S, Niu L, Chaturvedi J, Elliott J, Xiang Y, Tadege M, Deng J. Acta Crystallogr D Struct Biol 77 1050-1063 (2021)